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The first edition of the book in September 2004 in Hussian was devoted by the author
to the 175ys anniversary of the first publications on non- Buclidean Geometry,

to the 100ys anniversary of the forst publications on Theory of Helativity

and to their great creators — Lobachevsky, Bolyai, Lorentz, Poincard, Einstein

To the readers

The author brings to your attention the 3-rd edition of Tensor Trigonometry,
significantly renovated and expanded by him, essentially in its applications.

Originated in antiguity the Trigonometry completed own development and
obtained its modern form at the end of the 18th century in the works of great
Leonard Euler. Meanwhile Geometry, from the historically initial Euclidean
forms, passed far ahead for the last two centuries. PFurthermore, its various
multi-dimensional and non-Euclidean tensor forms were discovered and studied.

In the monograph, we undertook in 2004 constructing general and various
useful particular forms of the new mathematical subject Tensor Trigonometry
in k-dimensional homogeneous and isotropic spaces with their quadratic metric,
as Buclidean, quasi-Euclidean and pseudo- Euclidean. The binary angle between
two lines or vectors, between two subspaces or lineors in linear spaces (at & > 2)
has a nature of bivalent tensors with properties, determined by reflector tensor of
such a space. A kind of the space is determined by its quadratic metric. In such
metric spaces, the tensor angle and its trigonometriec functions are respectively
either orthogonal, or quasi-orthogonal, or pseudo-orthogonal bivalent tensors.

In order to obtain all the arising tensor constructions, it was necessary to
preliminary highly thoroughly consider and supplement a number of concepts
in the Theory of Exact Matrices, which is a part of Linear Algebra. Our efforts
were rewarded by attainments of interesting and unexpected results in Algebra,
Geometry and in Theoretical Physics with the Theory of Helativity.

Tensor Trigonometry point of view gives such advantages, that some rather
difficult and not easily perceivable mathematical or physical theories became
quite transparent and natural for understanding. So, we exposed this on more
descriptive examples of trigonometric modelling different motions with the use
of their polar representations in the guasi-, psendo- Euclidean and non-Euclidean
peometries (with the globe) and in Theory of Relativity, Thus, the measureless
hyperbolic tensor of motion with certain scalar multipliers produces all main
dynamie tensor, vector and sealar physical characteristies of relativistic moving
material body and gives the general law of summing veloeities. The measureless
hyperbolic tensor of deformation produces all seeming us geometric parameters
of relativistic moving object. Under this Tensor Trigonometric approach, we
opened wide opportunities for application of the relativistic Poincaré—Minkowski
space-time with the Hipps field without its curving in the field of gravitation.

Contents of the book are at the joint of problems studied in multi-dimensional
Geometry and Linear Algebra. Since its exposition required many of additional
notations and terms, the author tried to give them the most convenient and
logical forms with the full matrix alphabet based on wide-spreading literature.

Anatoly Sergeevich Ninnl (Dr. Ph.) November 17 2024
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“Without exaggeralion,

1 put into this symphony
the whole of my soul .7
P. 1. Tehaikovsky

Introduction

The 3rd and last edition of this book from aonthor-himself, with most full consequent ial
exposition of this new subject of mat hematics and its varions applications, has been prepared
by him with numerons updates and innovations simed at improving presentation of its very
extensive contents, and also with the poal of making this math subject vet more accessible
to users including in the higher mathematical and physical education.

In Theory of Matrices such usnal concepts as a singolar matrix, its rank, eigenvalues,
eigenvectors or eigensubspaces, annuling polynomial, ete | have a sense only for exact matrices
and at exact computations. We distinguish in ouwr mathworks, for instance, [15] and [17], the
exact theory of notions and the approximating theory of notions’ estimates. Each of them
places its own important role. The notions connected with exact characteristics are used
not only for constrocting and analysis of abstractions, but they are important for objects
from applied problems becanse the characteristics of objects are always exact and only their
various estimates are approximate. Such creative approach was most vividly confessed in
the works of the great mathematician, physicist and philosopher of science Henri Poincard.

The main two parts of the monograph | in twelve chapters, contain both the results of our
investigations in Theory of Exact Matrices (Part 1. Chs. 1-+4) and developed on this platform
Tensor Trigonometry (Part 11 chapters 5=12). The latter is a constituent division of the
corresponding to it k-dimensional Geometry with a certain quadratic metric and a certain
reflector tensor in the basis homogeneons and isotropic arithmetic and physical spaces.

The historical roots of Scalar Trigonometry, as a constituent part of two-dimensional
Geometry, refer to far-away times. So, yet in the Euelid’s "Elements” some trigonomet ric
formulations were be found. Much later, in 11 ape Clandins Ptolemy of Alexandria widely
used in "Almapest" sine-cosine invariant as a trigonometric equivalent of the Pythagorean
Theorem. Some spherical functions were used in IN-X apes by Arabian mathematicians.
It is of interest that the Trigonometry on a sphere became developed much earlier than
one on a plane. 1t was, doe to the fact, that it was needed in the practical astronomy.
So, in 1603, Th. Harriot connected the anpolar excess of a spherical triangle with area and
radins. Though some triponometric elements were introduoced into the Furopean science by
R, Wallingford yet in early X1Y ape. He used them in solving of a right trisngle on a plane.

Hyperbolic functions were discovered by A Moivre (1722) and obtained in complete set
by V. Riceati from a unity hyperbola (1757). First these functions were used really also
in geometry, but as if on the "hypothetical sphere of an imaginary radins” with hyperbolic
arcs—segments, by . Lambert and F. Tanrinns in their pioneer investigations. (Now we may
named this object as the top sheet of the Minkowski hyperboloid 1 — see this in Ch. 120) So,
in 1763, ). Lambert, using the specific analogy between spherical and by perbolic angles with
their functions, connected the anpolar defect of a hyperbaolic triangle on this sphere with its
area and radins [36]. Later, in 1825, F. Taurinus inferred in first that a sum of angles in
the such hyperbolic triangle less & [38]. 1 e, they did the pioneer steps in creation of the
non-Euclidean planimetry. The preat creators of the hyperbolic non-EBoclidean geometry,
as based on the holistic adomatic system, N Lobachevsky and ). Bolyai used such specific
analogy in the small with the spherical peometry as a mathematical inst rument for inferences
of the hyperbolic geometry metric relations.
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In addition to the non-Euclidean peometry with affine topology, identified descriptively
by H. Jancen |52] in 1909 on the Minkowski hyperboloid 11 we revealed the hyperbolic
elliptical non- Euclidean geometry with cylindrical topology on the Minkowski hy perboloid 1
which, as was proved, is one step isometric to the geometry on the Beltrami pseudosphere!

These non-Euclidean peometries of spherical, hyperbolic and hyperbolic-elliptical types,
realized on own curvilinear hypersurfaces of the constant radivs-parameter B and can be
embedded into their (n 4+ 1)D enveloping homogeneous and isotropic binary spaces (Q™1)
and {P™1), have such an essential feature. Each has a group of nD rotations limiting by one
degree of freedom from constancy of R around frame axes in these spaces, isomorphic with
a proup nl} motions on these hypersorfaces with non Eoclidean peometries. o the quasi
Euclidean binary space (@™}, this hypersuface is real-valued (the Special hy perspheraid),
but in the psendo-Euclidean binary space {P™1) this hypersurface is either real valued at
imapinary B (the hyperboloid 1) or it has one the imapinsry dimension at real-valoed R
(the hyperboloid 1), As was established in owr work, ooly such hypersurfaces have angular
metric forms and they may be represented by the anpolar Absolute Pythagorean theorems
with three principal differential arcs. For a systematic, we classified such by persurfaces of
the constant Gaussian curvature, but of constant radins parameter with enveloping spaces
as "perfect surfaces and spaces". From here we infer next of the main our results, that the
rotational Tensor Trigonometry (i e, with B =1) - quasi-Euoclidean and pseado-Euoclidean
is sometric with motions on such hypersurfaces with the exactness till factor BRI

The term “lrigonometry” was raised thanks to Bart holomans Pitiscus and appeared in
1505 in his book |2]. Within the framework of the term “Tensor Triponometry” int roduced by
the author of the book of 2004, we singled it out as a new and useful subject of Mathematics,
in which were presented both many new concepts, formulae and theorems and some of known
notions related to this area, but which have not vet been explicitly attributed to the subject.
Historically the modern perfect form of Scalar Trigonometry was given by L. Fuoler |1}, who
realized also its complexification. On the other hand, Geometry continued to develop and
essentially violently according to the appeared idea of & multi-dimensional space.

Multi-dimensional space was arisen apparently at the middle of XIX ape in classical work
of H. Grassmann "Die lineale Ausdebnunpslehre” |30 H. Grassmann and, independently of
him, W. Hamilton laid the foundation of Vector Analysis in similar spaces. Before (in 1808)
J-Go Garnier emits Analytical Geometry as the whole division of Geometry, Outstanding
contribution in justification of such an alpebraic approach to the Geometry of objects in
arithmetic spaces was realized by the famons "Cantor—Dedekind Axiom about Continoom”.

About of that time appearance of Linear Algebra and its following development in the
works of F. Frobenins, G Cramer, L. Kronecker, A Capelli, . Sylvester, L. Hesse, C. Jordan,
Ch. Hermite and other mathematicians led, with time, to its larger filling by geometric
content. That is why, Linear Alpebra found effective applications in the theory of vector
Euelidean spaces and also, after the well known works of H. Poincare and H. Minkowski, in
the theory of new psendo-Euclidean spaces. This process was activated thanks to algebraic
definitions of notions connected with metric properties of arithmetic spaces and of their
geometric objects (the lenpths of vectors and the values of scalar anples between them). For
the basic alpebraic definitions of measures mathematicians used the Pythaporean Theorem
and the algebraic cosine lnequality of Caochy or sine Inequality of Hadamard .

Besides, for the strict alpebraic approach to the peometry in arithmetic spaces, it is
impossible to realize it completely without Theory of Exact Matrices. For example, . Moore
and later B Penrose proposed the general methods of quasi-inversion of sinpular matrices.
R. Courant developed the large parameter optimization method with penalty functions,
useful in such alpebraic applications too. A, Tichonov pave the small parameter method
of regularization with the limit method for normal solving degenerated systems of linear
equations. Hesults of these investigations had also a big geometric importance and, to some
depree, served for initiating the present work.
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The main aims of this monograph were (as 1st) to develop with further applications
anumber of algebraic and geometric notions in Theory of Exact Matrices (Part 1 Chs. 1 =4),
and then (as 2nd) on the platform to work out the basic aspects of the Tensor Trigonometry
for binary tensor angles formed by two linear subspaces or formed by rotation of a linear
subspace in linear enveloping spaces (Part 11 Chs. 5=12). Since the Tensor Trigonometry
has a lot of applications in other mathematical and in some physical domains, the larpest
examples of which are exposed in the book’s Appendix.

First of all, the structure of matrix characteristic coefficients in the explicit form was
installed by us with our special differential method (though historically els in early 1981).
They appeared in Theory of Exact Matrices in middle of XX ape in the works of J.-M. Sourian
and D, K. Faddeev in addition to scalar characteristic coefficients with their well known
structure. The latters were used yet in XIX ape by UL Le Verrier at his famous prediction of
Neptune, We express all eigenprojectors and quasi-inverse matrices in explicit form | in terms
of the scalar and matrix coefficients. And the minimal anoulling polynomial for nxn-matrix
in explicit form is identified with the connections of all matrix sinpularity parameters.

In passing, the peneral inequality for all averape valoes is inferred, and hierarchical
invariants for the spectrally positive matrix are installed for the justification of the stated
geometric norms. The new global limit method for step by step caleolating all roots of a
real alpebraic equation is proposed, and the more strict necessary condition for all its roots
reality and positivity, than the classical Descartes condition, is gotten.

The particolar (of order #) and general (of order r) quadratic norms are introdoced for
the geometric objects lineors, determined by nox romatrices A, where 1 <r < nat =1
they are vectors), and for the tensor angles between them or between their imapes in the
n-dimensional arithmetic spaces. In particular, at £ = 1 they are Fuclidean and Frobenins
norms (measures). The theoretical basis for these particular and peneral norms is the hier
archical peneral inequality for all averape positive values. Also the specific multiplications of
cosine and sine types are defined for a pair of these lineors with inferring the so-called general
cosine and general sine inegualities through the especial matriz trigonometric spectra with
a binary nature (as all the tensor angles too). Their elementary algebraic and triponomet ric
cases are the cosine Inequality of Canchy and the sine lnequality of Hadamard.

Tensor Trigonometry, as the main new content of this monograph | is exposed then with
two types of its tensor angles — projective and motive ones. Projective tensor angle acts in
the projective tensor triponometric functions as their arpument and in the different eigen
reflectors — symmetrical and oblique, orthogonal and affine, spherical and hy perbolic. Motive
tensor angle acts in the motive rotational (sine—cosine) and deformational (tanpent-—secant )
tensor trigonometric functions as their argument.  Both these types of principal tensor
angles are connected in one-to-one correspondence by clear matrix formulae. The principal
tensor anples are added by induced or free secondary orthospherical tensor angles, which we
reveal either by polar decomposition of general motions or through differentiation of vector
functions of motive angles. Thus, any general mixed rotations or motions are presented by
polar decomposition in matrix formulae in the principal and secondary orthospherical parts.

Under introducing a reflector tensor to the affine (or arithmetic) homogeneons isotropic
space with a quadratic metric, all concepts above with two binary spaces are divided
into quasi-Euclidean and pseado-Fuoclidean ones. Two pairs of rotations (spherical, ortho
spherical), (hyperbolic, orthospherical) in these two binary spaces form two noncommutative
groups. The first is the new homogeneons group of quasi-Euclidean rotations. The second
is the well-known in the Theory of Helativity and the hyperbolic geometry homogeneous
group of pseudo-Euclidean motions or rotations | Lorentz proup). The intersection of these
two proups in the so-called nniversal base is a subgronp of orthospherical rotations. So, in
the Minkowski space-time, it is a subgroup of Euclidean rotations of the external cavity of
dividing sotropic (light) cone (in each kth Enclidean subspaces). The set of reflections in
the same binary space is generated by the same reflector tensor, and it is not a group.
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Asa bright novelty, we gave solution of pseudo-Eoclidean right triangles in a psendoplane
with connections of complementary hyperbolic angles and proposed an updated concept of
the parallel angle in the hyperbolic non-Euclidean geometry, true in any admitted bases.

Our binery quasi- Euclidean space with its geomet ry filled a previously unnoticed gap t hat
existed in the theory of homopeneons isotropic spaces. 1t is a natural and wseful addition
to the Minkowski psendo-Euclidean space. Though the latter with its Lorentz group was
introduced back in 1905 by Heory Poincard as the complex binary space of the Theory of
Relativity (named so later by Max Planck). In 1907 this binary space as the 40 space-time
wis realificated by Herman Minkowski and added by his real-valued hyperboloids 1 and 11 In
Chs. TA and 10A, we nse the Minkowski space-time with its unity trigonometric (at |[B] =1)
hyperboloids 1 and 1 for tensor trigonomet ric modeling peomet ric motions in byperbolic and
hyperbolic—elliptical non-Euclidean peometries with affine and eylindrical topologies and
respectively in Theory of Relativity with the Minkowski space-time, in accordance with the
fundamental Mach Principle and the Hipps Theory, confirmed this space-time in our time!

In Appendix (Chs. 1A=10A) — see in the Preface to it, as the rather important case,
we considered tensor trippnometric transformations in the so-called elementary forms, i e
with single principal and single orthospherical eigen anpgles of motions, and hence with single
frame axis for them. The pew interesting possibilities are discovered for the very clear study
of various types of in all non-Fuclidean peometries with the same reflector tensor, but with
own gquadratic metrics; in all non-Euclidean geometries of constant radins; and in Theory
of Relativity, The general law of summing non-collinear sepments, principal spherical or
hyperbolic peometric motions or velocities in STH is established in the trigonomet ric matric,
vector, scalar (tvs) forms with identification of the orthospherical rotation. ln non-Euclidean
geometries and STH, we gave this law for two-steps motions also in the noncommout ative
biort hogonal form with the Big and Small Pythagorean theorems; and added to them the
General Law of polysteps motions summation in its hyperbolic and spherical kinds.

ln the Kunsthammer of the book to end, the readers may test themselves in solving of
the sugpested by the anthor questions and interest tasks near to this work’s topics.

In conclusion, it is necessary to clarify the new subiject name on the Titwl. Why tensor¥
We see that usual angles are binary as between two linear geometric objects. They and
their tensor functions are determined by square matrices how for any bivalent tensors. In
the presence of some from two quadratic metric, the tensors are orthoponal; in the absence
of metric, they are affine. This new math subject deals with orthogonsl and affine tensors,
their projections and invariants. On a quasiplane these tensors are spherically orthogonal,
in & quasi-Kuoclidean space they are quasi- Enclidean orthogonal. On a psendoplane they are
hyperbolically orthogonal, and in a pseado- Eoclidean space they are psendo- Euclidean ortho
ponal. o addition, they may be symmetric and anti-symmetric, real imapinary and complesx.
For tensor trigonometric functions of the binary tensor anples we use by analogy with scalar
ones, a5 most convenient here, the classical notations of J. Lagrange and K. Scherffer.

The date of the Tensor Trigonometry birth is October 4, 2004, when its first edition
exited in the world by the "MIR" Publisher [15] thanks to a bright review of the eminent and
encyclopedically versatile mathematician Postnikov MM well-known as anthor of a larpe
number of valuable monographs and textbooks in varions mathematical fields. In Janoary
of 2021 the 2-nd, but English edition of Tensor Trigonometry was issued by "Fizmatlit" [16].
This significantly renovated, widen and optimized by design 3-rd edition is being relessed
with corrections of all found minor inaccuracies and typos, with new textual commentaries
and preservation of principal theorems, corollaries, formulae, pictures, and with preseating
of the most developed tensor differential trigonometry as one else mathematical subject.

New methods of Tensor Trigonometry can be used in the varions domains of mat hematics
and physics. The author hopes that readers will find a lot of interesting contents and of new
knowledge. Ull welcome, if somebody wishes to dare in this new direction for its following
development with surprising results! However Ull post adherents of plagiarisms on web-site.



Notations

1. Notations of matrices (Matrices alphabet)

A - rectangular @ M- or M X Bematrix, or 7 e-lineor o g space (at =1 nx l-vector a),
AT - spherically orthogonal quasi-inverse matris of Moore Penrose,

B guadratic n ® nomatrix or exteronal multiplication B = A4S of 0o e lineors Ay, A

B~ - affine or obligue (or byperbolically orthogonal) quasi-inverse matrix,

BY - adjpint matrix for nonsingular B (B~ = BY /detB).

B; = B — pl — ith singular eigenmatrix for B,

B (as Bp)  null-priree singular matrix: {ker B) N {im B) = {0).

B (az Bm and Bn) - edeguately and Hermition noll-normael matrices: (ker B} L{im B).
Bias Be)  nwll-cell {two-Hock- diagorial) forme of Bp. Bm. Bn.

B (as Bp)  affine or oblique eigenprojector into (ker B) parallel to (im B),

B (as Bp) - affine or oblique eigenprojector into (im B) parallel to (ker B).

B (as Bm)  spherically orthogonal eigen projector into (im B) = (im B"),

B (as Bm ) - spherically orthogonal eigenprojector into (ker B) = (ker B").

1]1? i as ﬁn} spherically cethogonal vigeoprojector into {im B).

B_’ﬁ i as Bm ) - spherically orthogonal eigenprojector into (ker B},

O free cellular matrix moltiplier or ioteroal multiplication © = A} Az of these i = r-lineors,
Cu(B) - basic (gblock-diagonal) form of the matrix B (g — gquantity of the eigenvalues of B).
I diagonal matris,

E."'& certain unity coordinates base ([rame of reference).

Fy unity bhase of the diagonal cosine or wriversel base for the spherical- by perbolic analogy,
Fi{...) — matrix function of (... ).

{GTHx). {GEHu) and G, metric tensors (positive. sign-indefinite and mutual with @),

H = H*  Hermitean complex matrix. HT -~ positively definite Hermitean complex matrix.
I unity matriz. I and I~ — metric reflector tensors of Euclidean and anti- Euclidean spaces.

I£, IT o { R I*H“r} ={+ T }s reflector tensors of quasi- and pseudo-Buclidean spaces,
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It totally-unity matriz: all che elements of which are equal to 1.

Ju (B) - caponic Jordan form of a matrixs B,

K - anti-syvmmetric real or complex matrix,

Kp(e) — matrix characteristic polyoomial of the parameter £ foe 2 matris B,

K1(B,t) and Ka(B,t) - first matrix characteristic coefficients for a matris B of order £,
Ka(B,t) and K3(B,t) — second matrix characteristic cocflicients for a matrix B of order £
+Ref{B} - cigeoreflectors for matrices B {affine. obligue).

+Ref{Bm} - ecigenreflectors for matrices Bm (spherically orthogonal),

+Ref{Bp}  ecigenreflectors for matrices Bp (affine or oblique or hyperbolically orthogonal),
+Ref{AA}  vigenreflectors for o matrices AA" (spherically orthogonal),

Lu(B) — g block-triangular form of a matrix B (g - gquantity of cigenvalues of B).

M{MM = MM) - vormal (real-valued or adequately complex) normal matrix,

N (NN* =N*N - Hermitean complex normal matris,

O nilpotent matrix,

P prime matrix,

Q- anti-Hermitean complex matrix,

Qe(e) — reduced matrix characteristic polyoomial of the parameter £ for a matrix B,

(B, t) and Q2(B,t) — reduced matrix characteristic cocfficients for a matrix B of order £
R I:.HRr = f} u.rthugullal |[mal or adegquately uuuplt‘.x} matrix, Ry q'rm.-s'i-ﬂ:r'lhnyﬂ:rml matrix.
Rw — orthogonal modal matrix for transformation of a prime matrix P ioto its W-lorm,

5 =8 symmetric real or complex matrix, 8% positively definite symmetric real matrix,
T — matrix of the rotational trigonometric modal transformation (active or passive).
(o= =1y - unitary ( Hermileane orthogonal) complex matrix,

V' matrix of the general linear modal transformation (active or passive).

WP} mono-hinary form of a prime matrix P,

X matrix argument.

Y - matrix function. conpected one-to-one two spaced in their direct sum in a baziz 2pace,

& woro matrix.
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2. Notations of binary tensor angles and their functions

T -] . . . . . .
® =4  priocipal tensor spherical projective angle between two planars and io reflectors,

& = —@'  priocipal tensor spherical motive angle in rotations and deformations,
Eand Z - complementary tensor spherical angles till the tensor spherical right angle I1/2,
I'=—I" - principal tessor by perbolic projective angle between two planars and io reflectors,

I'=T"" principal tensor hyperbolic motive angle in rotations and deformations,

Toand T complementary tepsor by perbolic angles with angles [ and T rill the right angle A,
6 =8 tensor orthospherical projective angle (additional to the angle & or the angle T).

8 = -8 tewsor orthospherical motive angle (additional to the angle ® or the angle T,

B =& +il". =&+l complex adequate tensor projective and motive spherical angles,

H=d&+il =H*  Hermitean tensor projective spherical angle, & = 'fi",l—' = -1

H==%+il' = —H*  skew-Hermitean tepsor motive spherical angle, @ = -9, T'=1"

(all the tensor angles correspond to the set reflector tensor of the space — see o item 2},
Rot @ and rot @ — principal spherical rotation at the angle @ (and clementary one),

Roth T and roth I' - principal byperbolic rotation at the angle T' (and elementary one).
Rot @ and rot ©  secondary orthospherical rotation at the angle 8 (and elementary one).
Def @ and def & — spherical deformation at the angle @ (and elementary one).

Defh T and defh I' -~ hyperbolic deformation at the angle T' (and elementary one).

3. Notations of spaces and sub-spaces

(A™) - arithmetic affine n-dimensional space.

{E™} — Euclidean n-dimensional space. {C™) — Euclidean cylindrical n-dimensional space,
{E™T9) — complex binary Euclidean (n+ g)ldimensional space of the index g (g < o).
I[Q“ﬂr} real binary gquasi-Euclidean (n+ g)-dimensional space of the index g (g < n).
(P9} real binary pseudo-Euclidean (n + g)-dimensional space of the index g (g < o),
{Qﬂ+q}c complex binary gquasi-Euclidean (n 4+ gldimensional space of the index g (g < o).
(E™Y) — projective fat bhyperplane, ({C™}) - projective cylindrical hyperplane).

(E™® (9™ Euclidean subspaces in (@Q™19) or (P™19) with respect to the base Ej.

(Pi). (Pij) — trigonometric subspaces of the tensor angle.
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4. Other notations
ab,...and a b, ... scalar and 0% I-vector elements, ||al|e — Euclidean norm for a,
lAlle = ||A]]1 — Frobeoivs oorm (first order’s quadratic norm) for the n < momatrix A,

[|Alle — particular quadratic of order £ norms for the 7 m-matrix or 7% rlineor A,

[|Alle — trimmed particolar gquadreatic of ceder £ or algebraic norms (algebraic medians ),

[|Alls — general guadratic of ceder # or geometric norm (geometric median),

O binomial Newtonian coefficients. det B — determinant of the matrix B.

dx) — residual of the linear algebraic equation of x,

Di(r)B - dienal of the singular 0 nematriz B, L e, the full sum of its basis principal minors,
jim A) or {im B) - image of the matrix A or of the matrix B,

{ker A" and (ker B} — kernel of the matrix A" or of the matrix B,

kg(e) = det(B + el) - scalar characteristic polynomial of parameter € foe the matris B
kg(—p) =det{B — p; 1) = 0 secular equation for the matrix B

k(RB,t) — scalar characteristic coefficient for the matrix B of order €.

l Euclidean and guasi-Euclidean leongth, A psendo- Euclidean length,

Ty — algebraic mean (small median) of order £ My — power mean (large median) of order 8,
ME(r)A - reinorend of singular A (the square root of the full sum of guadric basis minors A).
i dimension of the space,

g — index of the quazi- or pgeado-Euclidean space.

qe(e) — reduced scalar characteristic polynomial of parameter € for the matriz B,

ge(—p) =0 reduced secular equation for the matriz B,

g(B,t) — reduced scalar characteristic coefficient of the matrix B of order £,

r=rankB (r = rankA) - rank of the matrix,

v~ 1st rock of the singular matrix B, i, ¢, maximal order of noo-zero k(B 1),

' - 2ad rock of the singular matrix B, i e maximal order of non-eero K (B, £).

s and ' geometric and algebraic multiplicities of the wero cigenvalue of a singular matris B,
S,l? =r —ri+1 anoulling multiplicity of the i-th eigenvalue of 8 gquadratic matrix B,

t - order of matrices characteri=tics, dimenzion of 2ubmatrices and minors,
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trB — trace of the matrix B.

Te — reversive algebraic mean (reversive small median) of order £,
Vo - reversive power mean (reversive large median) of order 8,
x, ¥y — real-oumber vectorial arguments (variables),

% and T - complex-number vectorial arguments (conjugate variables).

sin, sinh, cos, cosh, tan, tanh, sec, sech, cot, coth, cosec, csch — trigopnometric Iuoctions,
arcsin, arsinh, arccos, arcosh, arctan, arcaoh, arcsec, arsech - reversge to them fuoctions,

Girreek some notations :

i principal scalar spherical angle, principal scalar hyperbolic angle,

) secondary scalar orthospherical angle (respectively to the principal angles @ or ).

£ complementary spherical angle with @ (relatively to the right spherical angle /2],

u complementary by perbolic angle with 4 in some right pseudo-Euclidean triangle,

& infinite hyperbolic angle in some right pseado- Euclidean trianngle,

1 scalar Hermitean spherical angle,

T Archimedes Number and an open spherical angle,

w =arsh 1 - especial by perholic angle (and munber) as analog of the spherical angle /4
pi — d-th eigenvalue of a quadratic matrix with its quantity g;.

aj — j-th eigenvalue of multiplicative matrices AA" and A'A.

27 — trigonometric raok of the binary teonsor angle of projective or motive type,

¥ — dimension of the sub-space of the intersection (Im A,) and {im Ag) (i. e.. of zero sine),

v~ dimension of the sub-space of the intersection (im Ai) and (ker AS) (i e of woro cosine).

5. Using symbols

P mark of simple transposing, & mark of Hermitean transposing,
.o —set ... belongtoser ... . L C L. - set ... belong or i identical to set
L€ . —element . belongtoset ... . L & ... —eloement . oo belong toset L
s mark of summing (joining) two sets, ..M. - mark of intersecting two sets,
o= mark for the identity of the two sets,
oo mark of direct summing two sets, . B and B marks of spherical and
hyperbolic orthogonal direct summing two sets, .. 8.0 — mark of geometric summing two angles,

£ F
@ and I' - mark over the summarized tensor angles in the case of reverse order of two- or
multistep rotations (particular motions), and in the case of reverse angular shifting,



Part 1
Theory of Exact Matrices: some of general questions

The main aims of this monograph in 2004 |15 were, in first, to dewlop in necessary
us degree a number of algebraic and peometric notions in the Theory of Exact Matrices in
Part 1 (Chs. 1=4), and then, in Part 11 on such plat form to work oot the fundamental of
the new mathematical subject under general name “lensor Trigonometry™ with its following
numerous applications in mat hematical—physical fields, mainly in the big Appendic.

ln Chapter 1, structures and properties of the scalar and matrix characteristic coefficients
of n % mematrix B are found and studied. The fundamental relation and inequality for basic
parameters of sinpularity for the matrix B are established. As additional resolt, from the
highest orders v v of these scalar and matrix characteristic coefficient s for eigenmatrices By
a minimal annulling polynomial of the matric B is identified in its explicit form. The peneral
inequality for averape values {means) is formuolated and proved in a whole form, including
the chain of particular inequalities for algebraic means as a basis of hierarchical alpebraic
norms entered subsequently. lts opportunities are shown in the theory and technique for
solutions of real algebraic equations, in that number, of secolar ones. 1o the case of equation’s
positive roots (e, g, of the eigenvalues for positively definite matrices), the limit method and
formulae for caleolating of maximal and minimal roots are gotten in terms of the equation
coefficients (with following sequential caleulation of all the roots). (Note the fact of inferring
here the classic Theorem of Hamilton—Cayley in one line, and many of interesting other )

In Chapter 2, the explicit formulae for two characteristic eigenprojectors and the quasi
inverse matrix for & nullprime singular n % pematrix B in terms of its matrix and scalar
characteristic coefficients of the hiphest order 7 = rankB are established. (The simplest
case of null-prime matrices is 8 n x nmatric B consisting from v of basis columns and
n —r of zero columns.) As a very important especial case the null-normal singular nox n
matrices B, whose imape and kernel form a direct orthogonal sum, are entered and studied.
(Their considered separately important particular cases are symmetric 8 and moltiplicative
matrices AA’, A'A ) Besides, the modal matrices for transformations of these noll-prime
and null-normal matrices into the two-cell block-disgonal canonic form are gotten. And
as additional applications of the eigenprojectors and quasi-inverse matrices, the peneral
formulae for solutions of vector and matrix linear equations are potten.

In Chapter 3, the more general linear geometric objects in linear spaces than nox 1vectors
and lines are entered additionally into consideration, as nx m-lineors A and planars (im A)
and (ker A"y 1 e piven by the matrix A where 1 <m < n (in particular if m = 1 they are
vector a, lines {im a) and hyperspace {ker a')). The scalar invariant relations for matrices
or matrix geometric objects with corresponding to them inequalities having cosine or sine
nature (relations peneralizing the well-known algebraic norms for a cosine and a sine of an
angle between vectors or lines in Eoclidean spaces) are defined. As an additional resalt,
the limit explicit formulae for the eigenprojectors and quasi-inverse matrices are gotten by
algebraic and functional manners. (Note the fact of inferring here the classic Theorem of
Kronecker—Capelli in one line, and also many of interesting other )

In Chapter 4, the main alternative complexification’s variants of different mathematical
notions are considered upon transition from the initial real arithmetic spaces into various
complex ones. It is important, in particular, for following constructing similar complex
variants of the new concepts of Tensor Trigonometry in all its kinds. A nomber of the
specific complexification’s examples in different mat hematical regions, including arithmetic,
alpebraic, geometric and functional ones, are given.



Chapter 1

Coefficients of characteristic polynomials

1.1 Simultaneous definition of scalar and matrix coeflicients

In Theory of Exact Matrices, especial attention is paid to characteristic polynomials. They
are studied from algebraic and geometric points of view. Detailed analysis of the question
is necessary for further constroction of Tensor Trigonometry foundation.

As it s known, for each n % momatrix there is its own secolar equation determined by
the sealar characteristic polynomial (a polynomial with scalar coefficients) depending on a
certain parameter go The roots g, of this polyonomial (the roots of the secular equation)
for a given square matrix B are the eigenvalues of the matric. The matrix B has also the
matriz characteristic polynomial (a polynomial with matrix coefficients).

For the next, introduce simultaneously two kinds of the characteristic polynomials and
their coefficients, following mainly to D K. Faddeev |20, p. 311-316]. Consider a nonzero
n ¥ nematric B of rank v with the unity matrix I, The resolvent of B is transformation of
the type:

(B+el)V Kpgle) 1
" det(B+el)  kgle) @

(B+el)™!

ln fact, it s the usoal formuola for the inverse matrix of (B 4 el): the numerator is the
adjoint matrix, the denominator is its determinant, e is an arbitrary scalar parameter.
This operation determines two characteristic polynomials: scalar one of order noas the
denominator and matrix one of order 7 — 1 a8 the numerator of the fraction:

n—1

Kp() =Y Ki(B,#)- e ="' 4 Ky(B,1)- "% + .- + K1 (B,n - 1),
=0

i
ka(e) =Y _k(B,t)-e" " =" +k(B,1)-e" ' +-.-+k(B,n) = " +tr B-e""' +...+det B.

=0

The formulae of t he polynomials contain so-called the scalar charaeteristic coefficients k(B t)
and the matriz characteristic coefficients of 1-st kind K(B, t), where we have K (B, 0) =1,
Ky(B.n) = Z (see in sect. 1.4), coefficient of the 2nd kind Ka(B,t) will be defined later.
The sequential-increasing number £ is the order of such scalar and matrix coefficients.

lu this book, we consider both characteristic polynomials of B with all their coefficients,
as a rule, in the sign-constant form as polynomials with the scalar parameter € = —u. The
opposite parameters g = —e are the eigenvalues pof the matrix B. The scalar polynomial
of pis zero and determines the sign-alternating secular alpebraic equation for matrices B:

k(=) = (—p)" + kg - ()" 4o hy = ()" + &7 B (-p)" 4o+ det B=0.

Thus the scalar coefficients of order & are the Viete sums of pg and the sums of all
principal ¢ x #minors, but with the summands of constant sign. They may be computed by
Le Verrier’s method |27, 29] with use of the recurrent Waring formula |21, p. 38|, where the
Viete sumns are changed by the scalar characteristic coefficients, and the Waring sums are
replaced by the characteristic traces (of the same order £):

k(B,t) = % Y (1) k(B,t - 8) - tr BY, (2)
g=1



18 CHAPTER 1. COEFFICIENTS OF CHARACTERISTIC POLYNOMIALS

It is the recurrent Waring—Le Verrier direct formula Note, that the equivalent explicit
EXPIESSIONS

tr B 1 ] -ee 0
1 tr B> trB 2 e D
K(B,t) = — -det | ---
& tr B=1 tr B2 trB% ... t-1
tr B  tr B! ¢rB*? ... &rB
are of more theoretical interest |21, p. 38, Formulae (2) and (3) are obtained from the
Newton system of linear equations for nunknown coefficients with n given roots as the resolt
of the chanpe described above. The sequence of the scalar coefficients (the Viete sums) is,
due to the Newton system of equations, in the one-to-one correspondence with the sequence
of the characteristic traces (the Waring sums) up to the special order, what has the following
property
t =r' = min{rankB"} <r

and all the scalar coefficients of greater orders are equal to 00 Here the number 7 is called
the 1-st rock of the matrix B (the 2-nd rock " is the preatest order of the nonzero matrix
characteristic coefficients). All problems concerning the scalar coefficients for equations may
be expressed in terms of the Waring sums, and ones for the matrices may be analyzed in
terms of the characteristic traces.

1.2 The general inequality of means (average values)

ln main part 11 we often deal with the positively (semi)definite symmetric and Hermitian
matrices of fixed rank and their scalar invariants. Suppose that B is such s matrix. Consider
the secular equation for B in the usual sipn-slternating form and its scalar coefficients. All
these coefficients of orders up to ' = v = rankB are positive real numbers. Moreover, all
the roots py of the secular equation (the eigenvalues of the matrix B) are nonnegative real
numbers.

Let py be n nonnepative numbers and exactly r of them (v < n) are nonzero. Special
characteristics of the set (ug), the small medions 7, g (the algebraic means) and the large
medians My, Mg (the power means), are defined as follows:

m=Mi=) 2, (4)

it = V/se(p)/Ch = ¥ k(B, 1) /C, (3)

My = /Se(pe)/n = {/tr B/n, (6)

where sg(pg) are the Viete sums, Sp(py) are the Waring sums, nis the size of the set {pg) or

of the quadratic matrix, t and & are orders of the corresponding means, CL are the Newton
binomial coefficients. (The arithmetic mean 7y = My is the intersection of the set of all
amall medians and the set of all large ones.) Therefore formulae (5) express the alpebraic
medians not ooly in terms of the Vigte swms, but also in terms of the equation coefficients,
and formula (6) represents the power medians in terms of the Waring sums as well as in
terms of the matric traces. If there are zeros among gy and ¢ > r, then m; = 0
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Otherwise the analogous reverse medians are defined as follows:

W=V = B ), (7

T = sl )/Ch = VKB TH/CE, (®)
Vo= %/ Se(p;V)/n = +/tr B-%)/n. (9)

They too play the role of average walues, i e the reverse means of the numbers 17y
Notice that the peometric mean my = g is the intersection of the set of all small medians
and the set of all their reverse analogs; but o7 = V] is the harmonic mean.

For a set of n positive real numbers {pg) containing at least two distinet ones, the following
general ineguality of means does hold on all the interval in B containing {pg):

max(pg) = Mg > -+ > Mg > - > My = (10)
=TT D s ST e > Ty = (11}
=Tp e U e >0 = (12}
=Vi>-->Vg > > Vo = min{p,) (13)

(t=1...,n; #8=1,... 00)

The equality for all the means simultaneously does hold iff gy = -+ = pg. I there are
exactly n—7v zeros among gy, then -y # 0 and 7y =0 for all ¢ > v Moreover, if
under this condition all nonzero gy are equal, then the medians are expressed as the functions

me=p-y/CL/CL, Mg =p-y/r/n.

Note, that in the general inequality middle chains (11) and (12) of means are connected by
one-to-one functional bound. The same relates to any continnous chains of it from n means
iff all the original n numbers are different. This bond is interpreted obviously as divect and
back n-vector-function of novector-argument. The fact will be used in the next section.

Special cases of the peneral inequality are the Canchy inequality for arithmetic and
geometric means and its reverse analog for harmonic and geometric means, the Maclaurin
inequality for algebraic means and its reverse analog, the Hilder inequality for power means
and its reverse analog |23, Suppose B is a spectrally positive (all gy > 0) matric. The
arithmetic, geometric, and harmonic medians are defined as follows:

w1 =tr Bfn= M, (14)
T = Vdet B =7y, (15)
or=(tr B Yn) ' =T (16)

Let A be an m x nomatric (in particular, 4 = 8 may be an n x Lvector), B = AA" Then
the arithmetic median is expressed in terms of the Frobenins and Eonclidean norms:

o [ 1A,
“‘””':B}‘*"H‘{ lal[2.
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Since B is a spectral-positive matrix, the chain of simplest inequalities—estimations

max(uy) > tr B"/n = (tr B/n)" = det B =

> (tr (B™Y)/n) " = (tr (B™")/n)”" = min(u}) (17)

follows from (10)—(13). Closer to each other are the eigenvalues, less are all the defects in
(17). The equality holds iff the matrix B is proportional to the unit matrix 1.
Clearly, the limit medians for B in the general inequality are the extremal eipenvalues

of B:

max(uf) = lim 7, (18)
min(u) = lim V. (19)

Further we prove the peneral inequality and analyze it with wse of differentiation to
explore extrema.

Consider n positive numbers x, as the vector X = (xq,...,T,) in the Lst quadrant (the
bisis is standard) and the sealar functions expressing the differences and the ratios of the

{f{]l’l’l‘!’.‘ip{]ll{iillg RIS

| i | 00— -

[]m 00 — (),
|: t+1 ] {J[} x}f'mi+1|:x}:
1

| & | 00~ G0 /ma,
"

(%) = Maya(x) — Ma(x),

= O

d
d
[

HHER =

]x} Mp(x) — My(x),
1

=+

]u o100,/ Mo,

Each of the functions v, B, and f, F has the ooly and common stationary value corres
ponding to X = b, where b is the bisectrix of the 1st quadrant. These functions have the
zero gradients at all points of b, Therefore,

v(b) = R'(b) = f'(b) = F'(b) =0, =z, =---z,=b,

r(b) = R(b) =0, f(b)=F(b)=1,

and b is the region of minimum. This is true becanse the corresponding Hesse matrices are
positively semi-definite.
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Their rank is n — 1);
] e-e-n] L e
ANCE IR
=R’[g+1](h 11R"[f]{h}=

=w[”+1]{h} [ ]{h} Mg,

where It is the totally-unity matrix, all its elements are equal to 1. The matrix G has the
positive principal minors of orders r, 7 < n, they are equal to

Lfﬂ.—r
nbh n o

The Hesse matric is degenerated at all points of the bisectrix, the one-dimensional linear

subspace. The stationary values computed above lead to the following equalities

[ t | r
ta]ommr] o

i t
t+m_ (b) =m [t+1 ](h]*

9+1]

fﬂ'

R"[ 9+”‘_(h]=m3’[ (b),

]

f+1

ﬂ+m-(h]=mF”[ : ](b}.

]

Fﬂ' [

Therefore, on the hisectrix b, these facts pive us the following logical corollaries.

1. The Hesse matrices of the adjocent means ratio do not depend on thedir orders.

2. These matrices vary as additive functions of the difference between the orders.

3. The Hesse matrices for all adjacent power means ratios are egual to the Hesse matriz
for the ratio of the arithmetic and geometric means.

4. The Hesse matrices for all adjocent algebraic means ratios consist of n — 1 identical
parts of the matriz from Corollary 3.

But two next corollaries seem surprising and paradoxical. Namely:

5. The Hesse matriz for the ratio of the power and arithmetic means is wnlimmited at all
points of the bisectriz, it increases as proportional to 8. Though the same function F, in
aceordance to (18), tends to Tyge/M) as # — oo, it is continuous and tokes the minimal
value 1 at all points of the bisectriz.

6. The Hesse matriz for the adjocent power means ratio is constant at all points of the
bisectriz even as 8 — oo, Though, according to (18), the same function F tends to 1 at all
points of the bisectriz, its lmit value is the constant for which the gradient and the Hesse
matrie are ero.

These conclusions seem contradictory, but they can be explained by correlation between
the iofinitely small deviation of x from the bisectrix and the infinitely larpe parameter 8.
The Hesse matrix is discontinnous and becomes zero in the neiphborhood of the bisectriz.
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- . a . .
The function F[ 1 ]{x], in its turn, tends to 1 as 8 — oo, but it depends up to

infinitesimal on X and takes the minimal valoe 1 at points of b Contrary, the function

F [ 9-; 1 ] (%) takes the value 1 there at once.

lnterpret these facts on the model functions of one scalar variable:

1 IB
FII:E;I]{I}=S\+V1+;;H+/V1-; !
Fﬁ[f]{z}=wl+TIE/1$, x>0, 639

Suppose, for certain conditions of the task, that = > 1, then it is the preatest element of the
maodel set {1, x).
If 8 is finite, then

Fi(1) = F3(1) =1=min, 1< Fy(z) < Fa(z);

dF} dFy 1
— (=== =0,
d*F 1 d*F 9—1 d*F. d*F.
W =3 F=z0=— M?{z}bdzﬂiz}:»n

If 8 is infinite, then
Fi(z) =1+ B(z), B(z) =0, B(1) =0, F3(1) = 1 = min,

] 2z/(14x) ifz=1,
Fﬂ{z}_{ 2/(1+zx) ifr<l,

|Eli'IFI dF‘z iFQ 1

E{I} = Efl] = {1 + o) =+- {a — 0);
deFgl{]-} = %: %(I] = 0 provided that = #£1,
d2F -1 d2Fy

Sz (1£a)=0 (@a—0).

The Hesse matrix is also discontinnous in the neighborhood of (b)), that is why the tri
vilent symmetric matrix of third derivatives tends to infinite one as  — oo and is negatively
semi-definite at all points of the bisectrix. Notice that for the analogous functions of the
reverse means, all these facts do hold, the only difference is that the Hesse matrix chanpes
the sipn. The same transformation of the Hesse matric takes place under inverting the ratios.

These argument s as well as limit formuolae (18) and (19) complete our proof and analysis
of the general inequality of means (or average values). Now we consider some applications
of the general inequality in the theory and techniques for solving algebraic equations, par
ticularly, secular ones. smallskip
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1.3 Serial method of solving algebraic equations with real roots

The small and large medians are connected by the system of modified Newton equations
and the modified Waring—Le Verrier formuolae, for example, of the direct type. These direct
formulae are similar to (2) provided that £ > v and my = 0

Croi(me)' = Gy Y men) ™ (ML) — O 2 () P (M) + -+

H1) 2k ) () + (1) (R

If all the coefficients of a secular equation are the same, then the well known particunlar
formula for binomial coefficients

Cirh = G5 — CE2 e 4 (=1)2CE + (—1)

follows from one above.

Limit formulae (18) and (19) allow one to compuote consequently all the roots of an
algebraic equation provided that all its roots are real numbers. Multiplicity of the roots
may be found in the process of reducing, but it is worth to separate the roots before solving
with use of the 1st derivative and Euclidesn algorithm. Sturnm’s method |28, p. 225-220|
and the prior boundaries of the roots (Foo) ensure one that the roots are real numbers.
Other useful criterions for identification of the roots reality follow from the inequalities for
the real roots of an algebraic equation presented here in its sign-alternating form |21, p. 40]:

—1— %/—mink; = AT < p < A = 14 "3/ —min(-1)k;,

where AT and A™) are the boundaries of the nepative and positive real roots, by and hs
are the indexes of the first negative coefficients, respectively k; and (—1)7k;. Maclaurin’s
Theorem is used for inferring these inequalities |28, p. 223

The serial mit method for solving an alpebraic (may be secular) equation s the following

It is supposed to be already known that all the equation roots are real nonnegative
numbers, in particolar, they may be the eipenvalues of a nonnegatively definite matrix AA’
or A'A.

The first step s computing the Viete sums and the Waring sums up to order . For
example, the Waring—le Verrier recurrent formula of the direct type (such as (2)) is used
for matrices, and the following Waring—Le Verrier recurrent formula of the reverse type |16,
p. 38| is used for an arbitrary alpebraic (polynomial) equation:

S5 =5189_1— 52892+ +(—1)""2sp_18p_rs1 + (—1)"5p8p_p =

—Fo(Sy,...,8) = folst,....sr), B=r+Lr+2....

Next step is consequent computing the power medians

My = ¥/ sa/r.

Due to (10}, the sequence of the fived root approximations increases.  Clearly, more
different are the roots, faster is the process. The recurrent formuola with limit value (18)
being divided by =™ is the original equation as an identity. Hence on a certain it
eration computing should be finished in order to avoid a round-off ervor for the maximal root.
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The minimal root may be found according to (19) by the similar way with use of the
equation inverse form in (—1/z) obtained by dividing original equation y(—z) = kg(—z) =0
(where © = —p) by (—z)™ and by the highest coefficient kn. (For matrices B: &y = det B.)

Approximate computing a rational root induces a periodic sequence starting with some
sipnificant digit, that is why the precise value of this root should be checked in the original
equation. Irrational reots are computed up to a given precision. Thos the algorithm resules
in all the real roots of an algebraic equation. This method has the common limit idea with
classic Lobachevsky—Greffe's method (1834) |21, p. 657] (see detailed comparison of both
these methods in other our monograph |17, p. 162-163]).

If all the equation roots are real numbers of arbitrary signs, then its variable © should
be substituted for © 4+ C) where the constant © > 0 shifts the variable into the positive
semi-axis. In order to faster convergence, this shift should be as small as possible.

It is known that all the eipenvalues of real symmetric matrices § = 8 and imaginary
anti-symmetric ones (1K) = —iK, where K = —K' is o real matrix, are real valued nnmbers.
ln particular, these matrices are characteristic ones for a realvalued matriz B:

S—(B+B)/?2 K=(B-B)2 > B=5+K.

Here condition of the commutativity SK = K8 means that B € {M) is a real-valued normal
matriz, which has some double complex conjugated roots. These matrices may be trans
formed into their diagonal forms simultaneously. Then the double complex eigenvalues of
such a normal matrix B are the sums of the summand matrices eigenvalues. Thos separated
solving the secular equations for § and —iK (the secular equation for —iK is biguadratic)
result in the real and imapinary parts of the normal matrix B complex eigenvalues. Further
the values obtained should be paired by checking in the secular equation for B.
This approach may be extended on complex matrices by use of the Hermitean and skew

Hermitean conjugations.  All eigenvaloes of Hermitean matrices are real numbers. Take
advantage of the following complex Hermitean normal matrix decomposition:

H=(B+B%)/?2, Q=(B-B")/2 - B=H+Q=H +iHp,

HQ=QH« HHg = HoH < B € (N), where NN* = N*N,

and =0 on.

Thus the serial method represented here is also applicable to real-valued normal matrices
and complex Hermitean normal ones.

Suppose that all the roots of the secular equation for a some matrix are real numbers
and shifting described above is used. Then, for the equation in alternating-sipn form, the
lower boundary of the negative roots satisfies the following inequality:

min(u;) > A = -1 — /" mink,.

Substitution £ = y+ A results in the equation with the positive coefficients and roots, this
may be checked by Sturm’s method on (0; 400). This shift leads to the mat rix transformation
B (B-AY).

There exists another way as alternative to shifting. 1 all the eipgenvalues of a some
matrix B are real numbers of arbitrary signs, then the following sequence of actions may
be performed instead of shifting:

1) squaring B,
2) computing the squared eigenvalues,

3) choosing the signs of the eigenvalues by checking in the equation.
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If all the roots of an algebraic equation are real positive nuwmbers, then the theoretical
value of its greatest root is in the explicit form.

Below, in the most general matriz form, we obtoin mazvimal and minimal roots of an
algehraic equation of any extent as limits,

max{py) = a]iIga v/ det K, (200

where KUY is the following (v + 8) x (r + 8) matriz of the equation coefficients:

K _
- ke 1 0 0 0 ... 0 o0
Y. K -1 0 0 ... 0 0
3ka k2 ki 0 0 ... 0 0
(1) vk (—17 ey (=1 3k_s 0 0
= 0 (-1)"ke (=1)" k1 0 0
0 0 (1) k. 0 0
0 0 0 1%y (-1 %k_2 ... -1 O
0 0 0 ... (R (—)" kg ... ki -1
] 0 0 0 ... 0 ()" % ... k2 ki

All zero element s of the matric are only in the two triangles of sizes § and n+8 -2/ 1. e,
for lower and upper ones, other elements are nonzero. Here det K = 8p is the Waring
sum of order & (see above), according Waring—Le Verrier reverse explicit formula |21, p. 38].

By similar arpguments and doe to (99,

min{py) = lim F/det (K /kn)/r,

where K isthe following (r4-8) % (r+8) matrix of the same equation coefficients considered
in the inverse form:

KD —
I ky_ —k, 0 0 0 ... 0 0
—2her—z kr—1 —ker 0 o ... 0 0
3kr—3 —kr—2 kr—1 0 0 ... 0 0
O (DR (-1 o 0

= 1 S e M 0 0
0 0o (-t 0 0

0 0 0 oo (=1 % (=1 %k ... —k. 0

0 0 0 .. (=0 (=0 o kel ke

! 0 0 0 ... 0 (-0 . —kez ke—1 |
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By Sylvester’s criterion, a symmetric or Hermitian matrix is positively definite iff all
its principal minors are positive. The minor of the highest order is the determinant, so
Sylvester’s condition also means that the matrix is ponsingular. Besides, a singolar sym
metric or Hermitian matrix is positively semi-definite iff all its sipn-alternating secular equa
tion's coefficients up to order r are positive, and ones of orders £ > r are equal to 0, as all
the roots here are real numbers. Thus the elements of normal matrices contain sufficient
information for finding all the eipenvalues provided that all the roots of the secular equation
are real numbers, and then the serial method is applicable.

Solvability of the same problem for more general matrices as well as the similar one for
an arbitrary algebraic equation of degree n > 4 depends on the answer to the question:
whether a given algebraic equation has comples conjugate roots¥ We showed above that the
answer can be found by Sturm’s method. However this method does not give necessary and
sufficient conditions on the equation coefficients under which all the roots are real numbers
and, due to shifting, positive.

One well known necessary condition follows from the Descartes sign Hule |21, po 40): all
the coefficients of an equation in the sipn-alternating form must be positive. Unfortunately
even under this condition pairs of conjupate complex roots are possible. If the shift parameter
is greater than noted above, for example, it is equal to 14 max k], then only the real parts
of the roots are necessarily positive |21, p. 39]

lnequalities (11) have the following corollary.

If all the roots of an algebraic equation are real positive numbers, then all its medians in
(10) — (13} are equal to each other iff the equation has the binomial form

(z—p)" =0.

This means also that 7 = p.

If an equation in the sipn-alternating form has at least two distinet roots, then its coef
ficients do not form the binomial sequence and then inequalities (11) do hold. For example,
if there exist two adjacent medians equal to each other or some of the equation coefficients
of order less than m are equal to zero, or the median hierarchy is violated, then there exist
complex conjugate roots.

The following conditions are necessary and stronger than Descartes’ one given above.

For all n the roots of an algebraic equation of degree norepresented in the sign-alternating
Jorm to be positive real numbers it is necessary that all the equation coefficients-medions (5)
satisfy the following two conditions:

i) they are positive real numbers

i) they positi i h

(according to the Descartes sipn Rule),
ii) all of n inequalitics do hold.
it) all inequalitics (11) do hold

For an n ¥ n-matriz to be positively definite it is necessary that all the matriz traces
medians (6) of orders 1,2, ... n satisfy two conditions:

(1) they are positive real numbers,
(11"} forst moinequalities (10) do hold

For any real algebraic equation and any real quadreatic matric condition (2) may be
satisfied by use of shifting. For real symmetric or complex Hermitisn matric Sylvester's
criterion gives the necessary and sufficient condition for all the roots of the secular equation
(its eipenvalues) to be positive real numbers. If a real matrix is of the form AA' then
all its eigenvalues are a priori real and nonnegative. The necessary and sufficient condi
tions for all the roots of an algebraic (polynomial) equation of degree n to be positive real
numbers are inferred in our monograph |17, p. 165-191] with the use of the Special diagrams.



1.4 Structures of scalar and matrix characteristic coeflicients 27

Note that for any algebraic median,

ﬁ/ﬁ{zf’+--~+rﬂ}{f/ﬁ(z‘{+-~+z?.}

provided that
1<p<gq, i=1...,n—1,

there exist at least two distinet elements, and the quantity of the nonzero element s is preater
than 4. This follows from (10).

1.4 Structures of scalar and matrix characteristic coeflicients

For a given square matrix B, its scalar characteristic coefficients of any order # may be
represented according to (5) as the Viete sums of the eigenvalues gy The eipenvalues are
invariant under all linear transformations of the matric and the bases; therefore, the scalar
coefficients are invariant under such transformations too.

For any matrix B there exists a unique pair of matrices (Pg, Og) such that Py is a prime
matriz, Og i a nilpotent matrix, and

B =PFPg+ 0Og. {21}

The matrices Pg and Og are determined by the Jordan form Jg or the triangle form of B.

As it is known, a matrix @ is nilpotent iff all its scalar characteristic coefficients are equal
to zero. Evaloate the nilpotency degree § of the matric Og. Let (i) + 1 be the maximal
size of the Jordan subeell in Jg with the eigenvaloe py at the disponal. Then

ji= r@g{j(i}}-

Not ooly Og but also OgPg and PgOg are nilpotent matrices, and the matrices B and
Ppg have the same secolar equation as well as the same eipenvalues with the same alpebraic
multiplicities. Thus the scalar coefficients for the matrix B possess the following additional
properties:

k(Pg + Og,t) = k(Pg,t) = k(B, ). (22)

k(Pg-Og,t) = k(Og - Pg,t) = k(Og,t) = 0. (23)

From the structural point of view, any scalar coefficient k(B t) is the sum of all diagonal
(principal) £ x tminors of B |5, p. 78],

Further, consider most important properties of scalar and matrix characteristic coeffi
cients, establish also the structure of the latters and all connections of them.

At first | resolvent’s formula (1) is equivalent to each of the following identities:

det (B + el)I = (B + I )(B + eV
kp(e)] = (B + el )Kp(e), (24)

S &t (B, 0] — BKy(B,t — 1) - K\(B,1)] = Z,
t=0

where & is the zero matrix (all the polynomials are here in the constant-sign form with €).

These formulae give, in particular, the following corollaries.
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1. The scalar parameter € in (24) may be changed for a matriz one E commuting with B:
kg(E) = (B + E)Kg(E).

2. Along the way, with relation {24) at E = —B| through this praceful formula, we prove
clear in one line the classic Hamilton-Cagley Theorem:

kg(—B)I = (B — B)Kp(—B) = kg(-B)=_Z.
Contrary, if E = +B, then kg(B) = 2BKg(B).
3. The recurrent matriz formula of Jean- Marie Souriau from 1948 |27
K\(B,t) = —BKy(B,t — 1) + k(B, t)I (25)
is valid because the parameter € in (24) is arbitrary. The initial values
k(B,0) =1, K\(B,0) =1

follow from (1). Note, that E(B,1) =tr B, k(B,n) =det B.
4. Define additionally the matriz characteristic coefficients Ko( B, 1) of the 2-nd kind as

K»(B,t) = BK,(B,t — 1).

The initial value is Ka(B,0) = Z. Clarity, Ka(B,1) = B. Taking this into account | one may
transform (25) into
Ky(B,t) + Ka(B,t) = k(B ). (26)

Repeating application of the recurrent formula (25) with the initial values leads to the
following representation of the matriz characteristic coefficients as polynomials in B:

Ki(B,t) =  Ypok(B,t—6)(-B)’, o
Ka(B,t) = —Yo k(B,t—8)(-B)".

Hence, the matrix coefficients Ky (B, t) and Ka(B, ) commute with each other and with B
5. The Jean-Marie Sowriau scalar binding formulae |27] for both types of these coefficients

KB, = 7 -tr Ka(B,1), {KB,t) = ——tr Ki(B,1)} (28)

follow from (27) and (2), i. e, using Le Verrier’ method (see above).

6. In order to inverse non-singular matrix B — B~ through its coefficients, J - M. Sourian
sugpested in 1948 the very elegant algorithm with successive caleulating all these coefficients
of order ¢ = 1. This algorithm was based on his formuolae (25) and (28). Unfortunately,
his article |20] in the Proceedings of the French Academy of Sciences was published as very
brief paper, without details. Though he was then by very eminent French mat hematician
in many fields, in particular, he is well-known as a ploneer in symplectic peometry and
as a high level analyst. The same results were repeated later, probably independently, by
D. K. Faddeev |29), with a reference onto this Sourian’s work. Faddeev's approsch was based
on the use of a resolvent B (1) for definition of matric and scalar characteristic coefficients.

A year after this Sourian’s publication, similar brief article from Frame J. S with the
same algorithm, was published in "AMS Bulletin®, 1949 v, 55, o 11, p. 1045 without a
reference onto |27]. But the more unkonown Frame became famous in American mathematical
circles by this single publication, where it is cited, while Sourian’s original article is for some
reason entirely ignored, which is very strange from the point of view of scientific ethics!?
(PS5 Maybe someday our readers will see and a "new author" of the Tensor Trigonometry ?)
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Further, the first formula in (27) and the Hamilton—Cayley Theorem lead to equalities
K1(B,n) = kg(—-B) = Z,

and from (25) we infer: Ka(B,n) = BK1(B,n — 1) = k(B.n)I = (detB)I = BBY.

If B is nonsingular, then multiplying these equalities by B~! gives us the following:

_ KiB,n—-1) B

B! - .
k(B, n) det B

This is the Souriauw algorithmic method {and only his one!] for inverting a matriz and
of joint computing all these characteristic coefficients k(B #) and Kyj(B,t), t=1,....,n
7. Therefore, all the values of the matriz coefficients computed above are the following:

KI(H:U} =I: KE(H?U} =z:

Ky(B,1)=(trB)I — B, K3(B,1)=B,

(20)
Ki(B,n—1)=B", Ka(B,n—1) = (tr BY)I — B,

Ki(B,n) =kg(-B) = Z, K3(B,n) = (det B)I.

The formulae of Kj(B,n — 1) and K3(B,n — 1) are yet inferred only for non-singular
matrices B, but they are troe and for singular ones — see further in their stroctures.

Further, find the greatest order v of the nonzero matriz cogfficients in (29). Due to
(28) it is equal to the terminating order of the Sourian algorithm in formula (25). 1t does
exist, due to (26) and (28), and is called here as the 2-nd rock of the matriz B, Moreover,
™ = ' where ' is the preatest order of the nonzero scalar coefficients, i e the Lst rock
of the matrix B (see in sect. 1.1). If B is a nonsingular n % nomatrix, then v =" = n.

lnequality v < r. where r = rank B, may be inferved ooly from the structure of scalar
coefficients: they are the sums of all diagonal minors of order £ Similarly to it, only the
strictures of matriz B coefficients determine the 2-nd rock and its conpection with ot her
numerical parameters of the square matrix singularity (in that number, the annulling eigen
values multiplicities in its minimal annolling polyoomial) as well as its mat rix charact erist ics,
such as eigenprojectors, quasi-inverse matrices and modal matrices.

ln order to clear the structure of these matriz characteristic coefficients of the 1-st and
2 nd kinds, we apply our Special differential method for establishing the structures of scalar
and matrix coefficients simultaneonsly. (These complete stroctures was established by the
author in the bepginning of 1981 with introduoction of both rocks for a matrix B.)

Although, for the scalar coefficients, the standard (direct) method for exploring their
structure is well known (see, for example, in |5, p. 78]).

Consider an nxn-matrix B and an arbitrary set of its m generating elements {by, 4, , k=
L...,m, 1 <m <n} i e, if p#q, then ip # ig and 75 # jg. The coetlicient at [T_ by, g,
in expansion of det B is

d"det B - i_h“wifnf
By B DT b m @ B (30)
1.71 R

minor{ n-m)

In the partial differentiation, the variables for all the elements of B are supposed to be
distinet. The order of partial differentiation execution doesn’t influence the end result. The
minors of order £ =n —m in (30) is the adjunct of the minor, determined by the set of m
generating elements; ig, fp are all their indexes of rows and columns.
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Our pure differential formula (30) is the result of successive partial differentiating det B
with respect to by g ... by g, Further, apply differential formula (30) for evaluating the
resolvent of Bin (1), 1. e,

(B+el)V  Kgle)
det(B+eI)  kgle)

(B+el)™ =

Expand the numerator and the denominator in powers of e

The denominator is the e alar polynomial in e of order n. According to (30) with m =
n — ¢, the coefficient at ]_[_,|= 1B 1, +€)is

{i L ]“':{iﬂ—hiﬂ—t] E‘ {
{ L lu - \B+d}}.

minor(t)

It is the disgonal #minor of B + el no containing indicated penerating elements, the
quantity of such minors (and multiplications) is CL. Only diagonal entries of the minor
contain € Put € = 0in all these minors. We obtain the expression of the coefficient at e?~°
in the scalar polynomial det (B + el) as the sum of all its diagonal miners of order £ and
its initinl mean as k(B,0) = 1.

The mumerator is the following matrix.  lts disgonal entries are polynomials in e of
depree n— 1, other entries are polynomials of degree n — 2. The matric is represented by
the following polynomial in e

(B +el)V ZKl (B,t)e" 17t Ky(B,0)=1.
t=0

We wish to compute Ky(B,#). For this aim it is necessary to consider the (p, p) and (p, g)
entries of (B +el)V. Find the (p, p)entry. It is equal to

Odet (B + el) _ (p.p) & (
Obpp+e) Adpp(B +el) = { D-minor{n-1j B+ d}}

where Adp g is the adjunct of the (p,p)entry bpp + e Similarly to arguments above, the
coefficient at €' asn—t—1= (n—1)—t = (n—(t+1)) in expansion of this determinant
is the (p, p)-entry of the matrix Ky (B, t):

e.pKi(B) = Y {—U‘f;iﬂj’ﬂ B}=

[t _, terms)

(p.p) €
= ) Adyy {WH}

(2, terms)

(here Desub stands for a disgonal (# + 1) % (t + 1)-submatrix of B).

These are sums of D-minors. Both the sums consist of CL_y terms, as one generating
element, by 5, among n ones takes part in the first differentiation, i. e, in forming the first
(main) adjunct. Here p' are the new indexes of the rows and the columns in Dhminors of

order £+ 1.
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Then find the (p,g)entry of (B +el)Y. It is equal to

Bdet (B + eI)
Obq.p

(here Dh-minor stands for hypoediagonal minoer).

It contains only one nondiagonal generating element, bp g, and thus, after the first partial
differentiation with respect to by p (although the order of partial differentiation executions
is of no importance) does not contain by p, bpp + €, and by g + e Due to (30), the coefficient
at ]:[:;:_l{b;h;* + €) in expansion of the determinant is

= Adgp(B +el) = (=P { Dh EELT{::[{EH t) (B+ d}} !

- mae 8" det( B + eI)
ontt { Dh-minor{o-t) (B +En} _ o [ﬁ{b‘h,tl +e)- -0, , 4.,y +£]]
'ﬂ{bh.il +E}”‘a|:bin_=_1,‘ln_:_l +E] abﬁl'a!i‘

— {ilail]?'“:a{iﬂ—t—laiﬂ—t—l]E‘ {
= Ady { D-sub(t+1) (Btel),.

Put here € = 0, obtain the coefficient at €* 1 i e. the (p,q)-entry of K1(B,t):

[ (p,q) €
(p,q)K1(B.1) = (GI_IEHHHJ{_I]FF s { Dh-minor(t) H} B

n—1

{P‘,E]E
Y Adgy {mﬂ}

(ChTL terms)

Here D ‘illlJ stands for a disgonal (8 + 1) x (t + 1)submatric of B, Both the sums con
sist of Ct _g terms, as two generating elements bpg and bgp are used in forming the first
{mnain) H.dJ unct. The (p, glelement has indexes p', g" in the disgonal minor and g%, g" in the
hypodiagonal one, ¢ +¢' =p" +q" + 1.

These two parts are the complete formula for Ky(B,t). From it and formuola (26), the
expressions for Ka(B,t) follow. The structure of matriz coefficients is completely specified.
These structural properties of all the characteristic coefficients confirms formulae (297, (28)
and, taking (27) into account | the Waring—Le Verrier recurrent formula (2).

Note the corollary of these transformations: for a quadratic matrix B, the adjunct of
bpp ur bpg may be interpreted as the partial derivative of det B with respect to bpp or by g
according to (30), and conversely, the reverse operation, comvolution of given adjuncts into
det B, may be interpreted as their partial integrating on by 5 or by g

Compare the scalar and matric coefficients structures. Both klll{i‘i of the coefficients are
expressed with the use of minors sums. For sealar coefficients the summands are exactly all
dingonal minors. Unlike them, the summands of mat rix coefficients are disgonal minors and
hypodiagonal ones, other minors cannot be the summands. Moreover, other mminors can
exist only under condition 1 < 7 < n — 1 These facts specify relationship between the 1-st
and 2-nd rocks, and also the rank of & matrix:

(1) r" =™ (see (28);

(2) v ™ < dif there exists o unigue nonzero hypodiagonal miner of order '

(3) " = " < rif there epists a wnigue nonzero minor of order ™ and this minor is not
diagonal, nor hypodiagonal

Thus the structures of scalar and matrix characteristic coeflicients specifies the following
Jundamental inegualities for the principal singularity parameters of a square matriz:

D<r<r"<r<n (31}
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The structure of matrix characteristic coefficients in addition to the well-known strocture of

sealar coefficients (thanks to Le Verrier) was established by the author using his differential
method (30) in early 1981, moreover with the use of resolvent (1) for the limit specific
introduction of coefficients and eigenprojectors. (See about this on the author's web-site )

The game of these three parameters within the boundaries allowed by inequality (31)
determines the entire variety of singular matrices with the identification of their special and
important special cases. Note the following special cases.

17" =0 < matrix B is nilpotent.

27r"=0+« B=2 (Aswell v > 0iff K2(B,1)=B+#Z.)

Jr=1« =1 (By the same argument).

1dr=n—-1<« "=n—-1[Ki(B,n—-1)= BY contains all minors of rank n — 1).

The value £ = " is final in the Sourian alporithm |27]. The 1-st and 2-nd rocks are extremely
important singularity parameters of & square matric B and for eigenmatrices By = B —pgl.
The latters are always singolar matrices. The 1-st and 2-nd rocks are invariant parameters
under linear transformations as well as the rank and others. o particular, namely these
principal parameters 73 < rf < ry determine the exact and explicit formula for the minimal
annulling polynomial of & given square matrix, as well as the cellular and subeellular st
ture of its Jordan form with all accompanying paramet ric equalities and inegualities, starting
with the fundamental inequality (31) for the matrix itself and for all its eipenmatrices.

1.5 The minimal anmlling polynomial of a matrix in explicit form

As it is well known — see, for instance, in |3, 4], the exact, but pon-explicit formula for
the minimal annulling polynomial of & matrix B was traditionally determined only after the
mathematical operation of reduction with the decrease of the degrees of all the eigenmat rices
in its characteristic polynomial kg(—B) = £ up to the minimom values. As g result | it does
not give the explicit connection for these minimum degrees of eigenmatrices with the above
principal parameters of eipenmatrices rf, vy, determined exactly and explicitly by the
elements of the matrix B, based on the structures of its scalar and matrix characteristic
coeflicients.

The results obtained above enable us to express the minimal anoolling polynomial ex
plicitly in terms of basic singularity parameters of a matric B

Consider » sinpular n x nomatrix B of ok roand its eigenvalues g, with alpebraic
multiplicities sy = n —ry (i = 1,...,q), g1 = 0 {in the sequel, we omit the index i =1
of a singular matric parameters), for example, any eigenmatriz By = B — pd . From (27),
the Hamilton- Cayley Theorem | with use of prime factorization and with replacement of the
sealar coefficients by the Viete sums, as in (5), we have

Ki(B,n) =3 _(-B)"'k(B,t) = (-B)* Y _(-B)” "'k(B,t) =
t=0 =0
q
= (-B)"Ky(B,r') = (-B)" [[(d - B)" = Z (32)

=2
This is the annulling characteristic polynomial in B.

From the other hand, each characteristic coefficient of order v & nonzero, that is why

q q
Ky(B,7") = [[(uI — By £ Z, k(B,r') =[] ui* #0. (33)

=32 i=2
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The recurrent Sourian formula (25) in the interval v < £ < " gives us the nilpotent
matriz coe fficients

Ki(B,t) = (-B)" " K:(B,r') = —Ka(B,t) # Z. (34)

Further, if t =" 4+ 1, then

q
Kl{H?T"'i‘ 1] — {—B}H’_H-FIK]_{B,TF} — {_B}fﬂ'_r’+1 H(FII_B}B{ —

i=2

q q
—Z = (-B)" " [ - BY* = (B [[(-By*, (35)

i=2 i=2

where each s? is the exponent of the eigenmatrix By in a minimal annulling polynomial, it
is called the annulling multiplicity of gy
From (35) and condition in (34)

q
(—B)" " [(ud - B)* # 2.

=2

We obtain the main result — formulae for the annulling multiplicities of g = 0 and
consequently of all gy of the eigenmatrices By in the minimal anoulling polynomial:

3D=T"—:I"'+1, 3E|=rf—:r';+1- (36)

The annulling multiplicities satisfy the classic nequalities 1 < 89 < s |4, p. 24| due to

r <" and (32). Replace s? in the classic inequalities by their values (36), obtain the weak

inequality rff < n — 1. Therefore the classic inequalities may be strenpgthened, the upper
bound s more precise:

1<l <r—rl+1<s. (37)

Now we can see that expressing the unknown 2-nd rock in terms of the given s? from
(36) can not lead to restriction v < r. That is why the 1-st and the 2-nd rocks are the
primary parameters of a singular matriz, while the annolling muoltiplicity is the secondary
nation.

The upper bound in (37) is attained when 77 =1y, in that number if
n=n—-1l=r>r]

Find condition for attaining the lower bound in (37), i e for equality v = rff. Tale
advant ape of the classic Sylvester Inequality |21, p. 394):

min(ry, ) = rank (C1Cs) = ry + 1 —n.

If k& = 2 matrices are multiplied (or a power of & matrix is analysed), their sinpularities
are more suitable than the ranks. Then the following twe inegualities in general forms are
expressed in terms of its factors singularities briefly and do not depend on n:

k k k

max{sing Cy) < sing HC; <n, sing HU, < z sing Cy, (38)
i=1 i=1 i=1

sing C < sing C" < n, sing C" < h- sing C, (39}

where h is an arbitrary positive integer.
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The upper bounds in right inequalities of (38) are attained if the following two conditions
do hald together:
(@) (ker Cy) @ im Cy) = (A™),
(i) (ker C) € {im [[_y1 Cy)y i=1,...,k— L

They seem sufficiently clear and are useful in further considerations. In particolar, if Cy
are the eipenmatrices, then their powers pairly commuote and conditions above are trans
formed into

(ker B} n (ker B}7) = (0), i # j.

Then, due to (38) and conditions (i), (i), for all ke > s? there holds

n = sing H Ef‘ = sing £ = z sing Bf‘.
1<1<q, hi>a? 1<1<q, hizsl

From the other hand, rank Ef‘ >ry;  (and this is equivalent to
sing Hf" < s;) as the algebraic multiplicity and the 1-st rock are invariant under powering
a matrix. Consequently, due to 320_; 81 = n, we obtain
sing B:"' < s iff hy < 50, 40
siﬂgB:"'=s:iEh;ESE. (40)

The wvalue s=n—r is the peometric multiplicity. In particular,
(]
sing B — ¢, sing B;* = s}, This fact and (39) lead to the following special inequalities:
SUS gl 0 o o 1 < gl
18 = sy (8 =< s and s < 7)), (41)
s> (s"<s and s < &)

The set (sing Hf"} as well as the set {rank H:“) determines |4, po 143] the set of the

Jordan subeells in the ultrainvariant 8] x sp-cell, and the critical exponent of the matrix in

(40) determines the maximal size of the Jordan s? % s?subeell.

If s? =1 (it is equivalent to rj = 7}, then, due to (41), s = s;. Conversely, if s, = s,
then ry = ry’ = r. Thus, for lower boundaries of s? there holds:

sE’=1{=}r:=,-f{=>r;=r”} (49)

f=1ler=r«er=r
For example, the following fact is well known:
=1,i=1,...,q, & sy=4,i=1,...,qg & Be(P).
The Jordan form Jg is used for inferring them |4, po 143], however it immediately follows
from (42), ifto let i=1,...,4q.
On the other hand, for upper boundaries of s? there holds:
f—s o y=1er=n-1=r. (43)
They are determined by (41).

So, the theory of minimal annuling polynomial is exposed more completely, and this
polynomial is expressed in explicit form due to results obtained in the previous section.



1.6 Null-prime and null-defective sinpular matrices a5

1.6 Null-prime and null-defective singular matrices

A sinpgular matrix is called nwll prime if its 1st rock is equal to its rank. We shall use
notation Bp for null-prime matrices if necessary.

Of the fact above follows: if B is null-prime, then B is noll-prime. Obviously, for the
eigenspace corresponding to its eigenvalue zero holds (ker Bp) = (ker (Bp)"). In this

subspace, the matrix Bp behaves as a prime one. Indicate more widely the properties and
definitions of Bp.

The following assertions are equivalent:

(i) a square matriz B of rank v is null prime,

(i) v =7",

(isg) ™ =,

(iv) rank(B?) =,

(v) {ker B} N {im B) = (0},

(vi) (ker B)U (im B) = {(ker B} @ {im B) = {A").

Due to (vi), any noll-prime matric possesses the characteristic affine projectors in the
linear spaces.

A square matrix B is called nwll defective if ' < r (its Lst rock v = rank B* also is
the minimal value of rank BY). According to (35), for a null-defective matrix B, there exists
the characteristic nilpotent matrix

Oy = {Ky(B,rig) /KB ,7y)}B, 0 =Z, [I£0,)" -1 =2, (44)

where all the matrices commute with each other as polynomials in B (see in details in the
next sect. 2.2).

The nilpotent matrix Og in (21) is, in its turn, the sum of all the eigenmatrices
Oy,...,04
The parameters of the nilpotent matrix for a null-defective matric B are the following:
=10, =31,

where 50 is the nilpotency degree, and

! —1=7"<rank Oy <n[r" /(7" + 1)) =n[(s" - 1)/ <n -1, (45)

0<rank Oy <r, n—s"(n—r) < rank Oy. (46)

Inequalities (45), (46) follow from (39). More precise bounds for the parameters

m—1)—(s,—sN<r<n—1, (47)

si<sh—(sP—1), sP<sl—(s—1) (48)

follow from (37).

In matrix Jordan form (see |10, part 2|), the value s? — 1 = — ¢! is the maximal
quantity of nonseparated units in the adjacent disgonal of the i-th ultrainvariant s] < sj-cell.
The total number of units in the cell is s — s; = 7y — ). This gives the sense to estimations
(47) and (48], and the notions of the st and 2-nd rock.
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Inequality (41) may be interpreted in terms of the Jordan form too, namely, by the
following arguments. The adjacent diagonal of the matrix Jordan form contains, as well
known, only units and zeros; moreover, k nonseparated units in it correspond to the Jordan
subeell of size £+ 1. Among them there exists asubeell {may be not unique) of the maximal
size 7. Consider this s0 x slsubeell and add to the end of its array of units one zero element
(outside the subeell). When s is fixed, the total number of units in the adjacent disgonal
tukes the macimal value if its partition into segments is almost uniform: all the sepments
{but may be one) are of length s, and the last segment may be shorter, its length is equal
to the nonzero remainder of division s} by s, Each segment ends with a zero, all other its
elements are units. Therefore,

min s, = |s/s} |

and the equality in (41) holds iff s/s? is an integer. Inequalities (41) are equivalent to each
of the following:
(n—r)(ry —7r3) 2 — 1, (49)

4+ (s — s /5] <7 < (n—1) — (s} — s0) /D). (50)

Hence estimations (41), (49), (50) for v and s are effective only under condition rf < r.
In this case, we obtain

si<s, sSf<s £33 5>2 s£=1, n>i

The parameter vy — 1y is called the i-th different of a matric. A defective matrix is
called null-different if v < r. The maximal valoe of the different (particular and total)
is (vm — 1), it is less than n — 3. This follows from (49). The different is maximal if the

integer 1 is a square. ln this case
r=n—vn, ™=vn-1, =0, g=1.

Due to (49), the matrix B is null-indifferent in the following special cases:

©  n=le-D
Eiii;. < =2 (51)
(iv) <3,

Therefore, the different is zero if the dimension of the whole space or the dimension of
the ultrainvariant space does not exceed 3. This may be useful for constructing the minimal
annulling polynomial in terms of the ranks. Note the sense of condition (i2): units in the
adjacent diaponals of the Jordan cells cannot be separated by zeros.

A singular square matriz B is null-indifferent iff
rank B" = rank B*! — 1, h=2.3,...,8"

L] . _
(rank B* =17 is minimal).

Null-prime and noll-defective matrices as well as prime and defective ones according
to their definitions are pure affine notions. But they relate only to the eipenvalue zero of
sinpular matrices, in particular, of the eipenmatrices By = B — pgd. For the definition, it is
not meaning, the matrix is real-valued or complexvalued one.
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These notions are important especially in theory of eigenprojectors connected with given
sinpular matrix B, and in its numerons applications. One of them s spectral decomposition
of a matrix B up to its invariant and altrainvariant subspaces for each eigenvalue py, with
reducing original matric into the basic canonical form or only into the nullcell form (see in
the next sect. 2.3).

Further, we shall often deal with matrices-multiplications of the types B = AjAf and
B' = AsAj. where A; and A are n X momatrices set certain geometric objects in a n
dimensional affine or metric space. In the case, anpolar peometric relations between these
objects in the space are determine the matric-muoltiplication B as a null-normal one or a
null-defective one.

It is clear that in the minimal polynomial of & prime matrix P, all the eigenmatrices
Fy = P—pyd are noll-normal ones, and all they have powers 1in it. However in the minimal
polynomial of a defective matrix B, some of its eigenmatrices By = B —p,l are null-defective

(]
.. - g . . .
ones, and they have powers s > Lin it. Then B;® became by null-normal matrix with this
minimal power.

1.7 The reduced form of characteristic coeflicients

We conclude the chapter with evaluating all the characteristic coefficients of a given matrix
B in so called reduced form, where the fraction numerstor and depominator in (1) are
polynomials in € = —p of the least degree. This reduced form is obtained through dividing
by the preatest common divisor the numerator and the denominator. The similar method for
computing the minimal anoulling polynomial of a matric is well known — see, for example,
in |4, p. 123].

Dividing the npumerator and the denominator of fraction (1) by their greatest common
divisor leads to reducing the Hamilton—Cayley zero polynomial as well as all the charac
teristic coefficients, their conpection formulae, and the Sourian algorithm [27] (see above).
Reducing in (24) yields the reduced analogues of the scalar and matrix characteristic poly
nomials kg(e) and Kg(e) from (1):

qe(e)] = (B + el)Qg(e). (52)

These reduced polynomials have also the reduced sealar and matrix characteristic coef
ficients g(B,t) and Q4(B, ), where £ is the order of these coefficients:

“I:I

g(e) =Y q(B,H)e" ",

=0

n?—1

Qrle) = Y Qu(Bt)em 1.
t=0

As well as (24), formula (52) is valid also for the matrix parameter B, and in special
case B = —0B it gives the matrix minimal annulling polynomisl of E = —B [where scalar
one depends on e = —p).
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From here, the reduced Hamilton-Cayley Theorem and the reduced secular equation:

qe(—B) = Q1(B,n") =

ﬂ-

= ZE(H £)(—B)" = H{MI B)* =z, (53)

i=1

g
a5(—p) Zq ) —#“"=H

Thus n? is the order of the minimal annulling polynomial (53). Reducing results in only
those parts of (53), (54) that do not contain pg and s?. The values py and 87 are determined
by solving the secolar equation in (54).

When these values are known, the redouced Viete theorem

q
qB,t)= Y IT wm (@=n®=> s<n (55)
=1

(Cty terms ) ¢ values)

"I:l

(54)

follows from (53). This leads to reducing (25)-(29). 1o the reduced Sourian alporithm |27
(see above), the initial values are as usually, but further comput ations use the reduoced trace,
et

QI{BJH =I: Q?{B:ﬂ] = z? QE{H:]-} = H:

and g(B,1) = S0, s%u, is the matrix B reduced trace. The reduced determinant is

7 (1]
q(B,n") =[] u*-

=1

The inverse nonsingular matrix is

~' = Qu(B,n" — 1)/q(B,n").

Note that gquantity of the eigenvalues decreases up to n”.

The highest coefficients of the eipenmatrices By = B — pod as functions of gy have the
following reduced form:

q

QuBor)) = [l — B, a(Byr)) H(ﬁ; — ), A, (56)

where 10 = n%—s0 is the reduced 1-st rock. The second rock is equal to n% —1 after reducing.

Particular reducing (of the fixed eigenvalue g, quantity) is equal to 8§ — s = (n — 1) — 7,
the total reducing (for all py) is n —n®
The sum of the basic particular parameters satisfies inequalities

If the matrix is prime (B € {P)), then

q q "
n? =g, 5? =1, q(P"1)= z.f-‘:l: g(P",n°%) = ¢"(P,n") = (HF:) .
i=1

i=1
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And the coefficients for its eigenmatrices are

q q
Qu(Pun® —1) = [[usI — P), q(Peyn® —1) = [[ (g — po)ys #i. (57)

1=1 1=1

Note, the peneral spectral representation of & matrix (see in sect. 2.2) may apply the min
imal annulling polynomial and, perhaps, other types of annolling polynomials, for example,

t hese:
q

q
[0t — By — H —B,)™% — Z, (58)

g=1 g=1
q . q

]:[l:.f-‘ B}MBJ _ H maxs — 7. {59}

=1 7=1

Here the matrix (—By) powers are null-prime matrices too,

These reduced forms of exact matrices scalar and matrix characteristic coefficients are
important | of course, from the theoretical point of view. They demonstrate in some extent
similarity between the Number theory and the Matric algebra. In both cases, we deals with
cancellation of greatest common divisor, but here it is as scalar or as matrix polynomial.
Progenitor of such procedure with this divisor is the most ancient alporithm of Euclid in the
Number theory!

ln this first chapter, we have dealt with a lot of theoretical aspects, which were needing
in more detailed consideration and studying. Contrary, from the practical point of view, its
most valuable results are the general inequality of all means, the serial limit method and
limit formulae of solving algebraic equations on it's basis, the found structure and properties
of the matrix characteristic coefficients, the explicit form of the minimal anooling polynomial
of a square matrix, the fundamental inequality for basic singularity parameters of a square
sinpular matrix with their dependence on structure of the scalar and matrix characteristic
coefficients, and an introduction of the very useful noll-prime matrices with their unical
properties. Particolar attention was paid to higher order coefficients of a singolar matrix
(note that all the eigenmatrices of an arbitrary square matrix By = B — pgd are always
sinpular ones).

All these new relationships and notions for a sqguare matric will be used in subsequent
theoretical and practical considerations. So, the results of the chapter give new opportunities
for inferring explicit formulae expressing eigenprojectors and modal matrices in terms of the
scalar and matric characteristic coefficients. This advwantage is used widely in development
of tensor trigonometry in further divisions of the book.



Chapter 2

Affine and orthogonal eigenprojectors

2.1 Affine (oblique) projectors and quasi-inverse matrix

Let {A™) be an affine n-dimensional space. Suppose Bp is a noll-prime matric of rank 7,
then E(Bp,r) #£ 0. Formula (26) is transforming into

K,(Bp,7)/k(Bp,r) + Ks(Bp,r)/k(Bp,r) = Bp+ Bp— L. (60)

Further .E; and E}:ﬁt:tu{l for the so-called affine eigenprojectors of Bp. These projectors
are also idempotent matrices (in general case, they are non-symmetric). o the Fuoclidean
space they are also the eblique eigenprojectors in the metric sense. We claim that in the
affine space E‘p is a projector into the image {im Bp) parallel to the kernel {ker Bp), and
E;J is & projector into (ker Bp) parallel to {im Bp). Indeed,

Ka(Bp,r) = BpK(Bp,v — 1) = K1(Bp,v — 1)Bp;
Bp+Bp=1, Bp-Bp=Bp-Bp=1z;
(Bp)® = Bp(I — Bp) = Bp, (Bp)® = Bp(1 - Bp) = By,

(ker Bp) @ (im Bp) — (A"), x = Bpx + Bpx = X + .

Any element X is uniquely decomposed into the sum of its projections in {A™) as above.
Therefore,

Bp — K1(Bp,r)/K(Bp,r), (61)

Bp = Ka(Bp, ) /k(Bp,r) =
— BpK,(Bp, — 1)/k(Bp,r) = K1(Bp, — 1)Bp/k(Bp,1). (62)

The matrix Bp and both its eigenprojectors commute with each another as polynomials in
Bp (compare with formula (27)). o particular, for a scalar we get:

=0 T=1

and in some other trivial cases,

Z-1 T=2;

(im Ki(Bp,r)) = (ker Ka(Bp, 7)) = (ker Bp), } )
{ker Ky(Bp,7)) = (im Ky(Bp, 7)) = (im Bp);
rank Ky(Bp,r) = sing Bp, rank Ks(Bp,r) = rank B, (64)
(BP) - (Bpy, (BY) - (Bpy,
By~ Bp— Bp, Bp— o - Bis (65)
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For singular matrices Bp (r = '), we have (as generalization of det B® = det™ B):

k(Bp",r) = k"(Bp,r) #0; (67)

K,((Bp)",r) = K} (Bp,r) = k"~ (Bp,r)K,(Bp,r), j = 1,2. (68)

ln an affine space, the affine quasi-inverse matriz for & matrix Bp s the following:
By~ = Bp|Ky(Bp,r — 1)/k(Bp,r)] = [K1(Bp,r — 1)/k(Bp,r)|Bp

= Bp|K1(Bp,r —1)/k(Bp,7)]* = [K1(Bp,r — 1)/k(Bp,r)]* Bp. (69)

It commutes with Bp and in the subspace {(im Bp) it behaves as an usoal inverse matrix,
in {ker Bp) it plays the role of the zero matrix. 1t is uniquely determined by equations

Bp~Bp— BpBp~ — Bp, Bp~ — BpBp~ — By~ Bp. (70)

The following formulae hold:
rank Bp~ = rank Bp;
(im Bp~) = (im Bp), (ker Bp~) = (ker Bp);
BpBp™ Bp= Bp; Bp BpBp™ = Bp~;
(Bp~)” = Bp; (Bp")” =(Bp)"; (Bp')” = (Bp™).
Maoreover,

B =B ladet B£0.

Due to (1, (61), (62), and (69), the affine eigenprojectors and the quasi-inverse matrix
are represented as limits

Bp— lim [((Bp+el)™!| = lim (NBp+1)~", (")
Bp = lim (Bp(Bp+)™!] = Jim [NBp(NBp+1)~"], (72)
Bp~ = lim [Bp(Bp +el)™*| = lim [(N*Bp(NBp+1)~| (73)

(Bp+Bp—1, Bp~Bp— BpBp~ — Bp, N —1/e).

These limit formulae have most common affine form. They are gotten here by the alpebraic
manner using a resolvent of Bp (see also inosect. 34).

2.2 Spectral presentation of nxn-matrix with basic canonical form

ln all ultrainvariant subspaces (their sums are divect ), the affine eigenprojectors (61) of a
prime matrix P may be represented, due to (57), by two manners as follows:

p: _ Ky(FPire) Q1( P, ™) _ il — P
k{ﬂ:ri] q{ﬂ,rﬂ]

— (74)
1<g<q, 321 11 T

where 70 = n® — 1 = g — 1 (see the last manner also, for example, in [4, p. 156]).
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The affine projectors of & non-prime (defective) matrix B are represented according to
(61), (33), (56), and (58)—(60), by two different manners as follows:

B_?‘ KIEBIJI_“ _ QI{BHTP} _
PO~ k(B qBor?)

(sl — B) (l-BF —
- i '[Bt ]1- {?5]
15;5];! J#1 (5 — )% 14_:1..,_:];[ parn (g — )

where Bpyy = H:E, h > maxs! (see the last manner, for example, in |11, p. 128-143]).

Note, that eigenmatrices Fy = P — pgl and the power matrices
R o fi o
B h=s, B h>s,

are trivial special cases of null prime singular matrices Bp.

Spectral representation of a non prime matrix B up to its altrainvariant eigen subspaces
corresponding to each py determines decomposition of the matrix B into the unique sum of
two its characteristic matrices — prime one and nilpotent one (see before (21) and (44)):

B=E Z Bpyy = Z me(:; + Z Bi.BP['I-]-

i=1 =1

q q
=ZE+ZD;=P3+DB. (76)

i=1 =1

Note, O% = Z if h > maxsY. This may be interpreted by the Jordan form.

In order to construct the canonical g block-disgonal form of the matrix [4, p. 130], the
modal matric of transformation may be evaluated with use of the following coefficients
(proportional to eigenprojectors), accordingly, due to (33) or theoretically to (56):

x o
Ki(By, i) = [licyeq, 30 (s — B, Q1(By,{) = Ili<s<q, g1 (sl — B)%

Then

n

(im K1(By,r})) = (im Qu(By,9)) = (ker B, } -
(ker Ky1(By,1})) = (ker Q1(By, D)) = (im B:‘}.

For a prime matrix P, the coefficients are simplified according to 77 = ry, or doe to (57).

All the coefficients are null-prime matrices. However, such matrices have nonzero scalar
coefficients of the highest order, that is why they contain a basis minor. This minor is the
intersection of the basis 8] ¥ n-submatrix of the rows and the basis n % sj-submatrix of the
columns. Therefore the total covariant and contravariant modal matrices consist of all the
column submatrices and, respectively, of all the row ones (i =1,...,9):

Vi BVeat =Cu(B),  Ej=VeaE, (78)
VigBVi,' =Cu(B),  Ea=V'E, (79)
(Vi) ' B'Viiy = CL(B), Esz=Vj,E, (80)
(Viig) 'B*Vii, = Ci(B), Ey=Vi,E, (81)

where Cy is the g block-disgonal form of B with respect to its eigenvalues py, ..., g, E
and B, E=1,...,4 are the original basis and one of these 4 canonical forms.
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Each ultrainvariant space contains non invariant subspaces

(ker B%) S (im O} 5 --. 3 (im O 1),

(ker B) > (ker 0571 5.0 > (ker OV, &2)
(im Of) = (im K(B,,r})Bf) = (im Qy(B,,7{)B}),
(her OF = (im BY), £—1,.. .1 } (83)

Take a certain ultrainvariant cell of projection (76) and subtract its prime disgonal part. The
result is its nilpotent cells. 1t may be transformed into subeells (82) till the final elementary
subeells. After this the common process may be continued till the Jordan nilpotent form.

Formulae (T8) and (79) determine here the varions modal matrices for the prime matrix
Pg=3%1 P in (76). The general formula of the covariant modal matrix is

(Veat) = Vear (Co), ! € (Veol)- (84)

iig

Here Cy is an arbitrary nonsingular cell matrix consisting of nonsingular blocks eq,...,¢q.
The quantity of nilpotent Jordan # x fsubeells in the ith cell of the basic canonical form
for the matrix B are

(rank O} — rank O{*1) — (rank O%*! — rank 0O3*%),

see, for example, |10, part 2, p. 95]. General spectral representation of the matrix B
analytical functions may be computed with use of the Lagranpe and Hermite interpolating
polynomials with so called the component matrices |4, p. 155-159(:

Bl __,
B(:e} k—1) BPm».- {im B{:kj} = (im Df 1)».- k=1,. ».-51 (85)

. T - . . - .
Substitute here Bpgy, for (75), the result is the form depending only on the original matrix B.

2.3 Transforming a null-prime matrix in its null-cell form

Let Bp be a null-prime nxn-matrix and rank Bp =r. Further, define the canonical null-cedl
{two-block diagonal) form of the matrix Bp as the modal transformed n % nomatric Be:

Hp—}BE=[zl Z ]

Z B,

Here By is a nonsingular v % romatrix (def By # 0) and £y s the zero s ® s matric,
s =mn —r is the geometric and algebraic multiplicity of the eigenvalue 0 for Bp. Find the
modal transformation of Bp into Be. The high coefficients K(Bp,r) and Ks(Bp, 1), where
r = rank Bp, are proportional to the eigenprojectors (61) and (62), what are necessary here
for the searched modal trapsformation. (But for their evaluating the eipenvalues of Bp are
not necessary as for the full spectrum (76)). These coefficients are null-prime matrices, and
thus they contain basis disgonal minors determining two basis n % s and nox rsubmatrices
of columns. These submatrices generate the modal matrix of the base transformation:

Vol BVt = Be, Ei=VeaE, (Vo) = Veor(Ca). (86)

Here Cg is a two-cell analog of Cy from (84). So, the transformation is found.
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Suppose there are two null-prime matrices Bpy and Bpa of the same order such that
(im Bp1) = (im Bpa), (im Bp}) = (im Bpa) (Bpi — Bps, Bp1 — Bpa).
Then, due to (86), we obtain

K;(Bp1Bpa,r) — Ky(BpaBpu,v) — Ky (Bpy, 1)K (Bpa,r), j —1,2,
k(Bp1Bpa,r) = k(Bp2Bp1,r) = k(Bpy,7)k(Bpa, ). (87)
The last formula peneralizes the well known one for the determinant of square matrices

multiplications

det (B1Ba) = det (B3By) = det By - det Bs.

One else simplest form for & null-prime matrix consists of zer0 n % (n — r)matric and
n x romatrix of the basis columns:

Bp=[22lﬂg].

It may be also useful

2.4 Null-normal singular matrices

There is an one-to-one correspondence between the pair of eigenprojectors {E;.I, “B_p]l and the
pair ({im Bp), (ker Bp)) of linear subspaces in an affine space (A™) with a certain base.
Suppose this space is real. Consider the set of real so-called nuwll-normal matrices (Bm)
satisfying condition

_b {_
B = Bm' = (Bm)Y < Bm = Bmd = (Bm)". (88)
Geometrically, this means that
{ker Bm) = {ker Bm') < {im Bm) = {im Bm'). (89)

The sum of {im Bm} and {(ker Bm) in (A") is direct as kE(Bm,r) # 0. 1o the Boclidean
space {E™) with an orthonormal base, we have

er Bm' im Bm)L = (ker Bm
{-'FBP{BF{-'FBh} (90)

(im Bm’) = (ker Bm)L = (im Bm);

< (im Bm) B {ker Bm) = (£™).

This is the special peometric sense of matrices Bm: In a real space (E™) with a fized or
thonormal base the characteristic eigenprojectors of a null prime matriz Bp are symmetric
iff its swhspaces {im Bp) and {ker Bp) form the spherically orthogonal divect sum, what is
specially denoted in (90) (i e, iff they are orthocomplements of each to another in {E™))

ln the eigenspace corresponding to the eigenvalue p = 0, the matrix Bm is similar
to a normal matrix. That is why it is called nwllnormael  In the Boclidean space its
eigenproject ors are orthogonal. Special cases of null normal matrices are normal | symmetric,
skew-symmet ric, and nonsingular ones.

The following equivalences do hold:

Bm

Bm

Bm! = Ky(Bm,r)/k(Bm,r) < Ki(Bm,r) = Kj(Bm,r)(91)

I =
=1

Bt = Ko(Bm,r)/k(Bm,r) < Ka(Bm,r) K!{(Bm,r). (92)
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—
ln {(£™), Bm and .{BTn project into {ker Bm) and respectively (im Bm) by the ort hogonal

way, and Bm 1 Bm.
The following conditions are eguivalent (see sect. 2.1):
(1) all the eigenmatrices By are real and null prime;

(i2) all these matrices have the real affine projectors E: gl E;
(i21) the matriz B is real and prime, and all its eigenvalues are real numbers.

A real normal matrix B = M may be transformed into disponal real one by a real
orthogonal modal matrix #f the matrix M is symmetric (M = 8).

For any symmetric matrix S, the kernel and the image of each its eigenmatrix Sy are
the orthogonal complements of each other, and kernels form the direct orthoponal som.
Therefore, all the eigenmatrices of a real matriz B are real and null-normal iff B is real and
symmetric. 1o particolar, nullnormal matrices B and BY of rank n — 1 have the common
eigenvector (ker BY = (ker B’} iff BY = (BY)".

Take a null-normal matrix Bmoand apply the Gram—Schmidt orthoponalization alporithm
to columns of the two blocks of the matrix Vg = Vg, in (86) separately. The result is the
orthogonal modal matrix for constructing the npull-cell canonical form (86), i. e congruent
muodal transformation:

Be= R, BmR.q (93)
({RBeot) = Reat{Ra), but (Vo) = B {Ca), see (86)). Structure of Ha here is similar to Oy

in (B6). If the original base is, for example, Cartesian, then the new orthonormal base is
expressed in terms of the columns of the modal matrix {Rear} = {Hj;}. And orientation
of the base is chanped under multiplying Beq by the alternating unity matrix on the right
for its restoring. The modal orthogonal matrix ey for constructing the disgonal form of a
symmetric matrix 8 is computed by the way similar to (T8). If all the eigenvalues of 8 are
distinet, then nits unity length eipenvectors determined by (ker S;) form the desived matrix
Reg. If some of them are degenerstive (under condition s; > 1), then the Gram-Schmidt
orthogonalization is applied.

The following examples of null-normal matrices are used in the sequel. These matrices
are generated by the special nox momatrix A (n £ m):

Bmy = A1 A}, Bm = A4} (94)

({im Ay} = {im As), rank Ay =rank As =m < n),
Bmg = A1y, Bmj = A3A, (95)

({ker A1) = (ker A3}, rank Ay =rank A3 =n < m).

Note some other properties of all null-normal matrices.

Bm'Bm = BmBm' = ﬁ, Bm'Bm = BmBm' = .{B_m?
{ker Bm'Bm) = (ker BmBm') = (ker Bm}, (96)
{im Bm'Bm) = {(im BmBm") = (im Bm).

Apply (87) to null normal matrices Bm oand Bm', we obtain

Ky(BmBm',r) = K1(Bm'Bm,r) = K{(Bm,r),
K3(BmBm',r) = Ko(Bm'Bm,r) = K3(Bm,r), (97)
k(BmBm',7) = k(Bm'Bm,r) = k*(Bm,r).

Formula (97) generalizes the well-known formula for determinants
det(BB') = det(B'B) = det’B.

(Singular matrices M and 8 are also the special cases of null-normal ones )
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2.5 Spherically orthogonal projectors and guasi-inverse matrices

ln the previous section, we introduoced the orthogonal eigenprojectors in addition to obligue
ones.  They were defined for nullnormal matrices due to spherical orthogonality (90) of
eigensubspaces in (E™). This property takes place only in (™) and corresponds to to right
tensor spherical angles (see in Che 5) between subspaces or lineors.

Let A be a real-valued m x nomatrix of rank r which is less noand m. We have prodocts
A'A AA" € (Bm), and their rank is also equal to v According to (91) and (92) we obtain

— —
A'A=K (A'A,7)/k(A"A,T), AA"= Ki(AA" 7)/k(AA"T), (98)

WA — Ko( A'A, 1) [k(A'A, 1) = A*A = Inyn — ATA,
WA — Ko( A", 1) [K(AA", 1) = AA+ = Lo — AA, (99)
{K(AA' 1)} = {K(A'A, 1) };
amd in the two trivial cases, when either rank A =r=m<n, orrank A =r=n < m,
they expressed as follow:
{_
rank A=t =m<n= AA=AJAA'}"1.A=ATA,
(997)
{_
rank A=t =n<m= AA" = A{A'A}1. A" = AAT.
Here, for example, in (€™} with m x Lvectors a:
— —
AA’ is the orthogonal projector onto {(im A) = (ker A’)1; aa’ — aa’/a’a, {a}* = a’/(a’a);
ﬂ is the orthogonal projector onto (ker A') = (im A} aa’ = I — aa’/(a’a);

At s here the quasi-inverse Moor-Penrose nox mematrix [30-32], rank AT =r.
Contrary, for the two complementary subspaces of (E™) or of {A™), we obviously obtain

s EE — —
A'A+A'A =T, B'B+B'EB=1I,,,=BB +BBE' {100}
—equivalent to {im A" @{ker A) = (A"), (im B') @{ker B) = {im B) @&(ker By = {A™).

li is in (E™) the subspaces are orthogonally complementary. According to (99) any matrix
AT satisfies the two Penrose equations |32], which determine it independently:

AATA= A, ATAAT = AT,
From the latter and (62) we obtain exactly for any A i e for m x nor n x me

Ki(AA',r—1)  Ki(A'A,;r—1)
kAA.T)  KAA7)

At =A". A", (101)

First is the Decell’s formula, inferred in [33] from the Sourian alporithm |27] (see in Che 1),
Eguality (101) can be checked by representing the matric coefficients by polynomials (27).

The matriz AT behaves as the inverse matrix in {im A) and as the zero one in (ker A"
with respect to multiplication from the left:

— s
A+C = A+[(AA’ + AAT)C] = A+(AA'C). (102)

However with respect to multiplication from the right | the matrix A% plays the role of the
inverse matrix in {im A" and the zero matrix in (ker A):

— —
CA* = [C(A'A + A'A)| At = (CA'A)AT. (103)



2.5 Spherically orthogonal projectors and guasi-inverse matrices 47

In particular, the matrix B commutes with BY exactly in (im B) 1 {(im B"). That is why
the following equivalences hold for the matrix B~ from (69) (see sect. 2.1):

B~ =Bt & Be (Bm)« B'B=BB*. (104)

ln the Enclidean space with a certain orthonormal base, a quasi-inverse orthogonal matrix
has the following peometric sense: its Frobenius norm (the matrix norm of the 1-st order, see
sect. 9.1) is minimal among all quasi-inverse matrices determined by 15 Penrose equation
AXA=A i e, this matrix is the normal solution of this equation from the left and from
the right |30, 32| (see also below). Moreover, this matrix A gives the normal solutions (i, e,
with the minimal Frobenius norm) of the left| right | and mixed general linear equations

Ay(mxn)-X(nxt)=A(mxt) = X (nxt)= AFA, (105)

Y(txm)-Ag(m xn) = A(t x n) =V (t x m) = AAF, (106)
A1{m1 x nl] - X -Ag{m-g x ‘ng} =A|:m1 x ﬂg} = j’ {nl x mz} =A-1|-AA;- (11]7]

Eguations residuals for full solutions have the minimal Frobenins norm too:

108
. — e |: }
A=Z & A€ (A, E™<%) = (KERpALA}),
- —F
Ag= —AA3 A,
(109)
. — —F
A= Z & A€ (E¥". A4A5) = (KERpAbA,),
- —_— ¥ ¥ ¥ -
A— —A AL A — A AY + A ALAAGAS, A=Z &
(110)

s mee — - e
A€ (AjA] - Emxna . A8 A0y = (K ERpA A} N KER, AbA3).

lntersection of the set of all left quasi-inverse matrices and the set of all right ones
determined by (99) consists of the unique element A% |30, 34

_b <—
(Ag) = At @ (A'A.g™™. A" (111)
(all these matrices produce orthoprojectors in (108), in particular, A1),
— —
(A=At @ (A" . EmF ™. A4 (112)
(all these matrices produce orthoprojectors (109), in particular, AY),
A* = (A7) N (A7), (113)

ln particular, from (108)—(110) we obtain

rank Ay =m = 5.1= Z, rank As=n = Em= Z,
(114)
(rank Ay = m, rank As =n) = A=Z.
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Consider in details the exact normal solution of the classical linear equation Ax =a in
the general form with the wse of formula (101):

|[Ax — a|| — min, X=Ata= [:{ (r)/k(AA", r]]a, (115)
- —F
d= —AA'a. (116)
We have . .
d=0 = ac (kerAA") = (ker Kj(AA'. 7). (117)

Here we pet exact formuolae (115) and (116) for the normal solution and mindmal residowal
of the classic linear equation Ax = a8 The residual is antiprojection (116). Consequently,
its Euclidean norm satisfies

- wl
ldI*=—4d a, (118)

ldll=sing llall, (o€ [0;7/2]) (119)

where @ is the introduced here scalar angle between the vector 8 and the subspace (im A).
We conclude the section with inferring from formula (101) the explicit expression for a

-
(p, g)-element of the n x mematrix A4 (r) in (115). The most general Hermitean-like form of
this element in the case of a complex initial linear equation is

XY 2. {».-ig;ﬂ(f}ﬂ}ﬂd""i” {nifﬂéf‘} '

(Cr _, terms) (COr_, terms)

wherep=1,...,m, g=1,...,n, p’ and g’ are new indexes of agp in minors of A. Therefore,
(115) generalizes here the Cramer formuolae. Inospecial case 7 = n = m, (115) represents

the matrix solution of & nonsingular linear equation Ax = a, becanse A (n) =det A-AY,
k(AA* n) = det A-det A and, consequently, the solution is x = (AY /det A)a= A"'a (the
special classic case see, for example, in |4, p. 38]). In the presentation as limit formuola
for the initial m ® nomatric A, the quasi-inverse n % mematric AT by Moor and Penrose is
expressed according to initial (1) and to (101) as follows (see more in sect. 3.4):

At = im[A'(AA" + el)™!] = lim[(A’A + ) A']
e—0 e—+0

The exact normal solution of the linear equation Ax = a topgether with these general limit
and exact real and complex formulae for the matrix of Moor and Penrose were established
by the anthor with very detailed derivations yet in early of 1981, with introduction of both
rocks for a matrix B, and along with all the new concepts introduced in Chapters 1 and 2.
The draft of the anthor’s 1st math atricle, with these formulae and the stroctures of the
matrix characterisic coefficients, was submitted to the main mathematical journal of the
LUSSK, and it lay with its 1st Soviet reviewer for 2 years, after which it was rejected by
him with the wording that it was not snitable for this respectable journal. However, in the
middle of this period, the new limit formula above mysterionsly appeared in this reviewer's
new book, by defanlt, as his proper, and it is clear why: he probably liked it very muched.

The draft article continued to circulate in other Soviet math journals with the same result |
and another "anthor" from the same math circle later published also very mysteriously my
structure above of the matrix characteristic coefficients, but from him. How does the hand
rise among "fpures" in the field of exact sciences to pass off someone else’s as their own?

"3 tempora, o mores!" — Marcus Tullins Cicero (First-century BC).

(See more about these historical aspects on the author’s web-site and in the end of Ch 4))



Chapter 3

Main scalar invariants of singular matrices

3.1 The minorant of a matrix and its applications

Let Ay and As be n x momatrices. Then E(A1A5, 1) = E(A2A4),£). The scalar coefficients of
order t for n x nomatrix Ay Ay were shown to be the sums of all disponal minors of order
Bepresent each matrix of diagonal minors of Ay A5 as the following multiplication of ¢ x m
matrices of rows:

{D-minor(t) A1 A5} = {lig(t) Ay Hlig(t) A2}

By the Binet—-Canchy formuola |4, p. 39], this minor (i. e, determinant of the left matrix) is
the sum of all pair multiplications of all minors from the right submatrices of order ¢ with
the same set of columns. For the m x momatrix AjAs, in all these assertions, rows are
changed for columns and columns are changed for rows. Consider the two sets of CECL, pair
multiplications of order-t minors of 45 and Ay, They form the two sums. The first sum is
equal to the scalar coefficient k{ApA4, 1), the second sum is equal to the scalar coefficient
E(A] Az, ). There exists a bijection between these two sets, it is described just above, thos
for external and internal multiplications of these matrices we have

K(A1A}, £) = K(A) A, ) — k(A2AL ) — K(AA1,0). (120)
ln the special case Ay = Ag = A, i e for these both homomultiplications, there holds

KAA ) = ) > minar®(HA = K(A'A 1) = M (r)A = 0. (121)

(Tt terms) (O terms)

We introduced here the highest positive characteristic of an n X mematrix, its minerant

Mt(r)A = VE(AA", 1) = VE(A’A, T) = ME(r) A" > 0.

It is the square root of the sum of all squared basic minors A, this follows from (121).
Note the special pases.

1. lf n>m=r, then Mt?(m)A = det A’A (the Gram determinant for columns A).
2 fm=1 then Mt(l)a = ||a||g (the Euclidean module a).
3 U n=m=r then M#(n)A = |det A| (the determinant A).

Formulae for the matrix poly-step homomultiplication minorant follow from (67):

Mi(r){AA'A ..} = Mt(r){A'AA" ..} =
h h

= K44k, 7] = /KR (AA", 1) = MEP(r) A.

Consider equation (115) and the matrix {A|]a}. If n = m = r, according (117), d= 0.
When 2 m = v, (116) and (119) give the peneral result:

Mi(r+1){A|a} ==sinyg-||a]| - Mi{(r)4d = || & | - Mi(r)A. (122)
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Through praceful formula (122} and in term of minorant of the matrix {A|a} of order-(r4+1)
with all squared minors, we prove clear in one-line the classic Kronecker-Capelli Theorem:

MEr+1{dla}= Y Y mino’(r+1){dja} =04 d=0 & sinp=0.
(wamncy N (s

If n>m =, then the Gram determinant may be also the analogous criterion as
.Mtﬂ(r + 1){A|a} = det[{A|a} {A]a}] = || & IIE - Mtii:r]A.
Formula (122) in the pure trigonometric form (where @ € (0;7/2]) is
0 < sing = M#(r + 1){Ala}/(MEt(r)A - Mt(1)a) < 1. (123)
In particular, for the angle between two vectors (12 € (0;7/2]) in (E™), we have:

0 < sin 12 = Mt(2)[aq|az] /(Mt(1)as - Mi(1)az) =

= +/det{[a1]|az]’ - [a1]|ag]}/(||a1]] - [|az]]) = ||a1 x ag||/(||a1]| - [|az]]) < 1. (124)

Here on the left we pives a scalar mudtiplication of sine type for two vectors and on the
right we pives identical to it a moduole of their vector multiplication. 1o the first variant, for
two vectors on a plane (n = 2), may be eigen, i. e in (£2Y), the determinant in formula
(124) disintegrates in two equal determinants. As result, there holds the simplified formuola
for the anple between two vectors on a plane with the anple sipn:

—1 < siniya = det(as|ag]/(|las]] - [lazl]) < +1, (p12 € [-w/2;+7/2)).

Relation between the minorant of an nox rmatrix A and the square root of the Gram
determinant of its v columns enables one to clarify the peometric sense of the minorant as the
volume of the parallelepiped, constructed on the vector-columns of the matrix A |5, p. 216].
ln particolar, put m = r. We often deal with such matrices in part 1. They represent
special linear peometric objects lineors of greater dimension (r > 1), then vectors. Consider
the columns of & matrix A, Denote the submatrix formed by first § columns as Ay, Then
Az = {Ay]8541} for each j. Apply formulae (119) and (122) to Ay, also the geometric
interpretation of the Gram determinant square root may be used. Subsequent application
of this operation gives the formula

Mi(r)A = vy = ||aq]] - sinipy 2 - ||ag]| - singyza---[larl] < [ag]] - [|82]]---[larl],  (125)

where wp is the volume of the r-dimensional parallelepiped with sides ap,... 8, and
©1,2,91,2,3,7 - € (/2]

If n =m =r, then from (125) the sine Hadamard Inequality in its nsoal form |21, po 35
is valid; and, if # =2, it has particular form (124). Duoe to (74), the following does hold:

q q
Mit(r)A = VK(AA" 1) = [ o7 >0, A4 — [1(e5 Inxn — AA") o3, (126)
=2 §=2

where -:r? = 0 are the nonzero eigenvalues of AA" or A'A
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ln general (n 2 m = r = ), the coeflicients E(AA" $) = E(A"A, ) can be expressed either
geometrically as the sums of squared tdimensional volumes (#measures) or algebraically as
the Viete sums of the eigenvalues of AA"

KAA )= X vl =s(o]) =vf >0,
(e terms)
KAA )= ¥ B, =si(e}) =2 =A% >0,

(m TErms)

(MEA(r)A = v2). (127)

Here, in Cartesian coordinates, vypy is the volume v of the orthoprojection of the rank 2.
If m =, then the ratio vy, /vy = cosap is the p-th direction cosine.

Formulae (127) express the Pythaporean Theorem for the linear objects represented by
n ¥ rmatrices. Further, they are called lineors. All the characteristics are always positive
and invariant under orthogonal transformations of columns or rows of the matrix A and its
Cartesian base. In particular, there holds

Mi(r)A = Mt(r){R1ARy} = Mt(r)VAA = Mi(r)VA'A. (128)

Therefore, a minorant may be used as peomet ric characteristic for these lineors of different
dimensions and ranks. o Che 9 this opportunity will be realized for introducing peneral
norms of similar linear objects.

The arithmetic roots in (128) may be sinpular; in general, they are related with the
matrix A by the guasi-polar decompositions of A (i e, QR factorization):

A=S8F-Rg=VAA .- {(VAA)T . A}, (129)
A=Rg-SP = {A.-(VAAH}. VAA. (130)

Sf =Rq-S7-Rq' & AA'=Rq-A'A-Ry,
Rg=A.(VAA)Y = (VAAHr. A =
— s
Rq-Rq' = AA’, Rq'Rq=A'A, Rq =Rq".

The transformation 4 — Hg pives the same result as the Gram—Schmidt unity ortho
ponalization of m linearly independent vectors:

A={ay,....an} = {e;,....eqn} = Ryq.

This algebraic transformation is the uniquely determined variant of the Gram-Schmidt
orthogonalization (provided that the sequence of vectors is fixed).

ln Eunclidean space, this Gram—Schmidt orthogonalization can be expressed peometrically
clearly with use of orthoprojectors:

i—-1 i—1
vi=a;, vi=ai— ) [ex-e]-ai={I-3 [ex-ei]}-a, (131)
k=1 k=1

where  eg-ep =eg-ep — see sect. 2210 The results of this procedure are the following
e = vi/||vi|l, i=1,...,m, and additionally we have the matrix RBg for A

For the special kind of n % momatrices, with n > m =7, prove the split formuola for the
minorant of their external multiplications:

Mt(r)A LAY = ME(r)A; - Mt(r)As = \/det (A4 A;) - det (A4 As). (132)
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With the definition of a minorant, the quasi-polar decompositions such as (129)(130), and
also formula (128)) we subsequently obtain

ME(r){A1Ab} = k[(A1A542AY), 7] = k[(Rqy - ST - 8T - S - 5P - Rqj), 7] =

= K[(SF - SF - ST - 8F),7] = det (A]Ay) - det (AhAg) = Mt (r) Ay - Mt (r) Aa.

Further, for such esternal and internal multiplications of nxom-matrices we use notations:
B=A414; B =A4:4]; C=A14,, C' =AjA,.

For B, if {im AL} N {ker A1} = 0, {im A]) N {(ker Aa} = 0, there holds:
{im B) = (im A1) < {(ker B} = {(ker A}} — see also (100),
{im B') = {im As) < (ker B) = (ker AL} — see also (100).
Due to additional condition m = rank Ay = rank As = v, the following does hold:

L

BB — L, A, A,A; — 4,4} — R, Ry,
BB — LA A A, — AQA? — RgsRa, (133
BB — A, A4A, A} — 4,4} — Ra.Rg),
BB = A, AIA A, — A,A! — R@ng.

Besides, det C = det{ A Aa) £ 0. (See this in details in Part 11 sect. 5.4
Then formulae

K,;[(A1A5AsAY), 7] = det (A5A) - Kj(A1 A7),

K;[(A2A1A1A5), 7] = det (A1 A1) - K;(A2A5,7), } G=12) (134)

follow from (61), (62}, (132), (133).

3.2 Sine characteristics of matrices

Let B = {e;}pwn be some n x pomatrix, given as a linear unity geometric object in the
1-st quadrant of Cartesian base {1} in a space {(E™), where ||eg|| = 1 for all i Namely, the
matrix E = {€;}nxn determines an noedges polyhedral tensor angle in the Enclidean space;
det E = Mt(n)E <1 is, due to the triponometric value in Hadamard Inequality (125)) its
sine characteristic. This polyhedral anpgle corresponds one-to-one the unique muotual tensor

angle, piven by the matrix E= {8} nun = {E:Eje sec 8}, where Ey is obtained from E by
change of the column e; on zero ane, and for this tensor angle E unity its calibration by sec 8

isused. The orthoprojector of type E B projectsinto the kernel (ker EJ} orthogonally to the
image (im By} (seesect. 2.5). There holds: cos §; = ejé; = &je; (0 < cos 3 < 1), ej&; =0or

E'E= Diogsg = E'E, — cos® B = A EE” and the all values of cos 8y are finding. Then
i
det E -det E =det Degsg = | [ cos i, |det E| < 1, |det E| <1
i=1
E'E = Dopep- (E'E) ™ - Do gy E'E = Dy - (E'E)™ - Do s
G=\/Dacp E'E-\/Doep =G = [\/ Do - L'E - /D | .

Here G and G are metric tensors in the stretched of these angles mutual affine bases, given

in {I} by modal matrices {Ey/Dgae g} and {E‘ﬁDmﬁ}.
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Howewer, in the book, we deal with tensor angles of the binary type, 1. e angles formed
by pairs of linear subspaces (straight lines if ¥ = 1) or linear objects Ay, As (vectors if r = 1)
in spaces with quadratic metrics.

At first, consider the sine chamacteristic of binary angles.  For this we suppose that
ry = rank Ay and ry = rank A5, but ry + 5 < n. The block matrix {A|As} is called the
external swmnation of Ay and As. Introduoce for the rectangular matrices {or lineors) A4,y
and As the scalar characteristic sine ratio (see more in sect. 8.4):

[{A1|A2}sin = Mt(r1 + ra){As| Ao}/ (Mi(r1)As - Mi(r2)A2) = (135)

AlAy | ALA ,
=\/d.et [Aiﬂi A, 2 ]j\/det (A% Ay) - det (AL Ag) = detGy 2/ Mi(r)AL Ab > 0.

It peneralizes (123) and ratio (124) for the sine of the anple between two vectors. The matrix
in numerator generalizes the internal multiplication of two vectors of sine type used in (124).
This ratio is the sine positively defmite norm for a pair of 4y and As.

The Kronecker—Capelli Theorem may be generalized to matrix linesr equations such as
(105)—107). The generalization is expressed also in terms of the minorant:

A | A .
ME(ry +12+1) Tl’?] —0 & A=Z. (136)

3.3 Cosine characteristics of matrices

Denote the highest scalar characteristic of a square singular matrix, its dianal -
Dlr)B = k(B,r) =DI{r)B" (det B=10),

So, DIr){AA’} = DI(r){A'A} = K(AA", 1) = Mt2(r)A - see sect. 3.1, And from formula
(122) we have: Mt2(r +1){A|a} = DI(r + 1){[Ala][A]a]'} =0+ d=0 = sinyg = 0!

Then the new scalar characteristic for a sinpular square matrix B, its sign-indefinite
cosine ratio (see more in Che 8)) is expressed in terms of the minorant and the dianal:

no q2
{B}eos = DI(r)B//Dl(r)BB' = DI(r)B/Mt(r)B = [[ ;™" | T[] 5. (137)
=2 =2
We may preliminary introduce the cosine norm for B as follows (see more in sect. 8.1):
g2
1> [{BYeox = DI BIMe)B = [Tt | [[ o >0. (138)
=2 =2

The cosine ratio of null-defective B is 0 (7" < r), and it is +1 or —1 for noll-normal B.
Formula (137) to the right contains the eigenvalues gy with their algebraic moltiplicities s]
for the matric B and its singular numbers oy > 0 (for the square root of the matrix BB’ or
B'B) with their algebraic (geometric) multiplicities s ; in ME(r)B as in (126).

Let Ay and As be n % momatrices with their external and internal multiplications of
cosing type B = Ay A and BY = Az A, € = Al As and O = ALAy. Then the cosine ratio

for & pair of matrices {or lineors) Ay and As may be expressed as

{A1 - As}eos = {A2 - A }eos = DI(r){A; - A3}/ Mi(r){A; - A3} (139)
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If Ay and Ag are equirank n % rmatrices, then, due to (1200 and (132),

{A1 - Ad}eos = DI(r){As - A5}/ (Mi(r) Ay - Mt(r)As) =

= det {4} Ap}/\/det {41A,} - \/det {434,}] (140)

ln particular, for the anple between two vectors in the Foclidean space {(£™) we have
—1 < cosp12 = ayag/|lag|| - |laz]] = aza1/l|az] - |las]l < +1, (w12 € (O;7]).  (141)

We note here especially, that both left and right sides in formuolae (135) or (140) may be
considered as some identical algebraic expressions of triponometric (sine or cosine) nature
for coordinates of peometric objects (lineors) represented by n x rmatrices Ay and As. The
angle sign is defined only for two vectors on a plane, may be eigen, i. e, in (E7).

For two vectors 8y and as (i e if r = 1), the expressions in (135), (140) at n > 2
separately or as the sum of their squared forms give & number of algebraic inequalities or
identities of trigonometric (sine and cosine) nature. Their examples are well-known as sine
Hadamard loequality, for example in form (125) at v = 27 cosine Canchy Inequality, for
example in form (141). The scalar muoltiplications of two vectors of sine type in (124) and
cosine type in (141) give these Summary identity for their coordinates (here in Buclidean
space), which equivalent to Lagranpe ldentity also for two vectors:

[Mt(2)[as lag]/(Me(D)as - Me(1)az)]® + [t asah/(Me(1)ar - Mt(1)ag)]? =
= [det([ai]az]'[as]az])] /(a5 a1 - ajag] + [(2522)%)/[ajar - afay] = (142)

= sin” 12 + cos® pra = 1 = (ay x az)?/|aq]|]? - |laa|]® + (a1 - a2)?/||2a| | - ||az]]?,

(where the last variant is a classical sine-cosine ldentity of Laprange for two vectors). Note,
that formula (142) enables one to normalize the angles between vectors in Eoclidean spaces.
ln part 11 of the book, similar constructions for more general linear objects as lineors,
represented by nox mematrices Ay and Aa, will be analyzed.

3.4 Limit evaluation of eigenprojectors and guasi-inverse matrices

According to (1) and (101}, the following limit formulae do hold:

A = lim[A"(AA" + el)™!] = lim[(A'A + el )1 A = (143)
= lim [NA'(NAA' + n= Jim [(NA'A + n'NA", (144)

(AAA = Z — VAL = K (A'Ar)A" = Z — A'K,(AA",7) ).

As well as general formulae (71)—(73), the special limit formulae (143), (144) are inferved by
pure algebraic way, with use of the resolvent (1),

AN Tikhonov |26] was the first who expressed the normal solution of the linear equation
Ax =13 as a limit. He vsed his regularization method in the special case of a conditional
extremum problem: find the wvalue of the argument with the minimal Fuaclidean norm on a
given set corresponding to the minimal residual of equation

U(x,€) = eFy (x) + Fa(x) = min, dU/dx =10 (e— 0). (145)

Here: (Fy(x) = x'x, Foi(x) =d'(x) - d(x), and where the residual is d(x) = Ax — a).
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Note, that similar results, but in limit form (144), might be obtained long before the
publication of A N. Tikhonov by Courant’s penalty functions method |18]:

W(x,N) = Fi(x) + N - Fa(x) =min, dW/dx=0 (N = oa). (146)

ln this task, both the methods are in one-to-one correspondence consisting in multiplying
or dividing by a scalar limit parameter.

Courant’s penalty functions method finds the conditional extremom of Fy(x) with the
gradient 1 x n-vector function in the constraint equation h'(x) = dFs/dx = 0. lntepgration
converts the usual vector form into the equivalent scalar form:

h(x) = f h'(x)dx = 0 = const. (147)

Xy

Then in (146) we obtain the Laprange function Wi, N) and the wnigee scalar Laprange
multiplier N — oo, as

(dh/dx)-N =h(x)-N =0.N = —dF,/dx £ 0

follows from the differential equation (146), and consequently N — oo

ln particular, these limit methods are applicable for finding conditional extremum of
Fyix) on the stationary set of Fa(x). Chains in equations (145) and (146) may be continned
by polynomials in e or N. The sufficient condition for applicability these two limit methods
in the differential form (with the small or larpe parameter) i, due to (147), integrability of
the 1 % nvector function h'(x) from the constraint equation and consequently symmetry of
its Jacobi matriz: (dh/dx)’ = dh/dx. If the normal solution of equation Ax = a is searched
for, this symmetric Jacobi matrix is A"A

Due to General optimization limit method differential equation edFy fdx + h'{x) = 0,
e = 0 or dFyfdx + Nh'(x) =0, N — co, determines a complete solution aecording to
conditional stationarity of F1(X) wnder constraint h'(x) =0 iff the Jacobi matriz of the
constraint vector function h'(x) is null normal, 1. e, (ker dhjdx) = (ker (dh/dx)"}). [And

at the stationarity point of Fy(x) for the 1 x nvector of the conditional gradient | obviously,

there holds: dFy /dx - dh/dx € {ker dh/dx}.)

The conditional stationarity nature of Fi(x) (i e, either a conditional mindmum or a
conditi onal mazimum, or a conditional saddle without extremum) is determined by the limit
conditional Hesse matriz of Fy(X) up to scalar parameter € or N.

See detailed exposition of this General optimization limit method and its applications
in other our monograph |17, po 97-112|. In particular, this method gives, by such simple
way, the exact solutions for a conditional extremum of the second-order scalar function Q(x)
under the linear constraint equation Bm - X = a, including Bm = 5.

Moreover, the constant singular Jacoby null-prime matrix Bp for the linear constraint
equation Bp-x = a may be transformed into the null normal matrizc Bm by a suitable modal
transformation of the initial base (further, this limit method may by applied). As example,
for a null-prime matrix Bp, its affine quasi-inverse matrix Bp™, see (69), may be computed
by the same limit way with preliminary use of linear base transformation for converting Bp
into Bm. Then one calenlates Bm™ by the limit method due to its valoe in (104), i e,
factually as the Moor-Penrose quasi-inverse matrix. Having finished these operations, one
returns to the initial base by the reverse modal transformation, and get the matrix Bp~.

Further, in Ch. 8 the triponometric sense of the sine and cosine ratios from sections.
3.2, 3.3 will be explained on the basis of the trigonometric spectrom of a null normal B.



Chapter 4

Main alternative variants of complexification

4.1 Comparing alternative variants of complexification

Until this chapter we have not particularly touched on the question: what arithmetic content
is permissible and can appear instead of letter designations in formuolae, nequalities, and in
varions statements nsing them. From the preliminary section "Notations", toget her with its
complete at first Matrix Alphabet | it is clear that these abstract letter notions will appear in
the further presented Tensor Trigonometry and in its oumerons mathematical and physical
applications else in a very large number using all Latin and Greek alphabet. Of course, the
not ations of logical operations linking these literal notions have nothing to do with what was
said above. For scalar notions, instead of their letter desipnations, we can mean, under the
conditions of their admissibility and expediency, specific kinds of numbers, including those
with zero. Hers we consider the main variants associated with the use of complex mumbers,
what is usnally defined as complexification of the original real concepts.

Nature of complex numbers gives rise to main two and quite different approaches for
implement ing operations over initially given complex algebraic or numerical elements. The
complex elements may have due to these operations the corresponding form of present ations.

By the adeguate approach, operations over complex-number elements are formally the
same as over realonmber ones. This allows one to use resolts previously obtained for
real-number analogous objects. However, there are some exceptions: inequalities {unless
parameters are only real), module notions. The special case is psewdoization, when real and
imapinary parts of complex elements form direct sums of the same type.

The symbiotic approach supposes the use of standard operations applied to real numbers
as well as the additional operation of complex conjugation independent on usnal ones. In
particular it takes place in the Hermitean approach for vectors and matrices with complex
entries: their transposition & always accompanied by complex conjugation. The Hermite's
variant of complexification allows one to use in the self conjugate form notions of the real
positive module or norm as well as similar self conjugate form for a lot of inequality relations.

These different variants of complexification point out the two independent directions for
further development of theories and their applications in complex spaces.

So, identities of types {(im B) = {im B’} and {im B) = (imB"*) determine accordingly
adequately and Hermitean null normal matrices. But adequately and Hermitean orthogonal
eigenprojectors and guasi-inverse matrices are defined by different ways using (98)-(101).
Adequate complex characteristics no always exist in such determined form in what Hermitean
ones exist. As example, M#2(r)JA = k(AA’,r) = K(A’A,7) for a complex matrix, where
r =rangA, may have any complex values including zero.

But for pseudoized vectors and matrices their squared minorant may have only real values
— positive, negative and zero. From the other hand, in the Hermitean variant there holds
E(AA* ) =k({A*A ) >0, t<r

In any case, all eipenprojectors of a noll-prime matrix Bp exist and are spectrally
nonnepative semi-definite matrices, becanse their eipenvalues are equal to +1 and 0.
Moreover, for matrices Bp affine eigenprojectors and quasi-inverse matrices do not de
pend on the complexification variant.  1If & matrix B is complex and nonsingolar, then
{im B) = {(imB") = (imB*) = {A"), that is why the complex inverse matrix B~! fur such
quadratic matrix B is uniquely determined.
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Forms of representing any complex number "a" with the imapginary unit "i" are well
known and various. They are simplest arithmetic form, triponometric Moivee's and polar
forms, exponential BEuler's form, pseadoized vectorial form, stereopraphic Riemann’s form.

For further aims, we use a normal 2 % 2matrix form — without using the imaginary unit "i'":

Wi(a) = F(p,p), (v € [-m; +7]) : )
Ppl—q | _ cosp —sing |
[+q p]_'ﬂ[+sin5¢; msga]_S+K
(a=p+ig);
b (148)

Wi(a) = F'(p, ) :

[ p +q]=P[ cos i +5msr:']=S_K
—q| p —sing  cosg

(@=p—iq), J

Then, we have the properties:

W(a) - W'(a) = W(a) - W(a) = p? Taxs . S= 5", K = —K', SK = KS.

Note especially, that this real form Wia) is also single-valued as usual one. Lo particular,
such form may be used in its simplest 2 x 2 matrix normal form for representation of paired
solutions of a real-valued algebraic equation formally with conjupate roots, and with possible
following generalization.

For instance, with such unusual approsch one may proved simply that o real valwed
algebraic equation of power n has always & complete real valued similar simplest matrix
solution unique up to admitted permutations of its 2 x 2-cells!

There holds Wi(ay) - W(aa) = W(ay - a2) = Flp1, 1) - Fp2, 92) = Flp1 - p2, (1 + 02)]-
The form Wia) executes summation and multiplication so as the arithmetic form a.

Besides, the real forms Wi(ay) of complex numbers ay as well as the scalar complex form
gy are commutative in their summations and multiplications, and satisfy all formulae and
identities for complex numbers. They compile the pairs of mutually transposed matrices in
(148) similarly to the pairs of conjugate complex numbers.

Formally Wia) represents a given complex number a in the arithmetical affine of the real
normal matrices space (A2*?) of the hinary type.

The trigonometric form Fp, ) in (148) represents the complex number a in the arith
metical Euclidean of the real normal matrices space (£7%2) of the binary type.

From this point of view, a real vabwed normal nxonomatric M represents in a certain affine
or Cartesian base 28 < |n| complex conjugate numbers and n — 2k real valued ones, i e,
M = RWR'. A real valued prime matrix P = VWV ! represents in a certain affine base
these numbers. Generally, here Wis a canonical normal monobinary cell form of the matrices
M and P. Their decompositions, as a direct sums, contain only real 1x 1 and 2 x 2-cells.

ln general, the matrix W,oup to permutations of its cells, s the simplest real solution
of secular equation e{p) = 00 Applying the Cayley-Hamilton Theorem to the prime
matrix P gives V" 1e(P)}V = (W) = Z. Similar W-forms of such simplest matrices
will be use in Part 11 of the book for clear inferring of the tensor trigonometry some formuolae.
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ln its turn, real matric form (148) may be complexified too, either in the adequate or
Hermitian variant. In the first case, there holds

Wizq) : 1

wl—wv | cos1 —siny |
A

v| u sin 1
(z1 = u+iv),
' s (149)
Wzy) = Wiza) :
cosp sinyp |
[—v u]_p —siny cos =S5-K
(za = u —iv). J

Then, we have the properties:
[W(z) - W'(z)=W'(z) - W(z)=p* I9,9. 5=8", K=—-K', SK = KS|

Compler adeguately normoal Woform (149) is implemented in s some adequately Cartesian
base of the complez valued Euclidean space (£2%2) over C. A complex adequately normal
n ¥ nomatrix M = B WER may represent double quantity of non-conjugate complex numbers
(i. &, 88 71 and z9) in the similar bases.  All the elements of its Woform are complex
numbers, including the moduole p and the angle o, The complex normal matric M may be
simplified with some adequately orthogonal transformation B (also complex) and represent ed
in complex canonical Wform (149).

In the second case, in the Hermitean variant , there holds

Wiz): W*(z) =W'(z):
[4’% —H+Q [—:’%] —H-Q, (150)
(z =u+iv), (z =@ —i7),

[W(z) - W*(z) =W*(z) - W(z), H=H*, Q= -Q*, HQ=QH]

Complez Hermitean normal Weform (150) i implemented in o certain Cartesian base
of the unitary space **2). Its two eigenvalues are the complex conjugate numbers so as
in (148). Hence, this complex normal form is simplified with some Hermitean orthogonal
transformation U till converting into real Wform of type (148). The full set (DWU*) is
the specified set of comples normal matrices, that may by reduced by some modal trans
formations till canonical forms (150) and (148).

These normal matrices are interesting in Hermitean tensor triponometry. Their conjugate
eigenvalues are dy = prexp(+if), g € (—oo + o), Bt € [—w/25+w/2); for Hermitean
orthogonal wmatrices: d; = exp(+i8,). Moreover, a pair of conjugate elements in their
diapgonal forms correspond to a trigponometric 2 % 2-cell of some Hermitean rotation for the
geometric transformation of elements in a basic unitary space. (But general complex nx n
normal matrices are simplified with some unitary transformations till their disagonal forms
with n entries of the type dp = prexp(if)!)

These gquestions are discussed more in details in Pact 11, Che 100
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4.2 Examples of adequate and pseudoized complexifications

Typical examples of adeguate complezification are the following:

e formulae for roots of alpebraic equations with complex coefficient s,

o alpebraic identities including ones of trigonometric nature — see in Chs. 3 and 8,

e trigonometric formulae for complex angles and their functions,

e analyvtical (holomorphic) functions, their expansions into power series,

o formulae for derivatives, differentials and integrals for functions of scalar and vectorial
complex arguments.

(Everywhere real number elements are substituted by complex ones.)

In a space over € with an adequate type of metric, the measures of lenpth and angles
are necessary complex. However, in a psendo-BEoclidean space, these measures may be real |
zero or imaginary. Give below the following main examples for the pseado-Euclidean space
of index g = 1 {see more in Part 11 Chs. 6, 11, 12, and in the large Appendix):

o Minkowski Geometry and pseado-Fuoclidean tensor trigonometry in elementary form
as the additional new important part of this Geometry,

e external psendo-spherical non-Fuclidean peometries on the spheres of the imapinary
and real radins (i e, of two types), embedded into pseado-Buoclidean space. [ These two
pgeometries with tensor hyperbolic and orthospherical functions in elementary forms are
isometric to Lobachevsky—Bolyai and Beltrami geometries).

Consider examples of applications of the adequate complezification in theory of analytical
Junctions of sealar and vectorial compler variable and in theory of matrices.

Let x, ¥y € (£™), and 2 = x + Iy be an (nx 1) vector arpument in a n-dimensional complex
Euclidean space, F(2) = Fi(x, ¥)+iFa(x, ¥) be a certain scalar complex analytical function
of 2. Differentiation and intepration with respect to an (n x 1)-vector-argument in the
Euclidean space are expressed in Cartesian coordinates. Total derivatives | differentials, and
inteprals have adequate analopues from which partial characteristics and their relations are
clear and obviously inferred:

dF = h(z)dz < dF =dF) +idF3 = (ha(x,y) + iha(x, y))(dx + idy) =

= [hy(x, ¥)dx — ha(x, y)dy] + i[hs(x,y)dy + ha(x, y)dx].

Here the 1 x neovector partial derwatives (gradients) form pairs:

aF; aF;
hy(x,y) = —5;1 = —#7
(a)
aFy  0F

h2(x,y) =%y = -

This is the vector-form of classical d’ Alembert—Euler Equations for the scalar functions Fy,
Fs totally differentiable with respect to arpuments x, v (or for totality of two different ial
expressions above in square brackets).

Apply the same scheme of reasoning to the 1 x novector function

%Fz_ = h(z) = hy(x,y) + iha(X,¥):

(&)
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The first equalities in chains (b)) are the matrix-form d’ Alembert—Euoler equations for the
vector functions hy and hg totally differentiable in terms of x, y. Together they express,
as well as symmetry of Jacobi matrices due to symmetry of Hesse matrices, necessary and
sufficient conditions for totality of the second differential Foalso in terms of x, 3. The
matriz-forms Laplace Equations for the harmonic functions Fy, Fy of the real variables x, y
follow from the additional matrix equations in (b).

In a pseudo-Euclidean space (E™F9) (in the binary complex form), due to its special
structure, the characteristics described above are chanped:

z=[;]; dF = h(z)dz & dF = dF} +idFy =

— ([ By | ts ]+ ha |tz ]) [%F

= [ha(x,y)dx — ta(x, y)dy| + i[t1(x, y)dy + ha(x, y)dx].

Here
h1'|:X,]|l"} = %: hn{x,F} = %:

ti(x,y) = %, ta(x,y) = —%‘;

Ir (&)

% - o5 (55) - (%)

ln this case, Fi(x, ¥), Fo(x,¥) are not harmonic in the Sense of Laplace.

.

The real analogues exist for purely real parameters vsed previously. ln particular, for
matrices they are the rank, the 1-st and 2-nd rock. Parallelism of linear objects is an affine
property, that is why it does not depend on the complexification variant. However, optimal
procedures for parallelism checking in a real space and complex one may differ.

Suppose that n % mematrices Ay and As determine linear subspaces (or linear objects)
in the affine space (A™). The procedure for parallelism recognizing uses here characteristic
symmetric projectors. I ranks of Ay and As are equal, then process (94) may be run in the
simplest variant .

ln more general case, consider an . % nomatrix with the same image, i e, {im AC) =
{im A), where € is an m ¥ nomatrix such that:

1) {im Cyni{ker A) =0 = rank AC = rank A,

2) E(AC, ) # 0.
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ln s space over B one may put © = A’ ina space over C put © = A*. o general, the
following holds:

1 {imAs) Clim Ay} & 401 -As=4s = Aiai A =7,
{im Al} - {'im Aﬂ} = AQCQ 'Al = Al R A‘EC‘E . Al =2
2. {im As) = {im 4} & A1E1 cAa = F = A0 - Ay

On the other hand, orthogonality of linear objects is the notion depending on s metric
N A given space.

In a real Euclidean space or in a complex Eoclidean space with the adequate metric
variant, orthoponality is recognized by the condition:

{im A1) L {im As) & Ajds =Z = AfA,.

But in a complex Euclidean space with the Hermitean metric variant, it is recognized by
the condition:

(im Ay) L {im As) & Alds = Z = A3A,.

Here the both (left and right) conditions equations are equivalent.

4.3 Examples of Hermitean and symbiotic complexification

Hermite's complexification may be used almost in any case when it is necessary to decide
problems in a complex space with vectorial objects. Hence we indicate only some examples,
muost close to our theme:

e positive norms for lengths, surfaces, volumes ete. of a different peometric objects in
the Hermitean space;

e positive norms for the angle and its functions in an Hermitean plane;

& previous results expressed in the selfconjupate form, in particular, formuolae and a lot
of inequalities (98)-(103), (115)-(130), (132)—(144) with Lagrange ldentity (142), especially:

e o minorant positivity for the linear objects in an Hermitean space,

s & formulae (122) and (136) expressing the Kronecker—Capelli Theorem,

o o Hadamard and Canchy lnequalities of the sine and cosine types (Ch. 3), they are
important for the tripopnometry on an Hermitean plane with definition of Hermitian spherical
trigonometric functions of anples between vectors using Hermiteized them as normalizing;

e o Sine peneral and Cosine peneral Inequalities (Chs. 3 and 8)) they are important for
the tensor triponometry in an Hermitean space (see further in sect. 101 as the basis for
definition of Hermitean spherical tensor trigonometric functions of angles between lineors
using the Sine and Cosine Hermiteized normalizing inequalities);

e ln particular, in the Quantum Mechanics, Hermiteanly orthogonal matrices are used
to represent some observable paired physical values. This is based on the fact that the
Heisenberg Uncertainty Principle s generated mathematically from the Hermiteized form
of the Cosine Canchy Inequality for a pair of complex vectors (see above in sect 2.3). And
in addition, using the peneral Cosine lnequality for a pair of complex lineors, also in the
Hermiteized form, it is possible to pass to more general quantume estimates;

e All the limit functional methods (sect. 3.4) act very well in the Hermiteized forms;

o Mazimum Modulus Principle, in general form. it holds for scalar and vectorial complex
functions of complex single and many variables — see this Principle’s original inferring as a
particular case in the our mathematical monograph |17, po 127).
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Most general is the symbiotic approach. lts application to the classical t heory of analytical
functions and basic operations of caleulus (orthogonal differentiation and integration) gives
the following symbiotic analogue s

® pxpansions into power series in conjugate variables @ and T for special analytical non
holomorphic functions of 2 and Z i e the not analytical funetions in the Sense of Riemann,

e special rules of symbiotic {conjugate) differentiation and integration,

e special conditions for differentiability and analyticity for functions of the conjugate
variables  and 2,

e special conditions for integrability of a certain differential expression (i. e, of the
differential totality),

e symbiotic methods for finding extrema of scalar real functions of conjugate variables
(the preliminary necessary condition to such scalar function is its symmetry with respect to
the conjugate arpuments). This is further development of formal derivatives idea (see, for
example, [19)) in analysis of nonholomorphic complex-variable functions. We illustrate the
extremal problems by the following two examples, close to our theme,

e o extrema of the scalar real functions (from sect. 1.2) expressing the differences or
ratios of corresponding means formed of all the alpebraic equation roots, if the roots are
positive and complex conjugate (see our methods of solving similar tasks in [17, p. 124-135]),

e o minimizing squared Hermitean moduole of complex equation residual (116), i e scalar
real function F = ||Ax — a| Ei with inferring complex limit formulae (143, 144).

# ok

Post scriptum to the Part 1. o concusion of this introductory part 1 ag the ioitial basis for
subsequent development of the tensor trigonometry in part I1, the author considers it necessary to
note the following, A lot of new provisions, characteristics and formulae of the part L were established
by the author else at the beginning of 1981, However, they were not accepted then to publications
in the leading Soviet mathematical journals — see more about this on the author's web-sites, These
contents were published many later, in 2004, in his mooograph |15 lo particalar, this has place
for the structure of matrix characteristic coefficients, for the new parameters of matrices singularity
with [undamental relations and inequalities connecting them, foe the explicit form of a minimal
anoulling polyoomial, for the explicit formulae of all eigenprojectors and guasi-inverse matrices in
terms of elements of an initial matrix, for the definition aod applications of ool prime and oall-
normal matrices, for the exact and explicit normal solation of linear cquations with formualae for
peeudoinverse matrices — algebraic and limit ones, for the pew algebraic notions as a minocant and
a diapal of a matrix with their useful properties in the theory of linear algebraic equations and
matrices, ete.. But some contents [rom this series began to appear later in publications from the
same circle of mathematicians which did oot accept all indicated above, For this reazon. the author
did oot consider to make refereoces to these publications with a= if "their rezules", The same applies
to plagiarist publications, in that pumber, in Wikipedia with borrowings from [15] of 2004 and later.
All of plagiarists were surpassed by the Ukrainian publishing house " Oceiva ¥ kpaiaa” ("Light
of Ukraine") issued my "Tensor Trigonometry - 2004" after 10 years io 2015, without changes, but
under other "author™ pame, with reviews to it from two Ukraioian Professoes — D2 of sciepces!!!
Probably, 2ome. ezpecially novice authors, bave enconntered wich similar ethically unacceptahle
phenomena when, doe to the lack of affiliations or conpections for them to receive official reviews,
their scientific works are not published. bat then, due to the absence of these resules o the literatore,
other “anthors” with affiliations and conpections quietly use them io their 2imilar own publications,
The author writes this here and sometimes further only for the purpose of additional information
about generating a munber of early suggested by him mathematical ideas, relations and results,
Therefore, in our overly politiciaed time, ooly the anthor hims=ell should defend hi= scieotific
priorities and. along the way, the priorities of other authors appropriated by someones, when they
have already left earthly life, and not hoping that others with increased a sense of justice will do it.
Results prosented in Pare [ ace for 200h cont. . resulez of Pare 1 aond Appendix are to September 20004,




Part 11
Tensor Trigonometry: fundamental contents

This basic part of the book begins by large Chapter 5 in which Tensor Trigonometry
is developing in spaces with Euclidean metric, and further in the way, with preliminary
introducing the so-called reflector tensor of the so-called guasi Buclidean space with their
strong definitions. The reflector tensor is a symmetric matrix with eipenvalues —1 and +1,
it is {I*}in the simplest case or R{IT}R' generally. It divides this binary quasi- Euclidean
space into its direct orthogonal sum from two subspaces corresponding to these eigenvalues!

ln the Lost half of Chapter 5 (sect. 5.1-5.6), projective and reflective Tensor Trigonomet ry
is constructed. 1t s developing with using eipenprojectors from the rectanpular or square
matrices. The projective spherical triponometric functions and reflectors with tensor angles
of also projective type between nxr lineors Ay and As or their images {im A4} and {im Aa}
(i e, as planars of rank m1 and ra) are defined. o other interpretation, the tensor functions
with their angles are defined by the same manner between two images of the singular null
prime . X nomatrix {im B} and {im B") (i, e, as planars of rank 7). Then canonical
structures of projective tensor trigonometric functions and reflectors are installed.

In the 2ond half of Chapter 5 (sect. 5.7-5.12), we transit naturally into retational and
deformational Tensor Trigonometry constructed in BEoclidean and quasi Euclidean spaces.
The motive tensor triponometric functions in this version represent rotational (sine-cosine)
and deformational (tangent-secant) matrix transformations). 1o the Chapter end, they are
gotten in the so-called elementary forms, i e, with one motive tensor spherical eigen angle of
rotations—motions and corresponding to the piven reflector tensor of the space of index g = 1.
The reflector tensor determines the mono-binary canonical structure in some Cartesian base
for all main concepts of the entire guasi- Buclidean trigonometry besides its Euelidean metric.

Iln Chapter 6 Tensor Trigonometry in the psendo-Eoclidean space with the identical
reflector metric tensor I and with corresponding to it sign-indefinite quadratic metrics
is constructed with the wide use of the abstract and specific spherical hyperbolic analogies.
Scalar Triponometry is exposed on the pseudoplane with the complete solution of the pseado
Euclidean right triangles and with complete tensor trigonometric relations between principal
and complementary hyperbolic angles. For geometries with principal hyperbolic angles the
especial hyperbolic angle (nuwmber) w is introduced as the hyperbolic analog of /4 (which
corresponds to a hyperbola focus). The descriptive connections of spherical and hyperbolic
principal angles, their functions, rotors and reflectors are given in the especial Quart circle.
ln the Chapter end, the motive hyperbolic functions are inferred in the elementary forms.

ln Chapter 7 the triponometric nature of matrices commut ativity and anticommut ativity
is established as the separate important application for real-valued and Hermitian variants.

ln Chapter 8 the triponometric spectrums for a null-prime matrix and for a pair of lineor
are established, which serve as a basis for inferring the peneral cosine and sine normalizing
new matrix inequalities. They pive opportunity for correct defining of trigonometric norms
with cosine and sine relations for matrix objects. See preliminary about them in Chapter 3.

In Chapter 9 the correct quadratic norms of matrices and lineors as some pgeometric
objects are defined with the use of the peneral inequality for averapge values from Chapter 1.

ln Chapters 10, 11, 12 Tensor Trigonometry is developed in the complex adequate and
Hermitian metric spaces, and in realifyed psendoized spaces. Large attention is spared from
the Tensor Trigonometry point of view to studying motions in the pseado-Euclidean space
of index g and separately in the Minkowskian space—time of index g = 1, with the embedded
into them two concomitant hyperboloidal hyperspaces with hy perbolic geometry. So, various
trigonometric models of two hyperbolic geometries in the large are inferred. 1o the end, the
Special mathematical principle of relativity is formulated for its use in the large Appendix.



Chapter 5

Euclidean and Quasi-Euclidean tensor trigonometry

5.1 Objects of tensor trigonometry and their spatial relations

According to the Cantor-Dedekind Continnum Axiom |21, p. 99|, affine and arithmetic
spaces of the same dimension are somorphic, therefore their metric forms are isomorphic
too. Due to this, results, obtained by alpebraic ways, may be geometrically interpreted; and
vice versa. Primary elements of the nodimensional affine space are points and free vectors,
according to the axiomatic determination by Hermann Weyl, Their coordinates in a certain
base are represented by netuples of onmbers. Points and vectors form geometric objects.
There are centralized and noncentralized peometric objects. Centralized peometric object
has its application point in the center of a given coordinates system. There is the following
correspondence between the equivalent alpebraic and geometric forms of linear objects in
these two spaces (A™) :

a vector a — a straight line segment
an image (im a) — & straipght line,

a kernel (ker 2" — & hyperplane,

n ¥ rlineor A of rank r —  an rsimplex,

an image (im A) — & planar of rank T,

a kernel (ker A7) — & planar of rank n —r.

Note, due to (100) there holds {(im A)@({ker A" = (A™) (direct and orthogonal in (E™) sum).
These simplest linear peometric objects of developing tensor triponometry have a valency 1.
A walency for nonanalitic functions of objects may be other. For example, the internal and
external multiplications of two vectors have the valency respectively 0 and 2:

ajag =c=aga;, Mmag=B={aza}. (151), (152)

Separate the class of equirank nxrlineors and planars. The planars may be determined
also by any singular null-prime n % nomatrices Bp (we shall denote the matrices briefly as B
unless another sense is noted ). Generally, for a pair of planars (rank A1 =y, rank As = )
relations of parallelism in (A™) and orthogonality in (E™) with the use of eigenprojectors
from Ch. 2 in affine and Euclidean spaces are the following:

(im A1) = (im A) & A;1A] = MpA} &

for equirank planars (rp =ra),  (153)
= A1A] = Aa AL = (ker AY) = (ker AL),

L
3

(im Ag) C (im A1) & AiA]-A2Ay = 4141 =
= AsAL- A1 A & AjA]-As=As = (ra =m1), (154)
o MAL Ay =Z = Ay A A & (ker AY) C (ker Ab),

(im Ag) C (ker AY) & AlAs =2, AAA1 =2y &

& (im Ay) C (ker AY) = (im A;) N {im Ag) =0, } — (ri+ra<m),  (155)

(ker A}) C (im As) & AsAL.-A 4] = A4 <
& AAl A Al —Z = A AL ApAL o = (ri+122mn),  (156)
& (ker AY) C (im A;) = (ker A}) N (ker A}) =0,
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These fundamental relations of parallelism in an affine space (A™) and orthogonality in
an Enclidean space (E™) of lineors or planars, given by the lineors too, require further deve
lopment and expansion so that on their basis we can derive tensor triponometric functions
and the basic trigonometric relations between them with their tensor angles — arpuments.

If the linear subspaces are defined by ooll-prime nox nomatrices Bp (Part 1) sect. 16),
then their affine eigenprojectors may be used also, for example,

—
(im Bpy) = (im Bpy), (ker Bpy) = (ker Bps) <> Bp; = Bpa; (157)

(im Bps) C (im Bpy) < Bpy-Bpy = Bpy &
(158)
- —
& Bp, - Bps = Z = By, - By, © (ker Bp)) C {ker Bpb).

Affine relations (153)—(156) between planars determined by lineors Ay and As of their
rank 1 and rs may be maturally widen as follows. In the first extreme case, we have:

—
{im A1) N {im As) =0 <= rank (A245 — 4, A]) =

(1597
=711 + 12 =rank (A1 A] — A24L) < n.

— -
The image of this matrix (A2A5 — A1 A7) in any Cartesian base B of an Eoclidean space
{E™) is the direct orthoponal sum {im Ap) & (im Aq) of dimension (r) +73), and its kernel
is the orthocomplement in the same (E™) to the image of dimension n — (ry + ). In the
second extreme case, we have:
—
(ker A{) N (ker AL} =0 < rank (A4 — A1 A)) =
(1607
= rank (A1A] — Agﬂﬂj} =n—r)+(n—ra) <n
Here the same matrix image, but in other interpretation (A3 A] — AsAL), is the direct sum
{ker A}) @ (ker AL) of dimension [(n —r1) + (n—ra2)] = 2n— (r1 +12), and its kernel s the
orthocomplement in (E™) of dimension (rp + m) — n. Note, that (155) and (156) are only
the special extreme cases of (159) and (160). Formulae (159) and (160) are compatible iff
n=ry +ry, i e in this especial case, there holds

(im Ay) @ (im Ag) = (A") = (ker A}) @ (ker A}).

Under this condition, the matrix (A245 — A;4]) = (414} — A2A}) is nonsingular.
Similarly, in other cases, we have:

o o r r
{im A1) N {im Ao) # 0 < rank (AaAf — Ay A]) <ry+ 79, (161}
(ker A} N(ker A3) #£0 < rank (414] — 4545) < 2n — (ry +m32). (162)

Such in brackets and other similar wonderful matrices give us the way for defining further
all the projective spherical tensor triponometric functions of tensor anples as their arpument s
in terms of eigenprojectors corresponding for beginning to a pair of lineor 4y and As, and
then to a pair of matrix or linear matrix objects B and B'. Next, we turn to the construction
of the tensor triponometry, initially of projective type, in affine and Eoclidean spaces.
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5.2 Projective sine, cosine and spherically orthogonal reflectors

The following matrix characteristic

sin @9 = AgA) — A A} = A1 A} — A3 A, = sin’ &3 = —sin &gy (163)

is called the projective tensor sine of the angle between two planars {im Aq) and (im Aa)
{or between the lineors Ay and As). The projective nature of the angle is pointed ont by
the tilde upper character. We have:

B = (B1a) = —Bay. (164)

The properties (164) of a projective tensor angle will be inferred further after converting
with its tensor sine into the canonical monobinary and diagonal forms.
ln tensor trigonometry, the concept of an angle with its orientation is defined mathe
matically very simply and correctly as the arcsine of the tensor sine. The introduction of the
Euclidean gquadratic metric in {A™) with trapsition into (™) allows to rigorously define the
concept of orthogonality with passing from the abstract affine value of angle to metric value.
ln sealar trigonometry, the definition withoot orientation is done through the relations in
aright triangle, but for this it is necessary to strictly introduce the concept of a right angle.
According to (163), the anple between {(im Aq) and {(im As) is additively opposite to
the angle between (ker A7) and (Ker A5). These two angles together form the whole binary
structure of ®1a. For example, the tensor sine of the anple between two non-oriented vectors

or straight lines is
- +—— +— aga, a1a]
. r I i
sin®ys = Aza; — 8;8; = —; -
asaz ajsy

(165 — I)

In addition, its algebraic structure on an Euelidean plane (£7) is

. = . 01
sin®ya = sinpiay/ fawa, oo =R- [ 10 ] - R,

where @19 is the counter-clockwise anple in the right Cartesian base, [pa] < 7 for vectors
or Jga| < w2 for straight lines, R is some orthogonal modal matrix

Condition sin®ya = $13 = Z means parallelism (153) of the planars. In common these
planars may be noncentralized as < a3 + (im Ay) > and < a2z + {(im A4a) > .

Relations similar to (154) have triponometric analogues too:

{im A;) C (im As) « sin® ®19 = +sin By, (166)
(im As) C (im A;) < sin® &9 = —sinbyo. (167)

Lrnel e,
sin® ®ya = Ay A} - AsAl + AsAh - AjA} = A1 A} - A9 AL + A9 AL - Ay AL (168)

For example, in the case of formula (167), it may be inferred as:

(im Ag) C (im A;) < (ker A}) C (ker AL) <

& AJAY - AgAY = AxAy , AgAY - A AL = Z & sin? by = —sindy,.

ln special case (166), the tensor sine is a symmetric projector (its eigenvalues are 0 and +1);
in special case (167) it is an antiprojector (the eipenvalues are 0 and —1).
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The tensor angle between {im B) and {im B) is additively opposite to the tensor angle
between (ker B) and (ker B'). These two anples form entirely the whole binary structure
of the projective tensor anple $g. Similarly to (163) and (164), there holds

- — - -
sindp— B'B— BB — BB — BB — sin' &5 — —sin®p; (169)
g = (bg) = —dp. (170)

Condition sin® g = Z is equivalent to ®5 = Z and B € (Bm), it is the tensor trigonomet ric
interpretation of noll-normal matrices (Part 1) sect. 2.4); sin®ya = 0 is equivalent to (153).

The trigonometric relations between two planars: image and kernel of matrices Ay and As
or B and B’ are characterized by the projective tensor cosine of tensor angle $19 or $g:

cos Byy = Ay Af — A A = 4, A} — A, AL =
— A} + Ay 11 - AIA% ;5 yi

P = (171)
= cos’ 13 = cos By = cos (—&1a),
- — — T
cosbp = BB —BB=8B-BB —BB + BB I = 17
=1 ﬁ — .ﬁ — cos’ &g = cosbg = cos {—&15-}.
For two non-oriented vectors or straight lines on the Eoclidean plane there holds:
= 5 i . mA)  Agap B
cos®yp = agas +ayay — I = aa, —aaag 1. (165 — IT)
cos ®13 = cospray/Taxz, /Taxa = R- [ ] R, (cosgz = 0).

The trigonometric analognes of conditions (155) and (156) follow from the formula

cos? Byg = AjA] - AgAl + AsAl - Aj Al = 4140 . A Al + A AL - Ay A, (173)
Similarly to (168), equalities for the sinpular cosine (as projector and antiprojector)

cos? Bya = +cos Byg &3 (156), cos Bya = — cos By &3 (155) (174)

are equivalent to formulae (156) and (155), this follows from (173).
Tensor cosine of the main angle is equal also to tensor sine of the complementary angle
with respect to the right angle compatible with it as 5 = (7/2 — &), and vice versa:

m
B
e
I
%)
&
[}

(175)

ln an affine space {A™), tensor angle ® has no quantitative sense unless this is zero or open.
But in an Eoclidean space (E™) the projective tensor angle as an arpument expresses in its
metric form the quantitative spatial angular relations between lineors or between planars.

In an Euclidean space, the right tensor angle is formed by pairs of planars {im A) and
{ker A"). Hence, we obtain for the lineors Ay and As the pair of tensor mutual eigenreflectors,
and this pair is bound one-to-one with the given projective tensor angle ®4qa:

M A7 — A, A — Ref{A,A}} = cosdyy — sindyy = Ref{—®1a} = cos Zy, (176)

cees s _ . _ -
Ao AL — As Ay = Ref{AsAL} = cos @10 + sin Pya = Refp{+ P12} = cos Za, (177)
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Due to the right tensor angle between {im B) and {ker B') we get mutual eigenreflectors too

—  — - - - -

BB'— BB' = Ref{BB'} =cos®p —sin®pg = Refg{—Pr} = cosZp, (178)

— - - - -

B'E —ﬁ= Ref{B'B} = cos®pg +sinbpg = Refm{+Pp} = cos Zp. (179)
They are tensor cosines of four zero tensor angles corresponding to planars (im Ay ), (im As),
or (im B), {(im B'Y; and cos®Z = I. The symmetric square roots (176)-{179) such as

VT = L\-"T}_l = (VT)' are orthogonal spherical mutual reflectors for ® with eigenvalues £1.
(Here @ is variable projective angle argument for orthogonal function Refig as were shouwn
in defimitions (176)-(179)! For a pair of lineors or noll-prime matrix Bp, we have 4 variants
of the eigenreflectors as +(cos ® Fsin ®). The symmetric tensar eigenreflectors carry out the
orthogonal reflections: +Ref{AA'} off the mirror (ker A') parallel to {im A), —Ref{AA"}
off the mirror {im A) parallel to (ker A", +Ref{BB'} off the mirror (ker B') parallel to
{im B); —Ref{BB'} off the mirror {im B) parallel to (ker B"). Some extreme cases are:

sin®P=2Z < cos® C (yT,p g, cos®b=2Z & &=7/2 « sin® c (T, )s:

sin®p =4I © 1y =0, ra=n, sinbja=—I & ry=mn, ra=0; (sindp £ +I).
cos® =+] < rank A=rank B=n, cos®=—I < rank A=rank B=0.

From one-to-one bond a pair of equirank reflectors with the tensor angle @ we get:

cos {8} = cos'{®} = (F{+&} + F{-2})/2, (120)
sin {®} = sin'{®} = (F{+B} — F{—$})/2.
The following identities equivalent to T-T =T =1-1 are clearly valid:
(A1 A} + A1 A7) (A2 Ah + AgAb = T = (AzAb + AgAD) (A1 A} + A1 A)),
(181)

(BB’ + BB\ BB+ BB 1= (B'B+ BB)(BB + BB).

They give triponometric formulae for a sine-cosine pair in the projective version:

sin?® +cos? & =T =cos? Z +sin? E (Ptolemy Tensor ortho Projective Invariant), (182)

sin®.cos® = —cos® . sin®, (183)

sin® & - cos” & = cos® & - sin” B, (184)
Note, that the projective sine-cosine tensor pair is anticommuta tive.

The Table of multiplication for differgenesis eigenprojectors

B.BB-BE -BR. B, B.BB-BBE—BE-B,
B.BB_BB-BB.B, B. B

5.9B_-5-57.5 B.B5-B-DB. B (155)
T 5. BE-B -85 B

This Table of multiplication may be inferred easy with the use of transposition operations!



5.2 Projective sine, cosine and spherically orthogonal reflectors i}

Projective nature of introduced above tensor trigonometric functions is illustrated by the
cosine formulae, associated with solving a flat right trisngle:

BB —+5 cosd = +cosd. 7, (186)

BB —+5 . cos® — +cosd- B, (187)
BB——B-cos®— —cosd- B, (188)
BB — B cos® — —cosd- B, (189)

ln the Euclidean space B and B are the oblique eipenprojectors for the null-prime matric B
(see in sect. 2.1). Here they play a role of the hypotenuse in such tensor right triangles.

But the sine formuolae give us the surprising four nilpotent legs:

B_BB —+(VZ)1—+B-snd—+8.BB — BB . B, (190)
B-BB—+(WZa—+B-snd—-BB-B—+B.-5B, (191)
B_BB—-(VZ),— -8 -sind—-BB-B —+8 BB, (192)
B -BB - —(VZ), - -B -snd—+B.BB'— BB . B, (193)

(When these formulae are transposed, then the sine sipn changes.) The indicated differences
of oblique and orthogonal projectors of the same type are nilpotent matrices of order 2.

Quadrating and multiplying of simple formulae (186)—(189) pive the cosine formulae for
the multiplications of oblique as well as orthogonal projectors of the same type:

BB = (B.cos®)?=B. 5 .cos?®— F.cos?d. B —cos?d. BE,  (194)

- — R _ . o=

BB —(—cos® - B)? =B . B .co?®=B'.cos’d. B —cos’d. B'B, (195)
— — . - _ -

BB .B'B—=(B-cos®)- (B -cosd) —cos’d- B = B -cos’ &, (196)

- = - - -
BE-BE — (—cos®-B) . (—cos® B) —cos?®- B — B - cos? &, (197)
Projective trigonometric nature of the tensor anpgles is illustrated with the symbolic tensor

octahedron formed by eight eipenprojectors of noll-prime B in 2valent (E™*7) (Figure 1).
For null-normal B, this octabedron is reduced to the tensor right triangle with hypotennse I

Figure 1. Symbolic tensor octahedron from 8 eigenprojectors
for illustration of the projective tensor angles.
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5.3 Projective secant, tangent and affine (oblique) reflectors

The tensor secant (and further tangent) of a projective angle is defined in terms of oblique
eigenprojectors. The matrix trigonometric function

socdp—83 -B-B-B-B+B_-1-
_T-B-B —sod b5 —socdy —sec (—bg) — (198)
-By-B-B- 3y

is called the projective tensor secant of the tensor angle &g

These formulae are easily inferred by the following way. Summation of (186) and (189),
(187) and (188) gives

(B —B) cos®—cosd- (B —B) =T —cos®-(B—B)= (BB cosd.

These equalities determine the tensor secant.
According to (172), cos®g is nonsingular iff (im B) N {ker B) = 0, i. ., B € (Bp) is
a null-prime matric (see Part 1 sect. 1.6), therefore,

sec'i’gp=ms_1 ‘i"ﬂp? saci'ﬂprmsi'ﬂp =I=msi'3p-sec&15p; (199)

The matrix B may be null-defective, and there may exist no oblique eigenprojectors. Then
the cosine of angle $g is the zero matrix on the subspace (im B) N {ker B} and

— — - — — - -
sec g =cost $p, sec® -cosP =cos® =cos® . secd. (200

The formal definition of the tensor secant as guasi-secant takes advantage of the quasi
inverse Moor—-Penrose matrix (see Part 1 sect. 2.5) for the inversion of the singular tensor
cosine.  (Hecall, that its matrix s symmetrical ) In this case, the multiplication of the
tensor cosine and quasi-secant is the orthoprojector in formula (200). From the other hand,
for & null-defective matrix B, the cosine of the angle between the subspaces {(im H'“p) and
{im I:B"}"p) is a nonsingular matrix. Note, that for the null-normal matrix the tensor angle
between (im B} and (ker B} is right. But for the main tensor angle and its functions, in
the case, we have:

5&.11&'3 =7 &= ::Dsi'ﬂ = v"'f, msﬂélg =1, 591:&13 = cos ! i’g.
For the tensor sine in the especial case, if B € {Bp) and rg = n/2, there holds
detsindp A0 < (im B)n{im B"Y =0, {ker B) N (ker B") = 0. (201)

If the same tensor angle is defined by lineors Ay and As| then conditions (159) and (160)
should hold simultaneously. In other cases, the tensor sine is a singolar matrix, and the
guasi-cosecant is defined in terms of the quasi-inverse Moor—Penrose mat rix:

cosec ‘i’g =sint i"ﬂ = cosec’ ‘i’g = —m@ec'i’gr = — nmec{—&lg] — sec=. (202)

Further, subtracting (186) and (187) gives

Si.u‘i’g= —Dm'i’g~{§—§} =+{E—§}-m&:i’3.
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These equalities determine the tensor function
itmdpy =B -B-F-F=(8B)'-8) -

— B —(B)'= —(itan®g) — —itandp — —itan(—bp),

(203)

called the projective realificated tensor tangent of . In the realificated form it is a real
vabeed skewsymmetric matriz with the eigenvalues py = $itang;. Moreover (see also sect.
5.5 and T), there hold the following anticommutative paired relations (1):

itan® = +sin® -sec® = —socd . sind &
¢ sin® = +itan® .cos® = —cosd . itand — (204)
— +sin®.itan® = —itan & . sin &.

For two vectors or two straight lines, due to (151) and (152), there holds

e — B B _B’—B_aga; alaf,_aga’l—alaf,
VERTET Y B T %wB B ajap aja; | alag

—itan®ps.  (205)

s z 0 -1
Its structure is [itan®1a = tan@ia/Toxa |, a2 =R- [ 10 ] - R

The realificated guasi-cotangent is defined, in the peneral case, as

‘icﬂt'&ig = itan™ ‘i’g = —ith£B = —i cot 'i’g-r = —il::l:itl:—'i’g} = itanég. (206)

The following identities are affine (oblique) analogs of identities (181):
= = = =
(B+B).(B+B)=1=(B'+B).-(B+B) (207)

They are clearly valid for the ooll-prime matrices. By the way, trigonometric formuolae

2

soc” @ —tan® & = I = cosec? = —cot® = (Tensor obligue-Projective quasi-lnvariants), (208)

+itaui'-seci'=—seci?-itau'i'? (209)

tan’ & - soc” & = sec? & - tan” (210)

complement formulae (182)—(184) for the tensor sine-cosine anticommutative pair. Note,
tan® is a true projective tensor tangent with the eigenvalues p; = ftang,.

Note. We named (208) as the guasi-invariants, becanse, from the point of view of the
kinds of transformations, secant-tangent (or cosecant -cotangent ) reflections with these quasi

invariants do not have the property of two- and moltistep applicability in the reflective
transformations of coordinates or geometric objects. They are applicable only for one-step
reflections.  This distinction will be discussed in details in the Appendix, where tensor
trigonometric invariants and quasi-invariants will play a large role in various non-Eoclidean
geometries and in the theory of relativity.

Rule 1. Sguare and any even degrees of all the tensor trigonometric functions of the same

angle (for the same pair of lineors or planars) commute with each other tensor trigonometric
Junctions of the same angle, with all its eigenprojectors and all its eigenreflectors.
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If B = Bpis null-prime matrix (not noll normal), then its two motual ebligue spherical
eigenreflectors (reflecting with the trigonometric deformation — see in sect. 5.10) are defined
similarly to formulae (176)-(179) in terms of the obligue eigenprojectors (see Part L (G0)):

B_B —=1-9B = Ref{B} = secdp — itandg — Refg{—®g}, (211)

o o o i r ¥ - T T
B B =1 98" — Ref{B'} = Ref'{B} = sec®p +itandp — Refa{+®z}. (212)

{In notation Re fg we used the oblique sub-sipn.) From the alpebraic point of view, they are
asymmetric prime square roots of the unity matrix as VI = (vI)™! with eigenvalues £1.

These mutual asymmetric tensor eigenreflectors carry out the obligue reflection, namely:

+Ref{B} off the mirror {ker B} parallel to {im B} with the spherical deformation,

—Ref{Bp} off mirror {im B) parallel to {ker B) with the spherical deformation.

They are inferred with use of (211) and (60). But iff Bpis & nullnormal matrix Bm, then
sguare roots (2117 and (212) are symmetric, & e they transformed into (178), (179).

Each symmetric and asymmetric prime square roots of T peometrically are accordingly
orthogonal and oblique reflectors. Moreover, each pair of the same kind roots corresponds
to a unigque pair of mutual eigenprojectors, and to a unigue pair of motual projective tensor
trigonomet ric functions (sine-cosine tangent-secant ) — see more about this in sect. 5.6.

Reflectors are nonsingular matrices, as in their defining formuolae (176)-(179), (211), (212)
we get that ranks of both matrices (left and right) are summated and their sum equal to no
(These questions will be consider in details in the following sect. 5.6, 5.7, 5.10.)

Thus we defined above with formulae all the trigonometric functions of tensor angles
in the reflective version of tensor trigonometry. On the Boclidean and affine plane, these
tensor formulae are applicable too! Here they determine completely the orient ation of tensor
angles, but their scalar invariants determine also classic flat trigonometry. In the Fuclidean
and affine linear space, classic flat trigonometry acts with scalar invariants too, but only on
the eigenplane of any binary tensor anple without its specific nature.

5.4 Comparison of two ways for defining projective angles

These ways for the angles &0 and B, are the following:

e in terms of nx mematrices of lineors Ay and As. as peometric objects;

e in terms of nox mematrices B oand B (as multiplication of the lineors). Both these
ways have already been used before (see Part | sect. 3.3).

Find general conditions under which tensor angle ® and its trigonometric functions do
not depend on a choice of the way from these two ways of the tensor angle defining.

According to initial definitions in sect. 3.1, put external and internal multiplications:

B=AA), B = AA}; (213), (214)

C=AlAy, C'=ALA,. (215), (216)

Then the matrices Ay and As should have the same sizes. Moreover, from the identity of the

two tensor angles, i. e., $15 = ® 5, the equalities of their projective sine-cosine trigonomet ric
functions follow as well as the equalities of the corresponding orthogonal eigenprojectors
(bound with the angles by exact formulae) follow too; and viee versa:

&112 = '&1‘5 = (5511&11:3 = Sin‘i’g? Dos‘i’u = Dm'i’g} =

e
o (ha - BB, ha, - B'B).
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_}
However, the equalities of the corresponding affine (oblique) eigenprojectors Ay Af = E (as
bonded with the angle by other formulae) follow from definitions (213)-(214). What is more,
these additional equalities are valid due to ooly existence of affine projectors for B (sect. 2.1).
For their existence in the case, see below condition (230).
Equality of the orthoprojectors is equivalent to the following relations:

(im Ay) = (im B) < (ker A}) = (ker B'), (217), (218)

(im Ag) = (im B") <« (ker AL) = (ker B). (219), (220)

ln their turn, the pairs of relations (217), (218) and (219), (220} are equivalent each to
another due to the well-known fact, that the left and right sub-spaces in these pairs are
complements each to another in (A"} and orthogonal ones in (E™) — see in Part | this
well-known property (100).

At first | consider, when conditions (217) are valid. Obviously, that

{im B) = A1(im A3) < B = A1Aj,

(im A1) = A1 {A™) = Ay ({im AL) @ (ker Aa)).

Therefore (217) i equivalent to the pair of obvious conditions in (213):

{im AL) N {ker A1) =0, (ker Aa) C (ker Ay)}. (221)
Similarly, (219) is equivalent to the pair of obvious conditions in (214):

(im A}) N (ker A2) =0, (ker A1) C (ker As). (222)

It is seen that independent conditions (217), (219) hold simuolt aneonsly iff

(223)

(ker Ay) = (ker As) < (im A}) = (im Aj) &
& AlA] =ALAr & AlA; = AQAy
and where it is necessary v = ra < m.
Thus (223) is the pecessary and sufficient condition answering the problem from be

ginning of the section. Obviously, (223) also implies the very simple and oseful sufficient
condition my = ra =7 =m. This condition, in its turn, has simple corollaries

{ker A1) = (ker 43) =0, {im A}) = {im A3) = {(A").

This special case is implied when one deals with external and internal muoltiplications such
as (213)-(216) for these so called equirank lineors Ay and As under condition

TI=Ta=T=1m < n. (224)
(This holds always for two vectors.) From (1207 and (213)-(216) we have
E(B,r) = k(B r) = det C =det C'. (225)

If B isnull-prime matrix, then (im B)n{ker B) = 0and k(B r) = det C #£ 0. In the case,
if B is null-normal matrix, then {im B) = {im B') and due to (97) (see Part 1 sect. 2.4)
we have Kk(BB',r) = k(B'B,r) = K*(B,r) = det?C > 0. However if B is null-defective
matriz, then {(im By N {ker B) £ 0 and k(B,r) =det C=10.
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Under general condition (223) or particular condition (224), there holds

; 3 —
A, -BB, MA,-BB (226)

In an affine space, the characteristic det G = det[(A1|A2)"(A1|A2)] s the criterion for
at least partial parallelism of these planars or partial coplanarity of these lineors — see this
in sect. 8.4 In an Boclidean space, the characteristic det © = det(A]As), under condition
(224), is the criterion for at least their partial orthogonality.

det G =0 < (im Ay) N (im Aa) £ 0, (227)
det G #£0 < (im Ay) N (im Ag) =0, (228)
det C = 045 (im Aq) N (ker A}) # 0 < (im Ag) N (ker A}) £0, (229)
det C # 045 (im Aq) N (ker A}) = 0 < (im Ag) N (ker A}) = 0. (230)

In an Euclidean space there holds (ker A) = {im A)L — see, for example, in Part 1, (100).

Total parallelism of planars (153) or colplanarity of equirank lineors — see this in sect. 8.4,
under condition (224), means that the matrix B = Ay AS is null normal, i e, B € (Bm).
Due to (97) and (132), this is equivalent to the relations:

|det C'| = /k(Bm - Bm',7) = |k(Bm,r)| =

= Mit(r)(A; - A5) = Mi(r)Ay - Mi(r)As = (231)

= \/det(A} - Ay) - \/det(A} - Aq)

and is also equivalent to parallelism (153) in an sffine space. Formulae (227)—(231) may be
interpreted trigonometrically, it will be done later.

Total orthogonality of planars or lineors, under condition (224), means that B = A Af
is a nilpotent matrix of order 22 B? = Z, ar C = Z. The latter is also equivalent to
orthogonality (155), if 7y = rg , in an Euclidean space. Their partial orthogonality means
that B is a null-defective matrix.

The tensor angle $99 and its trigonometric functions are, of course, more peneral than
the angle &g and its funet ions, as matrices A; and As may have distinet sizes n % ry and
n X rg admissible only for €43, Moreover, if the lineors are partially or totally orthogonal,
then only the anples $q9 exist. Therefore the type of a tensor angle more convenient in the
problem solving should be chosen.

5.5 Cell-forms of tensor trigonometric functions and reflectors

Parallelism and orthogonality correspond to extreme values of tensor anples between linear
objects.  In order to completely analyze all relations between objects, it is necessary to
represent the trippnometric functions in canonic forms, to find their eigenvalues and to
define informative scalar invariant characteristics for the tensor angle.

Consider differences of orthoprojectors similar to (163) and (171). They express the
projective sine and cosine by two manners. According to (182)—(184) the sine and cosine
eigenvalues are real paired (£) numbers belonging to (—=1; +1):

W2+ Bl = 1. (232)
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The paired sine and cosine eigenvalues in an Eeclidean space correspond to values of binary
angles on the trigonometric eigenplanes. Four eigen orthoprojectors in both variants of dif
ferences (163) and (171) are pairly orthogonal. The projectors correspond one-to-one to four
pairly orthogonal subspaces: {im Ay), (ker A} and {im As), (ker AL} — see Part 1, (100):

{im Ay) L (ker AY), {im A;) @ (ker A}) = (™) &
(233)
& (im Ag) L (ker AL), (im Ag) @ (ker AL) = (E™).

I the fiest variant of (163), 1. e, as in (159), the sine is considered in the subspace {im AyU
im As); in the second wvariant of (163), i e, as in (160), the sine is considered in the
subspace (ker AjUker AS). Similarly, in the first variant of (171), the cosine s considered in
{im AaUker Aj}); in the second variant of (171), the cosine is considered in (im A Uker A5},

The illustration is given in Figore 20 1t is supposed withont loss of generality that the
first variant asin (154), 1L e ry <19, rp+1re < n (or 2r < n), takes place. The space (£7) is
partitioned due to this variant of differences (163) and (171) into four basic subspaces. Both
they map the sine and cosine functions of the tensor angle & with its binary eigen angles
oy — primaary and mutual to the first. (See more aboot such splitting in sect. 5.12))

. im Ay o ker Ay "
Mg (4130 <dme | () | 1) o) 0 —sinm, =1 g

- A ——t o * =8 .

_ m A, | o Ker 4, N
Mew! (0) | +cosp, | D (@ -1y =1 —cose o (0) ! h.,

- a1 LA T 4 * M +

_ ! : ker A, : e A _E

E v i : Vo

- e ! - o

1] 1] :

T [ S 1—iI + T T !

" 1 2T e 1+ T . 1 -

n i
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Figure 2. Distribution of projective sine and cosine eigenvalues
in all the eigen subspaces of tensor angle between two lineors.

At Fipure 2, as a Tensor Trigonometric Diapram for the sine-cosine pair of the projective
tensor angle $13, we map abstractly the distribution in an Euclidean space in the logical
sequence of paired (£) eigenvalues of the tensor sine and cosine (with its binary eigen angles
o, in D-form of tensor sine) and with corresponding to them eigen subspaces of this tensor
angle orthogonal each to others. All these indicated subspaces are pairly orthogonal provided
that in the trigonometric subspace of the tensor angle of dimension 27 there holds:

singg # £1, sing;# 0, (cosg;# 0, cosgg £ 1), (234)

Ot herwise orthoponalization may be used, so, by manner, sugpested in (131), Ch. 3.
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This whole binary triponometric subspace is defined as the following direct sums of these
four particular orthogonal subspaces (in the sine and cosine variants):

(P11 @ Pr2) = (Pa @ Paa). (235)

( These four subspaces are formed by eigenvectors of the tensor angle sine and cosine.)

lts even dimension 27 is called further the trigonometric rank of a tensor angle, where
T=min{ry,ra,n—ry,n—7a}. Here we have v = ry. The eipeovalues of the sine and cosine
functions in (232) have the same sbsolute values in the two muteal subspaces (235), as the
two sides of the binary angle in (163) are, due to (233), orthogonal; bot their sipns are
opposite, as the projectors are ordered inversely in the two variants of differences (163) and
(171) — see Figure 2.

If additional conditions {234) and r; < rg hold, the two intersections subspaces (the zero
sine and the zero cosine) and their dimensions are expressed as follows:

{Pa) = {ker Al NMker AL), dim{P3) =n—(ri +m), (sing =0, cosp=—1);
{Py) = (im As nker A} (v" =10), dim{Py) =712 —ry, (cosp =0, sing = +1).

The projective tensor cosine and sine are symmetric (anticommut ative) matrices, so they
may be converted separately into their Dforms with certain modal orthogonal matrices
Ry and R respectively in the bases Ei = R -E and Es = By - E. ln order to pive
the trigonometric sense to the eigemvalues (232), we use an Euclidean space (E™) with the

original base E and then find an local unity Cortesion base for the canonical W-forms of the
tensor triponometric functions for the anple © We establish it below.

Each ith trigonometric 2 % 2-cell with an unigue pair of the cosine and sine (£) eigen
slues in the trigonometric subspace of a tensor angle $45 corresponds to its i-th eigenplane.
It is determined here in E by a pair of the cosine orthogonal wnity eigenvectors wy and
vy, They are two Cartesian axes of the tensor cosine D-form base (not yet oriented) and
correspond to its eipenvalues +cosgy, where @ € [—m/2; 47 /2] are the eigenvalues of the
tensor angle between planars or non-oriented lineors. 1o order to construct the canonical
forms of the tensor trigonometric functions, dispose the triponometric cells along the matrix
diapgonal with increasing the values | cosgy|. Then along the diaponal dispose the 1 x 1cells
corresponding to the intersection sub-spaces (Ps) and (Py). Denote the original base E axes
HS T1,...,Tq, and the trigonometric part of the new axes as wy, ... up; vy, v such that
Ty 4 Uy, To 4 Ui,..., Tog—1 €% Uy, Tag 3 Vy.ooy Tor_q &+ Up, Tar ¢ vp. Direct the new
axes in such way that each wy and @ form an acate angle. We found Ry for translating
into new By = By {E} = {I}.

ln any trigonometric cell, si.nﬂ_'i'm and mszli}u have the two positive (quadric) multiple
eigemvalues from (232). As sin® ®y2 and cos? $y3 commute in (184) and (183), then their
and cosine D-forms are implemented together in the same local base Ey:

sin® &y cos? &y

Ein? i; 0 cos® i]
i] sin? ; 0 cos? g
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Due to symmetry of sin®ys and cosdys, and anticommutativity condition (183) one
represents these functions in the following canonical W-forms — see ((148) in sect. 1.4) in
the trigonometric base By = {I} of the dingonal cosine (provided that vy <ra, 7y +1r2 < n):

sin $49 cos $ya (236), (237)
[i] + Ein g, + ooE 0 [i]
+ s5in @3 0 0 — D6 94
0 P, -1
+1 Py [1]

ln (236) and (237), the signs of the projective sine and cosine in the trigponometric cells are
chosen out four possible variants, according to their definitions in (163), (171); but the signs
of them in (Pa), and {Pa} are chosen, according to the additional conditions.

For the angle &5 (B € (Bp), there holds {Py) =0, dim{Pa) = n—2r. According to (199)
we obtain the same base E; of the diagonal secant as for the cosine. From antisymmetry of
itan®o and anticommutativity condition in (203)-(204) one represents these functions in
E, in the following canonical W-forms (provided that 2r < n):

secdp itan $p (238), (239)
+ B8C @ [i] : 1] — tan iy
o — BBE 0 + tan ip; 0
—1 Pz [1]

Formulae (236)—(239) are the canonical W-forms for all projective triponomet ric functions
in the directed base of the disgonal cosine By, This base is called trigonometric and osed
in W-forms represent ations. These forms also illustrate Rule 1 (see above).

Under conditions (234) also there holds:

?,:={msﬂ*il—cmﬂgﬂg-fi=_1:+s_}:2§

-571:={cusiiﬁ—ﬂﬂﬁﬁﬁf'”"-. 5_>ﬂ={‘303‘i’+‘3‘33‘ﬁt'”"§ : (240)
— e

Si—sind, S5 —cos® (5 +5 +5+5 =1I)

These are the orthoprojectors onto the following characteristic eigen subspaces: the ith
trigonometric cell, the aces vy C (Pag) and vy © (Paa), (Pa), and (Py). Here their basis
columns (as well as the basis rows) determine the subspaces indicated.
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If some angle ¢ is moltiple, then the ith trigonometric cells are united, and ortho
ponalization of their homogeneons axes are necessary for preserving the binary triponometric
structure. Moreover, if simplest eipenvalues (0 and £1) of the projective cosine or sine are
equal to the same ones in {Pa} and {Py), one may also use orthogonalization for dividiog
the mixed triponometric partial subspaces. (See sect. 3.1.)

Below we consider the extreme cases of the angles and the cases with the other primary
additionsl assumptions (see Figure 2).

Return to conditions (234). They facilitate partitioning an Fuclidean space (E™) into
trigonomet ric subspaces doe to the unary and binary parts of Woforms. At first, consider
the additional case, when the eigenvalues singy = 0 of the muoltiplicity 20 * are in (P} and
{P12}. Besides they corresponds to the sine value 0 belonging to {(Ps). Also they corresponds
to the pair eigenvalues of the muoltiplicity ¢ cosgy = +1 in {(Pag) and cospy = —1in {Paa).
The last value of the cosine corresponds to the cosine valne —1 belonging to {Ps). The
other additional case takes place, when the eigenvalues cosgy = 0 of the multiplicity 20"
are in {Pay) and {Pag). Besides they corresponds to the cosine value 0 belonging to (Py).
Also they corresponds to the pair eigenvalues of the multiplicity @™ singg = +1 in {Py1)
and singy = —1 in {(Pa). The first value of the sine corresponds to the sine value +1
belonging to {(Py). In order to separate all the characteristic eipenspaces, it is necessary to
orthogonalize them. After that the partial subspaces {Prp), (Pag), (Pa), (Pa), {Pia), (Paa)

become entirely orthoponal.

Now suppose that other assumptions, taken before, do not hold. If ry + 1 > n, then
{Pa) = {im Ajyn{im As). Besides, if ra = ry, then (Py) = (im As)n{ker Aj). ln sccording
with these new conditions, the signs of unitary sine and cosine eigenvalues in {Pa) and {Py)
should be chanped. For equirank lineors the subspace {Pyg) is absent!

All the bases used are right (det{R} = +1). Among them are the original Cartesian
base E and the new Cartesian bases in the planes {ug,w), i. e, By = Rw{E} = {I} (they
form the binary part of the trigonometric base). o the trigonometric base, one may find the
contradinponal values of the sine up to their signs according to (236), then the cosine signs
are exactly determined by (237); and viee versa. Both determine completely the absolute
vilue and the sign of the counter-clockwise scalar angle @y in [—m/2; 47/2]. This segment
is the ranpe of angles for planars or non-oriented lineors.

Analogous reasoning may be realized for distributions of the projective secant and tan
gent values in the four eigenspaces of the tensor spherical anple between two lineors, with
correspondence to their mapping above in (238), (239).

Thus, with matrices of canonical forms { 236)—(240), we have completed that fundamental
part of tensor triponometry, which relates to the definition, varions properties, and primary
application of tensor triponometric functions and their angle-srpuments of the projective
type. And it remains for us in the same way to complete its fundamental part with similar
canonical matrices, which relates to the definition, properties, and primary application of
tensor trigonometric symmetric (orthogonal) and obligue (affine) eipeoreflectors with the
projective-type tensor angles fipuring in them. But in eigenreflectors { 1T6)—(179) and (211),
(212), as mathematical operators, these angles are not arpnments. Their srpuments are
sinpular square matrices (AAT BB, BB B and B with imapes and kernels between which
reflections oceur. All these tensor projective trigonometric functions, as it is exposed above,
in their sine-cosine ( 176)—(179) and tangent-secant (211)—(212) pairs forms the corresponding
pairs of symmetric (orthogonal) and asymmetric (oblique) eigenprojectors with respect to
the imape or the kernel for each. Therefore the same trigonometric base (the directed base
of the diagonal cosine) is used for canonical forms of both mutual orthogonal eipenreflect ors
(176), (177) and of both mutual affine eigenreflectors (211), (212). Their matrix tensor
forms are the following:
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+Ref{A1A}} + Ref{AaAb} (241)
FoEE; — BN feoosg:  +EInE;:
—Eing; —oosPg +Eing: —cosygs
-1 Py +1
-1 Py -1

(they are the algebraic sum (237) and (236) provided that vy <79, 7+ 12 < n)j;

+Ref{B} + Ref{B'} (242)
+s8c p;  + tang; +se0 p; —tang;
—tang; —5BC i +taniy; —EeC @
-1 Pa +1

(they are the algebraic sum (238) and (239) provided that 2r < n).

5.6 The tensor trigonometric theory of prime roots /T

lu this section, we describe briefly connection between the main notions of tensor trigonom
etry and the theory of prime roots VT (i. e, wit hout nilpotent matrix summand as in (21)
or (T6) — Part 1), Fix an original Cartesian base E in (E™). lo this base any prime square
root of the matrix T is the reflector (sign-indefinite nonsinpular matrix), either symmetric
or nonsymmetric — see formuolae (176)—(179) and (211), (212).

Su, it is (VT)s = Ref{Bm}, in particular (vVT)s = Ref{AA'}; or VI = Ref{Bp}.

They can be converted, with the certain modal transformation T - {E} = Ep, into the dual
block unity D-form of ¥T = Ref{Bm} or vT = Ref{Bp}:

+
el ] 1 (gt +q~ =n, gt =rank B, ¢~ = sing B).

q

R;V.ﬁ.ﬂw=fi=[ 17

For any trigonometric matrix (i. e, matrix, bound with a tensor angle) its trigponomet ric
rank is defined by the binary structure of the tensor angle (see, for example, in (235)). Here
the trigonometric rank 27 also corresponds to an indezr g of the reflector

27 =2 =2min{g",q"} = 2min{r,n — r}.

Further, for W-forms we use also the trigonometric Cartesian base E'1 = Rw{ﬁ'} = {I'}.
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Separate symmetric roots (V) = {v"T]I‘; For a null-normal matric Bm, for example,
+Ref{Bm} = Bm— B = (vT),. Put, without loss of generality, Bm = AA".

Let (/1)1 and (v/T)2 be a pair of independent symmetric roots. Then, in (E™), these
roots and the orthoreflectors are connected as follows:

—3 - B
A Al = M_Ll A Al = ﬂl_lﬂifhl? {\H'Th = A1 A} — A1 AL, (243)
4,45 — —“—”-;’—Tﬁl, A Al = U=(/Tia), (VT)a = Az Ab — Az Ab.

From this, taking into account (163), (171, (176), and (177), we obtain
DCIS@;[Q - 5111@12 = {VIT]I = +RBf{A1A }! {244]
cos®ia +sin®ia = (VI)a = +Ref{AsA}},

cos b1g = [(VI)1 + (VI)a]/2, sindia = (VD)2 — (VI)]/2. (245)

The homogeneons projectors are equirank, iff (/1)1 and (v/T)a have the same index, either
g, ur gt (as the triponometric rank for a pair of lineors or null-prime matrix). Remem
ber, that the orthoreflectors +Re f{AA'} and —Ref{AA'} have their mutually orthogonal
mirrors (ker A" and (im A} in the Eoclidean space.

Corollaries (for {(E™Y)

1. A symmetric oot VT defines one-to-one a unique symmetric orthogonal reflector as
well as a wnigue mutwal pair of spherically orthogonal projectors and a wnigque right tensor
angle of the same trigonometric rank.

2. Any pair of symmetric roots (V1)1 and (VT2 defines a unigue pair of spherically
orthogonal projectors, a unigue tensor angle $19 and its trigonometric funetions.

3. If an original Cartesian base E is fized, then all the matriz notions, according to
item 2, due to (243) — (2458), may be converted into compatible monobinary W-forms in a
trigonometric Cartesian base Ey.

Separate nonsymmetric prime roots vT £ (VIY. For a null-prime matrix Bp, for exam

ple, +Ref{Bp} = "B_p - .ﬁ; = /T # (v/T). Denote the matrix Bp briefly as B. Then we

have the following bond of these roots and oblique reflectors:

_ I+ =1y \""_} = —
e e an | VI=B_3, (246)
B = 1+l :l:l, Br L [ Yy (VI'T]F_ _ g
From this, taking into account (198) (203), (211), (212), we obtain
sec b —itanby =T = +Ref{B},
(247)
sec p+itan®y = (VI) = +Ref{B'},

sec dp = (VI + (VI))/2, itandg = ((VI) —VT)/2. (248)

The roots /T and (v/T)" always have the same trigonometric rank. Remember, that the
oblique reflectors +Re f{Bp} and +Ref{Bp} have their mutually oblique mirrors {(ker B)
and {im B) in the Euclidean space — see for the non-t ransposed reflector.

Corollaries (for (E™))

1. Any nonsymmetric prime root /1 defines o unigue nonsymmetric obligue reflector as
well as a wnigue mutual pair of spherically obligue projectors.

2. Any pair of nonsymmetric prime roots VI and (VI) define a unique pair of spherically
obligue projectors, a unique tensor angle g and its trigonometric functions,

3. If a Cartesian base E is fized, then all the notions {item 2), due to (246) — (248), iy

be converted into compatible monobinary W-forms in a trigonometric Cartesian base Ey.
# ok
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In sections 5.1-5.68. we have laid out that fundamental content of tensor
trigonometry which relates to its linear algebraic objects, to definitions of all the
tensor trigonometrie functions with their tensor angle—argument of projective
type in the affine and Euclidean spaces, to all symmetric (orthogonal) and
obligue (affine) eigenreflectors very logically produced from these trigonometric
projective functions with their specific geometric reflective actions. We have
established a one-to-one relationship between all these eigenreflectors and the
symmetric or asymmetric prime roots from the unity matrix. When these roots—
reflectors have also a specific origin, then they can have been linked to eigen-
projectors and tensor trigonometric functions with projective angles—arguments.

Our next task is, using such eigenreflect ors, firstly, to correctly introduce the
quasi- Buclidean space (complementing the well-known pseudo-Euclidean space)
and, secondly, to develop in natural way that part of tensor trigonometry which
relates to represent ation of rotations as tensor trigonometric funections with their
tensor angle-argument of motive type. In order to pass from tensor angles of
projective type to ones of motive type in natural and correct way, we will resort
to the known property of scalar triponometry: the execution of two reflections
for a vector on an Euclidean plane, where reflection and rotation are consistent
trigonometrically, leads to its rotation (with transformation in tensor variant).

5.7 Rotational functions of motive tensor spherical angles

ln the sequel, in order to infer some matrix formuolae and connected with them equality and
inequality we shall use so called the principle of binarity. 1t consists in the following.

The prime real matrices Py oand Ps are anticommutative iff they may be represented
jointly in their real anticommuotative monobinary cell forms Wy and Wa in a certain real local
base (sect. 4.1). If the original affine base is E. then here the local base is By = Vi -E = {1}
The matrices Py and Ps are anticommut ative on their common real eigenspaces of dimensions
1 and 2 (see more in sect. 7.2). These forms Wy and Wa are a direct sum of their monobinary
cells of the identical strocture. )

Moreover, any analytical function F(Py, Ps) in the base E may be expressed in the base
E; as F(Wy,Wa). In particular, this realizes for elementary operations of summation and
multiplication. The scalar invariants of F{Py, Ps) are the same invariants for F(W;, Wa).
(In theory of matrices, the analogous principle of wnarity is applied for analytical functions
of several prime commutative matrices with their joint reducing to diagonal forms ) The
principle of binarity is based on the fact that original and squares of anticommuot ative prime
matrices Py and Py commute each with another. Both these principles enable one to gene
ralize analytical operations over simplest cell stroctures and results onto original matrices
and their analytical functions. - .

Suppose, in particular, in (™) P} = cos @y, P = sin®yo for the equirank lineors Ay
and As, according to formulae (163) and (171). Then {Py) = 0. But non-zero {Pa) exists
iff it exists in canonical cosine form (237) (as positive or negative unity block).

By (176) and (177) for these anticommut ative Py and Po we have the analytical function

F(P,P)=(Pi+P)-(P-B)=
= [+Ref{A245}] - [+ Ref{A1A1}] = [-Ref{A243}] - [-Ref{A141}].

Then there holds Ty = By,
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So, the Wform of F(Py, Ps) in the trigonometric base By = Ry - E = {I} is expressed
by the orthogonal rotational matriz at the anple 2849 potten with two mutual reflections:

Ref{AsA}} Ref{A1A}} Rot(+2&13)  (249)
+ooE;  +EIng; - +oosp; — 5InE; ‘ _ I - oo o — Bin g
+Eing; — oosg; ) —EiN; — 0B - + sin 2ip; cos g,

where (Pg) is the unity block +1 as (£1)-(£1) = +1 for unity cosine part in (237). This 2x2
cell implements rotation at the counter-clockwise angle +2¢; on trigonomet ric eigenplanes.
ln E. it implements spherical rotation at the motive tensor angle +244q:

Ref{A3AL} - Ref{A1A}} = (cos By + sin ®y3) - (cos D19 — sin Byq) =

— cos® ‘i’u — sin® ‘i’u + 2=n 'i"m COS 'i’u — cos® &0 — sin® P13 + 2i5in P40 cos B1a =
— cos2®yy + isin2®1y — Rot 2813 — [~ Ref{AsAL)] - [-Ref{A1A}}],  (249)

[+Ref{A1A1}] - [£Ref{A243}| = Rot '2®15 = Rot(—2®12) = Rot 2&s,. (250)

Notation Rot & is used for tensor rotational functions of binary moetive type tensor spherical
angles & Such tensor angles do not contain in their notation the tilde symbol necessary for
projective tensor anples. The following united properties hold fur the main sine-cosine pairs of
projective and motive tensor angles (see more in sect 5.8): I:DE & = cos? &, sin” b = sin” B;
and sin ®-cos® = isin®-cos® = cos -isin & = — cos &-sin . These formulae also I"ll‘ifl’ﬂft"
Rule 1 (sect. 5.3), but for the motive type trigonometric functions. Obviously, then in any
rotational matrix subspace (Pg) has eipenvalues only +1, and {Py) = 0 {as inthe case 7 =12
at Fipure 2). Most generally note, that Rot $49 as in (249) is s trigonometric square root
({i. e, as result of the original angle dimidiating in the each binary cell of Weform!):

Rot ®15 = {[+Ref{A2A3}] - [xRef{A1A}}"2 (251)

Formula (249) is interpreted as follows. Orthoponal reflection of {dm Aq) (or {(ker A7)
and then of {(im As) (or {ker A3)) is equivalent to rotation at the doubled angle between
{im A1) and {im As). 1t is quite clear when we deal with two vectors or straight lines. The
rotational matrix (v = 1), according to (249), (176), (177), is

— —
Rot ®15 = [(I —2-aga}) - (I — 2-a5a))]"/? =
1/2

a;ay  agal agal
=[I—‘2-(aia1+ : 2)+4cmﬂm~ =1 (252)
141 A3z ajag

Here the mirrors are either a or a hyperplane {(ker a") — orthocomplement of {im a),

ra— ram— ’

— +— aa' +— aza] i —  ege]
Rot &5 -aya) - Rot (—®$10) = agah, aa’ = — agaj = ee’ = ee’ ege] = .
1 ( ) ' ala’ oL a}ag ( LT cosp1a

If these n x 1-vectors are oriented | then the angle @gs in the trigonometric eigenplane of the
matrix Rot & in the Enclidean space (E™) varies in [—m; @] (For rotations of lineors we have
Tp =1 =T at Figure 2.) But rotation (249) i performed in the 2rg-dimensional subspace
with respect to its orthocomplement of dimension n — 2rg. The rotation in matrix (249)
with the eigen angles £ipg on k-th trigonometric eigenplines is realized n [—w/2; +7/2)!
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Real prime matrices are called compatible if their W-forms have the same strocture in a
common base. So, they may be commutative or anticommut ative ones — see more in Ch. 7).
Real normal matrices may be converted into W-forms with rotational transformations of the
base, we denote them as By . For compatible normal matrices, Ry is same.

The most general variant of formulae (249) and (250) for compatible reflectors is

(cos @13 +sin® 12)(cos bag +sind 34) = Rot {819 + Bay}.

ln tensor triponometry, besides the mutual reflectors in (249) ) so called the mid-reflectoris
very important. For a pair of the given lineors or planars their mid-reflect or is single between
Ref{A1A 1} and Ref{As AL} (1 = ra = r)or Ref{BB'}and Re f{B'B}, i. e, for the middle
subspace of tensor angle $99 or &g But it is not attach only to this pair of objects. 1t is
defined for the set of pairs of linear objects having such common mid-reflector. 1t has the
sign-alternating unity dingonal W-form congruous to the cosine diagonal form (237) in the
trigonometric base By of the projective angle . The cosine axes in the zero sine subspace
{Pa) are the same with their eigenvalues +1 or —1; the zero cosine subspace (Pyg) = 0 as
ry =g According to (171), (172) and to disgonal cosine (237), the projective cosine is the
algebraic sum of two orthogonal terms with algebraically positive and negative eigenvalues:

cos @1 = {cos 12} + {cos ®12}°, {cos B12}® - {cos 12} =

These summands are singular matrices.  Here the mid-reflector mirror is the subspace
{im {cos ®12}=), piven by axes ve According to (176) the mid-reflector is expressed as

Ref{cos $12}°} — {cos B1a}® — {cos D12}® — (VI}s — {Rw -I* - Rly}.  (253)

Define the index g of this mid reflector of $49 or $5 as the quantity of its eipeovaloes —1.

The mirror of this mid reflector is situated in the middle between two muotual mircors in
(176) and (177) for the tensor angle $;5 — see their structures (241). In order to prove this,
we obtain this mid reflector by four ways: by modal rotating the 1-st reflector at the angle
{+®12/2}, by modal rotating the 2-nd reflector at the angle {—®$42/2} in the base Ey and
by only left and right rotating these reflectors at the anples {£®40} as below:

Rot &2 /2 Ref{A A} Rot' d4a/2
coB s /2 —sinig; /2 “ I : +eosw; —sing; : oos 9; /2 Ein g /2
singi /2 cosg /2 ) —Einy; —oosy: ) —sing: 2 cospe/2

Rot' ®12/2 Ref{A2A4} Rot ®1/2
_ cos 40 /2 sin ;2 : cos; 4 singy : cosi; /2 —singg 2
- —sing: /2 cospi/2 ) sing; —cosP; ) sinp: /2 cospaf2

= Rot (+®12)-Ref{A1A}} = Ref{cos 12}® = Rot (—®12)-Ref{A24}3} = (254)
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The small reverse.

Now we may return to justification of projective trigonometric functions definition in the beginning
of the chapter. Bazicallv, it comes down to the choice of formulae for the cosine and secant, a2 well as=
for the orthogonal and obligue reflectors, in fact, from the two most optimal options. Factually, we
have already fully outlined the first projective option. [t remaios to show below how the alteroative
option will differ. So. let w2 initially choose the oppogite formulae for the cosioe and secant:

- et - T — -
coad1z = Azdy — A1 A}, cosdpg =B'H-— BB mc@g:?—‘ﬁ.

Then in all such formulae containing cosine and secant, they change sign to the opposite. However
the essence of these formulae remaing the same. Then, in order to preserve the haviog logical form
for all vseful relations with reflectors . we alzo choose opposite formalas for all chese reflectors:

At_A} - ‘H = Ref{A1A}} = cos P13 + sin $12 = F(+P13),

Az AL — 4340 = Ref{AzAL} = cos $y3 —sin By = F—@12);

BB = Ref{B)} —sec ®g + itandg — ¥{+dg),

E—E‘=R€f{.ﬂ'}=aﬂc"i‘g—itﬂn&'g ='P*{—'i‘_g]'. )
After that, in the notations of all reflectors, the mirror and its orthogonal or affioe complement also
change antomatically places. Accordiogly, under the given conditions at Figure 2. the sign of the
unit eigenvalues of the cosine on the subspace of the zero sine becomes positive. In (249), the order
of reflections and in (254), the ceder of rotations muost be reversed for the positive counder-clockudse
rotation angle as adopted! OF course, this s relative and does oot introduce sigonificant change in the
projective part of tensor trigonometry! One can do as it seems more convenient — either according
to the stated option, or accordiog to this alternative option. Both options are egqual in righes!

—

Further, when using the principle of binarity in 2x2-cells, we do not attach importance to
the sipn of unit eigenvalues corresponding to the subspace (Pa) in the binary structure of the
mid-reflector. (1t can be either positive or negative, as usually specified ) For new matrices,
potten with the use of this principle, we give useful relations in addition to (249), (251), (254):

Ref{A1A{} = Rot’ ®12- Ref{A2A5} - Rot ®12 4+ | _, (255)
++ Ref{A2A4} = Rot @12 - Ref{A1A]} - Rot' $12.

. { Ref{cos®13}5 = Rot (+®12) - Ref{A1A]} = Ref{A1A}} - Rot (—&2) = }
= Rot (—$12) - Ref{A2A45} = Ref{A245)} - Rot (+$12).

Ref{A245} = Ref{cos®12}9 - Ref{A1A1} - Ref{cos$12}9, (256)
Ref{A1Al} = Ref{cos®12}0 - Ref{A2A}} - Ref{cos$12}5.

Rule 2. Compatible spherical rotational matrices commute.  In their multiplications the
tensor argument angles of motive type form an alyebraic swm.

Rule 3. In multiplications of a rotation and a symmetrie reflector, if they are compatible,
the rotation is transferred trough the reflector with the change of its tensor angle sign.

Corollaries

1. An orthogonal matriz B is a rotational function if det B = +1, and R is a reflector if
R=R'" Whatis more, when det B = +1, these two properties may be compatible.

2. The types of tensor angle in eigenveflectors (i e, when bound with the angle) and in
rotational matriz functions are different in their tensor forms!!! In first case, it is projective.
In second case, it is motive. In classic scalar forms of these angles, this difference is absent!

3. Compatible active rotational transformation of a reflector as a 2valent tensor at an
angle ® is equivalent to its rotation as an 1valent tensor at the angle 28 — see in (254).

4. So, due to (254), Ref{eos®12}® = Rot ®15-Ref{A1 A} = Rot (—Py3) - Ref{Ada AL}

is a mid-reflector (253) for the lineors Ay and Ag, for their images and eigenorthoprojectors!

Many other relations can be established with the binarity principle, but now we need these.
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Further this Principle works great, as we use it for prime matrices associated with bioary tensor
angles between two objects, So, the elegant and wseful formula immediately follows from (255):

Rot (£®,3) - Ref{cos®,3}7 - Rot (+®,3) = Ref{cos®12}" = Const.

OF cour=e. thiz relation works for a wider 2ot of rotations than £®92. But only 2ome rotations 4
pass with a change of angle's sign through the 2 % 2-cells of this mid-reflector from left and right.
Such admissible rotations Rot @ act between two Euclidean eigensubspaces of (£™) corresponding
to eigenvalues 41 and —1 of this specific mid-reflector Ref{cos ©12}2. The remaining admissible
rotations {Rot 8) from the complete set of admissible rotations with respect to this mid-reflector
act only within these two Euclidean eigensubspaces. This complete set of rotations forms the group
with respect to it and the conditions, 1o 2uch broader 2ense. we can represent the complete formuala:

Rot & - Rot' © - Ref{cos ®12}7 - Rot © - Rot & = Ref{cos $12}7.

We have obtained the type of formuolae which act in Eucidean tensor trigonometry with the given
tensor angles ®13 of the projective kind and their mid-reflectors Ref{cos®12}2 with the index g
Let’s introduce into mathematical arsenal the new binary guasi- Buclidean space |15],
which naturally complements the well-known binary psewdo- Ewelidean space |G5] as Sputnik.
The main idea is to extend the “mid-reflector”, obtained in (253, 254) ) to the entire Eoclidean
space. Then such particular mid reflector transforms into the fundamental reflector tensor of
this quasi-Fuclidean space of the index g and with an Eoclidesn metric! Define in our work
this index g of this binary space as the quantity of eigenvalues —1 of its reflector tensor. Asa
consequence, the initisl Fuclidean space splits into two Euclidean parts that are spherically
orthogonal to each other. Further @40 is a spherical angle of the principal rotations between
two Euoclidean parts, 849 is an orthespherical angle of the secondary rotations inside these
Euclidean parts. Principal rotations often are called boost. (Rot 8} forms subgroup of the
quasi-Fuclidean rotations group. Transferring through the reflector tensor Ref{oos®}2, the
principal rotation changes its anple sipn annihilating: the secondary rotation is transferring
through both unity parts of the reflector tensor withont changes annihilating tool In gquasi
Euclidean and non-Euclidean Geometries of spherical type, the principal angles @99 play a
maotive role, the orthospherical anples B9 pive as a rule the rotations of bases or objects.
ln the motive version, the compatible spherical rotations of two types satisfy relations:

Rot (£®13) - Ref{cos ®}° - Rot (+®12) = Ref{cos ®}°, }

Rot’ (+:012) - Ref{cos B} - Rot (+013) — Ref{cos 8}°. (257)

For the projective version, we use formula (256) with two motual orthogonal reflectors.
With its angular analogues in (175, 176) and adding to them one orthospherical reflector,
we obtain the compatible spherical reflections of two types, which all satisfy relations:

Refa{F®12} - Ref{cos®}® - Refp{+®13} = Ref{cos ®}°, }

Ref {012} - Ref{cos ®}° - Refg{£612} = Ref{cos 8)°. (258)

And as simply follows, transferring through the reflector tensor Ref{cos $}2, the principal
reflector is transformed into its motual one annihilating; the secondary reflector is trans
ferring through both unity parts of the reflector tensor without changes and annihilating too!

By (257), (258) we defined the new Special group of transformations of the also new guasi

Buclidean space (@) with admissible rotations and reflectors of two kinds! They complete
the Lorentzian group of the psendo-Euclidean space (PP, See their common definitions in
sect. 6.30 The fundamental reflector tensor determines spherical tensor triponometry of this
space with Eoclidean metric, internal and external muoltiplications as in sect. 5.4, Besides, in
this space of the index g = 1, relations (257) and {258) define the embedded Special oriented
hyperspheroid of the constant positive radins B with its esternal and internal non- Buclidean
geometry of spherical type. And we'll continue this new topic in Chs. 6, 6A, 8A and 10A
with complete tensor and differential triponometric deseriptions of the internal motions and
the equivalent external rotations in them with the laws of their summation.
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5.8 Motive-type tensor sine, cosine, secant and tangent

The paired rotational matrices B and R (detR = +1) — see (249), (250) consist of the
commutative tensor sine and cosine of a moetive tensor angle ©99 or $g with their paired
binary eigen angles — primary and mutwal e in their eigen trigonometric planes:

Rot & — SR e . Rot (&) = ot g . (289)
cos® = cos’® = (Rot & + Rot' )/2 = [Rot (+&) + Rot (—®)]/2, (260)
isin® — —(isin®)' = (Rot & — Rot' ®)/2 = [Rot (+&) — Rot (—&)]/2. (261)

The realificated motive sine s a real valued shewsymmetric matriz with the eigenvalues
py = Hisingy, but sin® is a true metive sine — see below in (267). The motive secant and
tangent will be define throngh Def @ in sect. 5100 Here we define them preliminary as:

soc & = cos™! & = sec’ &. (262)
tan & = sec ® .50 ® =sin P - sec P = tan’ B, (263)
Rot & - Rot[—3) = sin®® +cos"® =1 =cos" = +sin” = (Ptolemy Invariant ). (264)

Def ®-Def(—®) = sec® 8—tan® & = I = cosec® E—cot? Z (Tensor quasi- lnvariant ). (265)
sin® . cos® = cos®.sin® = sin® - cos® = —cos P - sin B, (266)
sec®-tan® =tand - zecd =tand - sec b = —secd . tan b,

For the cosine and sine of & motive rotation angle in Ay = Rot & - Ay, obviously, we have
{Pg) =0, but dim(P3) (as wnity block +1, see in sect. 5.7) depends on the relation between
n and rankA. The dimension is either (n —2r), or (2r —n), or (P} = 0.

Fix an original Cartesian base E in (£™). The canonical W-forms for a real orthogonal
matrix of the rotation at the motive tensor angle € (or 8) and for its cosine and sine in the

triponometric base of disgonal cosine By = Ry - E = {1} are following (if 2r < n):

Rot & = cos® + isin® = exp(i®) = Rot' (—®) = Rot~(—®) =

cos & sind

08 g4 0 0 +ising;
— 0 €08 i +1i —ising; 0

[1] | { [1]
The tensor sine and angle eigenvalues 0 correspond to the subspace (Pg).
Rule 4. After an change in Rot & of the principal angle & by its complement = =11/2 — &
{or by compatible modal rotation Rot T1/4 of Rot &), the new sine-cosine function Rot &
gives a rotation at Z (The analogous property relates to orthogonal eigenreflectors too.

oos £ —=n £  Ee A ETrs — 08 P
+smé,  cosy = Rot & = + cos g, 51N 7 ) (267)




5.8 Motive-type tensor sine, cosine, secant and tangent 8T

Describe the canonical forms of & motive angle and its motive functions. At first, we use
the complex-valued base of the sine and angle D-form, then return to the original real-valwed
trigonometric base of the diagonal cosine. Such identical modal trapsformation gives the
canonical form of a motive angle @ in the triponometric base:

D(®) D(®)
P 4 0 +igy 0 Bl
=£ cos ] —y + i=n ] —¥ =
& &
o 0 +ig; 0 +ig; -‘
2 cos —ip; 0 +isin —ips 0 | =
~ id _ ~ & -
= oxp tp; 0 = expi —ipj 0

The formulae for motive angles follow in addition to (164), (170} for projective ones (with
B and B according to (213), (214) or as independent nx n-lineors of rank v):

r r
B0 = —(B12) = — By, bp=—(p) = —Pp. (268)
Compare them with corresponding formulae for the projective type angles [164) and (170)!
Accordingly, for motive cosine and sine from (264), we obtain such simplest forms in the
same triponometric bases:

& D(®) cos ®
| [ || ]
cos —'El',!a‘j H[:Jw - cos +I;P ’ —E,::-,- - milw ﬂ:: @i ’
& isin$
| | [ ]
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5.9 Relations between projective and motive angles and functions

From (236)—(239), and also (277), (278) - see below, we obtain (in common bases):

Ref{cos®}2 . (id) = & = (—i®) . Ref{cos ®}2, &2 = B2, (269)
+Dus§* + cos & +cm§'
= —sin® _ +isin® B +5i11'i: ) =
Ref{cos ®}° . bscc® [T tsc® [T tscd Ref{cos ®}°. (270)
—itan & + tan & +itan &

Rule 1 — in generalized form. (see in sect. 5.3) Square and any even degrees of all mutawal
tensor trigonometric functions and angles are equal and commute with any other ones.
(Here it is (Pq) =0, ry =72}

ln the real Cartesian bases E. € and 8 are real symmetric and antisymmetric bivalent

tensors. Find the complez local trigonometric base Ep for installing complex psendohyperbolic
analogues {4}, of real spherical anples {p}e as the diagonal square root of reflector-tensor

(254), gotten by the modal transformation of By = {I} into Ey = R.-Ey = R.-{I} = {R:}:

Rc=R*w-1fRef{ms«i=}e-Hw=wHﬂ=l 1o J,(ED=R.:~E'11. (2r1)

Recall (see sect. 5.5, 5.7), that Ey = Rw - E = {I} is the real local trigonometric base for
W-forms, E is the original Cartesian base. The complex local base By, unlike the hase By,
has imaginary ondinate axes, what correspond to the algebraically negative projective cosine

eigenvalues (ug — wy, vy — fvy). All the real spherical notions are translated into Ep = {He}
as the psendohyperbolic ones by modal transformation Re. Below this is exposed clearly in

(272) ooly for the projective and motive tensor angles. Substituting a base By for Ey does

not chanpe the cosines and the secants; the anples, their sines and tanpents are transformed

into the psendobyperbolic analopnes. Further we use indexes "r" and "¢"  for notions in

the real and complex bases E,. Ep.
R;'-{®},-R. = {®}. = {®), = i{—i®}. & R.'-{i®}, R. = —i{®}. = {—iD)}, = {—i®}., (272)
{sin &}, = {sin ®}, = {isinh(—i®}, < {isin P}, = i{sin®}, = {sinh(i®)}., (273 — 274)

{itan®}. = i{tan®}, = {tanh(i®)}. & {tan ®}. = {tand}, = {itanh(—i®)}.. (275 — 276)

_ o ) -, - B ; -
@=| L5 T |=er-@=| L P =@ em

l -]

(18}, = . =~ (@), — (-1} = ;0 = ()2 @m)

Corollaries  —{®}. = {®}, = {8}, = —{B}. & {B}. = {®}. = {®}, = {B}. ]
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Canonical forms of spherical and imapinary psendohyperbolic trigonometric functions:

[eom{+ &)}, = + “;:.. i ~ “':; - — + ==-’: e B “:'h irs = [conh(+i®)], (279)
[con{+®)}r = + n: i . “'i - _ + ===: ip; . no-l:ll: iv; = [cowh{+i®)}e, {280)
[mmc(+@)}r = i + l-;‘?j B “‘1 . } — i +H‘=; irg _‘”2 ie; } = [asch{+i®)]e, (281)
[moc{+®)}r = e +“"1 . _ ok i _H“E s = famch [£i®)}e, (283

l | |
[min &}, = I +__.'i . +-‘;‘~p_1; } | [ ' ) .ii ., +-i=;iw.1' } = [iminh{—i#$)}, (283)

| |
Limin @], = | +uim . "o ¥ ; _ -:,.1;.,,_1. B | = [uink{—i®}}., (254)
L wo

B |
litaad}r = !- +=-E.l. i _“1: i ' _u:hi.pj _tu;:h i J| = [tmah{—id]}c, (285)
[tan #}r = i ) +t:‘3ﬂj +“;'F_1' -i a i- .. —L-n?:. i +m|:|h el -i = |itmah{—i®)}=- (288)

l

ln the next chapter, we shall use these complex canonical psendobyperbolic forms for the
clear introducing real-valued motive and projective hyperbolic tensor angles, triponomet ric
functions, and reflectors in real pseado-Euclidean space. Cosines and secants are real valued

notions, and therefore, they are invariants of B!
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With Moivre's and Euoler's formulae for the rotational matrix and angles, we get:

Rot{m®} = cos{m®} + isin{m®} = Rot™d =
= cosh{i - m®} + sinh{i - m®} = exp{i - mPd} —

—i-{m®} =In Rot{m®} = i® =In Rot & + & = —iln Rot &. (287)

This give aa motive tensor angle from a rotation tensor! The bond & & & is in (272)!
Canonical foms of rotational matrices are represented below also in the trigonometric base
of the diagonal cosine with trigonometric 2 x 2-cells and ooly positive unit eigenvalues
corresponding to the subspace (Pg) in the binary Westructures:

+cosmyg;  — sSinmg;
+sinmyg; 4 oS g;
{Rot™®}, = . =
0 —mg;
+migj 0
= exp '
+cosmyg;  —isinmig;
—igsinmy;  +cosy;
{Rot™®}, = _ -
a —imyg;
—imig; 0

The value m = 1/2 gives triponometric square root (251) of the rotational matrix.
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Similarly (249) and due to the principle of binarity, consequent multiplication of two ebligue
eigenreflectors for a pair of equirank lineors (planars) as in (211)-(214) determines tangent
secant motive transformation — the spherical deformational matriz function of some its tensor

angle, as example, for planars (im BY, {im B") ({ker B), (ker B"}):
Ref{B'} Ref{B} Def ap

+s8c p; —tang; +sec @y Ftany; +sec oy 4 tana;
+tang; —sec @; —tang; —Eec i +tanc;  +sec o

(i e, g # 28g). Note, that o and € in Def & are principal spherical motive angles.
(See its exact caleulation in sect. 62.)

Rule 5. Deformational matriz functions Def ©q9 and Def $g4 only as the trigonometrically
compatible are commutative, but their angles arguments do not form an algebraic suwm.
They, as function Def (£®), perform the triponometric deformation at motive angle +48:

Ref{B'}- Ref{B} = (sec ®p +itan®pg)- (sec &g —itandg) =

—secidbg +tanl g + 2itandg -sec bg =sec bg +tan b + 2tan g -sec b =
=sec ag +tanag = Def ag = Def'apg, (288)

Ref{B}- Ref{B'} = sec ag — tanag = Def 'ag = Def(—ag). (2809)

Notation Def isused for the deformational functions of a motive-type spherical tensor angle.
For them Rule 2 (sect. 5.7) does not work entively, but Hule 4 (sect. 5.8) works entirely
at one-step motion. Def $40 s based on motive tanpent and secant. This binary tensor
trigonometric deformation is executed also in the trigopnometric subspace (Fipure 2) with
respect to its complete spherically orthogonal complement in (E™). Hence, for it the principle
of binarity works, which can represents its matrix in Weform as above. The tensor secant
and tangent were introduced preliminary in sect. 5.8, Now we may give their quite natural
definitions in terms of the spherical deformational matrix similacly to (260) and (261):

sec & = (Def &+ Def '®)/2 = [Def & + Def(—®)|/2, (290)

tan® = (Def & — Def~1®)/2 = [Def & — Def(—®)]/2. (201)

The tensor cosecant and cotangent are the inverse or quasi-inverse sine and tanpent .
Canonical forms of deformational mat rices are represented also in the same triponomet ric
base of the diagonal cosine | —w/2 < @y < 7/2) with 2 x 2cells and positive block 41
corresponding to the subspace {P3) in the binary Westrocture:

BBC 405 tan Wy
tang;  sec @

Def & = Def'® = sec & + tan®d = 5 . (202)

Def~—'® = Def(—&) = sec ® — tan®. (203)
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The canonical forms for the rotational and deformational matrix functions of & pseado
hyperbolic angle i@ in the complex-valued triponometric base of the diagonal cosine are
realized with the use of formulae (277)—(286). They are following

cosh{—ip);  +sinh(—iyp);
. +sinh(—ig);  cosh{—ig);
{Rot ®}, = cos® + {—ism $}, = N =

— cosh(—i®), + sinh(—i®),, (204)

{Rot ®};" = {Rot(—®)}c = cos & + {isin 8} = cosh(—i®) — sinh(—i®).; (295)

sech{—iyg); — tanh({—ig)j
+tanh{—ip);  sech{—ig);
{Def B}, =scc & + {tand},. = . -

— sech(—i®)e + tanh(—i®),, (296)

{Def ®}-! = {Def(—®)}, = sec ® — {tan &}, = sech(—i®), — tanh(—i®),.  (297)

For the rotational and deformational matrices, their determinants as well as determinants
of their binary cells are equal to 1. Spherical deformational matrices are symmetric and
positive definite. Rotation of their 2 % 2-cells (on the trigonometric eigenplanes) at anpgles
wy = /4 transforms these cells into diagonal ones. The eigenvalues of the deformational
matrix cells are pairs pay = sec @y + tang; > 0, pagp1 = sec @y — tang; =.f-‘*3__11 = 0, and
here not necessity in the values pp = 41 inside the matrix unity block {Pa).

ln order to clarify the sense of the binary deformation function, we represent it in the
new base spherically rotated by modal trapsformation in each cells of Wform at anples
;= £m /4 For example, expose the rotation of some cell at angles @, = +w/4.

Namely, on the level of the binary triponometric cells, we have:

[ sBc oy tangg =
|_ taniy; sec iy J

=|- Cos T —sin T ] |- sEC 0 Z ] |- CO8 T sinw -|
|_ ainwﬁj ccnirjid J |_ ﬁﬂj;'t‘m‘ﬂ_r sBC 0 Et,anrpj J |_ —ain':{:.rd. cuasrl;i J

Now it is seen that the modal spherical deformation in canonical form (292) on the
trigonomet ric eigenplane consists in Buclidean metric in:
— extension of the base along the principal disponal by coefficient g =sec @+ tane > 0,
— contraction of the base along the secondary diagonal by coefficient p=! = sec p—tanyp = 0.
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Similarly to the realvalued binary struocture (149) for a complex number, the following
binary unigque representation of an arbitrary real positive number by 2 x 2 deformational
matrix in terms of a spherical angle | —7/2 < ¢ < 7/2) holds with two eipenvalue:

! —sec p—tanp > 0. (208)

p=sec ¢+tanp >0, p
From here we have see @ = (p 4+ p~1)/2, tang = (p — p~1)/2 Numbers (298) are
equivalent to analogous ones exp (+7), exp (—), what will be clear in next chapter.

One more interpretation of a binary deformation is respected to so called eross bases.
They may be used in relativistic STR-transformations of geometric objects in the Minkowski
space-time. Consider two Cartesian bases E, and E_.; and the rotational transformation
E; = Rot{— i'ij]Ej Cartesian coordinates of a vector 2 in the two bases Ej and E¢ Are
related as at passive modal transformations by the angle +8;4:

a“} = Rot ﬁlua'm =

’V cosgqy  — SNy ] 1{1-” msga,r?j—mmz
sing; cosg; 1{2‘” mwzij}+mﬁmz ‘ l Ei} '

In 2 x 2cells, the base Ey is the result of rotating .E'_, at the clockwise H.llgl':“i +iop.

lutroduce cross bases ..':':.-';J with miced axes {I‘i :',,_'I:2 }} and Ej g with mixed aoces {1:1 ?Iﬂj}

These both bases are related by the eross modal transformation:
E‘l-,j = DE:f(— @'l-j}Ej,It (ﬁgg}

In t-th cells, so called cross coordinates of a vector & in the cross bases Ey ; and By y are
related as at passive cross modal transformations by the angle +&,;:

2D = Def(+&q)al" =

ool 1]

_ s0C oy tan gy _
= tang, sec @ tu} = u,n ~ (300).

Then the cross coordinates of vector a7 are determined here by cross projecting with
the use of deformational matrix-function of a principal motive anple compatible with a
reflector tensor of the space (see sect. 5.7).

Muost widely, the usefulness of introduced above tensor deformations is manifested in
so-called universal bases, for example, E;. where they produce their guasi-invariants, which
are transformed into one-step invariants when the plane or space metric s chanped, which
at the peneral matrix level embodies the main specific spherical-hyperbolic analogy with
its nomerous applications in peometries with quadratic metrics and STR. See about last in
detail in next Ch. 6 and further.
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5.11 Transformations of orthogonal and oblique eigenprojectors

In an Fuoclidean space, there exists an one-to-one correspondence between a centralized pla

nar and a symmetric projector of the same rank. There exists an one-to-one correspondence
between the planar and its ort hocomplement too. Any planar may be transformed into each
other one of the same rank with tensor rotation as well as with tensor mid-reflector (mid

reflector give only the single motive angle ®). Formulae for such transformations may be
derived, for example, of (266), (226), (176) and (177) or with direct applying the principle
of binarity.

r— - — -
AQA':E = Rot &9 - A1Ai - Rot’ &4 = Ref{cos @12}9 . A1Ai - Ref{cos @12}9, (301)

I

e S - F -
B'B = Rot 5 - BB'- Rot’ & — Ref{cos $5)° - BB’ - Ref{cos &} (302)

These are rotation and reflection transformations of 2valent orthoponal tensors inside of
the symbolic octahedron (Figure 1), Use the octahedron for illustration. The diagonal PQ

generates isosceles triangles PZQ and PIQ. where APZ0Q) = APICQ) = $p.

Moreover, in an Fuclidean space, there exists a one-to-one correspondence due to (217)—
(220) between a pair of eguirank centralized planars {im Aq), {im As) (then we have

(A AL 7) = det(AjAs) # 0) and a pair of the obligue eigenprojectors E, E ( becanse

in definition (213) B = A1 AL). Then B and B (B and BY) are transformed into each other
with tensor deformation as well as with tensor mid-reflector. Analogous formulae for such
transformations (as formulae (3015, (302)) may be derived too with the principle of binarity.

_}
B - Def &5 - 5} -Def(—®g) = Ref{cosdp}® - ﬁ Ref{cos®g}=. (303)

(These non-similarity and similarcity with 1st and 2od parts of (302) are quite logical.)
Following formulae are similar to rotational prototypes (255) and (256):

Ref{B'} = Def &g - Ref{B} - Def(—&g) =
= Ref{cos®p}® - Ref{B} - Ref{cos &5}, (304)

Ref{cos®p}® = Def ®g- Ref{B} = Def(—®g) - Ref{B'}. (305)

If the original matrix B is null-prime, then, for example, from formulae (186)-(189) and
relation cos ®g - see €5 = I one may get the muotoal modal transformations:

— e

—cosdp - .soc b —=soc bg-{ 5 - -cosbg. (306)
B B B

The formulae may be checked with the use of the Table of multiplication for eigenprojectors

(185) in sect. 5.2. too. Formulae indicated above represent the modal transformations found
by different manners, but the reswlts are the same. Express all the eipenprojectors in terms
of corresponding projective trigonometric functions pairs according to (176)-(179):

HiAj = (I +cosd —sin ;2=‘B_§;,
A A} = (I — cos® + sin ®)/2 = BB,

T

Li*‘;
I

WM HEH HEH WM

(I +

|: -

(I +cosd +sin
(

T —cos® —sin

e

B

2
I

)
;;2 _ BB (307)
/2= B'B,
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‘g = (I +sec & —itg®)/2 = A1 4,
= (I — D +itgd) /2= A1 A]
{EF—E:HSBC &:J:rl'tgi]}iz— AEI;‘ (308)
3= sec & +itg®)/2 = A4,
B'=(I—sec & —itg®)/2 = AsA].
These expressions show that the principle of binarity is valid for projectors too.  There

exists a bijection between the complete set of eigen orthoprojectors and the complete set of
symmetric idempotent matrices of the same size and rank. U the matrix B is llll"_;)l’ﬂilt!‘,

-~ —= =

then deteos® #£ 0, and there exists a bijection between the pairs (BB', B'B) and {E, B,
Represent orthoprojectors in the tripopnometric W-form according to (307). Principle of

binarity enable one to evaluate the modal matrices for constructing D-forms. For example,

consider this for orthoprojector EH’. ln i-cells of matrices, there holds:

Rot ®/2 BB

[ . cos /2 —singf2 1 . 1+ cosw — sing -|[
l sin /2 cos /2 J E l —sing 1 —cosg J l
{_
D(BB')
10 ) . = o
- 0o , ie, V. BB .V.y = D(BB).

oos 2
— Bin 2

sin g2
cos g2

This matrix is expressed in the original orthogonal base E as EE’, but in D-form they

is expressed as above in the base:

Ep =Veo - E = Rot (~2p/2) - E = Rot (~25/2) - Riy Ey = {Rot (—®5/2)},

(here Ry, - E = E; = {I} is the base of W-forms).

(309)

The following orthogonal eigenvector-columns of the same modal matrix correspond to

the subspaces (im B} and (ker B):

0 0

B + cos iy /2 _ + sin /2
by =Bw - _Gnoge |0 Gu =B cn
0 0

By analogy, ones find the modal matrix for getting the base for the eigen orthoprojector

e
ﬁ disgonal form, i. e, for Dl:{B"_H} = I-’;,_.;l - {B"_H « Veor. This base is

Ep = Veot - {E} = Rot (+®5/2) - Rw{E} = Rw - {Rly, - Rot (+&p/2) - Rw {{E}. (310)
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The following orthogonal eigenvector-columns of the other modal matrix, potten by (310),
correspond to the subspaces {(im BY) and {ker B'):

0 0
B + cos /2 —singy /2
Pur =Fw 1 pdingy2 |0 Qo TR cosga
0 0

The modal matrices for constructing D-forms of mutual oblique eigenprojectors will be
derived in Chapter 6 with the use of spherical-hyperbolic analogy. Here, we present only
preliminary two expressions in terms of arithmetic roots of the same deformational matrix,
though they have no spherical trigonometric sense:

_}

{Rw -/ Def &g} g -{V/Def (—®g)} - Rw} = D(B), (311)

= =
{Riy - /Def (—@g)}- B' - {\/Def g} - Rw} = D(B'). (312)

Thus we can see much common in varions modal transformations of the mutnal eigen
projectors and eigenreflectors from one into another with the trigponometric rotational and
deformational modal matrices. This is usually obviously, when the operations are executed
in their same bases of W-forms, What’s more, in the middle of these modal transformations
we have their diagonal forms. So, for mutual eigenreflectors, we obtain their mid-reflector.

5.12 Spherical tensors of rotation and deformation with frame axis

Consider the set of centralized principal spherical rotations in the oriented along frame axis
7 quasi-Euclidean space {Q™1) with simplest diagonal reflector tensor {I1} of index g =1
(see about peneral (@) in sect. 5.7). They are realized by special matrix functions rot .
These matrices with the minimal trigonometric subspace for homogeneous motions-rotations
in own quasi-Cartesian base have the unique trigonometric 2 x 2cell with one eigen scalar
motive principal angle ¢ and the unique rotation’s frame acis. Such trigonometric matrix
functions are called elementary. Initially we conserve counterclodewise angles @

{rot(+®)}axs = cos & + isin® = cos(+®) + isin(+d)

1—(1—cosy)eos”a; | —(1 —cosy)cosa cosas | F sin g cosay
—(1 —cosy)cosaycosay | 1—(1—cosyp)cos ay | Fsingcosas |, (313)
+ sin @ cos =+ sin { cos Cos o
{rot(£®) Hn+1)xn+1)
I — (1 — cosg) -eye] nyg-e —
T A e e T
(a3

The coordinates of the matrices are expressed with respect to right quasi-Cartesian bases Eyy,
of their canonical E-form (313), (314). The oriented straight line {z,,} is the frame (polar)
axis for the eigen rotation anpgle @, the angle is positive for rot{+®}, and has the direc

tional cosines cosag, k= 1,...,nin the base {r),..., 75} — the frame axis orthocomplement |
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ln particular, matrix function rot @ realizes the full set of principal motions on the
Hyperspheroid embedded and oriented in (@) with reflector tensor {I*} and Euclidean
metric. And they are identical to such rotations in this space! [See in Ch. 8A). lon what
follows, the option of the unique rotation’s frame axis (T34 will be very important for
us also in the hyperbolic non-Euclidean peometries from the external point of view and in
Theory of Relativity considered in the pseudo Euclidean space (P31} — see in Appendix.

At first, prove formula (313). Find a rotational transformation of the complement base
{1, Ta) into new same base (], oh) such that the axis {]), ex = (cosay,cosan) (where
cos® ay + cos” ag = 1), and the frame axis {z3) shoukd be coplanar. This transformation is
the spherical rotation matrix at a certain tensor angle s fn =2, then it has the scalar
eigen angle o, and the rotational matrix demanded is

rot fia
coscy | —simey | 0
+sineyy | cosay |0
0 0 1

This matrix function executes the rotation on the plane (), T2) at the anple oy,

Further, in this new 3-dimensional base E we use the elementary principal rotational
matrix function ret &, but in the 2 x 2-cell corresponding to the plane (£}, z3), with following
condition: if the frame axis is {z]), then the angle of rotation is connter-clockwise; if the
frame axis is {rg), then this angle is clockwise. 5o, the last form of this elementary spherical
rotational matrix is

{rot(+d)}

cosp |0 | —sing
0 |1 0 . (315)
sing |0 | cose

Then we transform the matrix in E-form applying the inverse base rotation
{rot(£®)}ax3 = rot Bia - {rot(£®)} - rot f1a '

The result is rotational matrix funetion (313) with the frame axis (z3) for the motive tensor
angle & in 3-dimensional Cartesian base By

General formula (314) is inferred similarly.  Now find a rotational transformation
of {xq,...,Tp) into {r],...,zh} such that the axis {z}), the directional cosines vector
€y = {cosap} (Y p_jcosfag = 1), and the frame axis (Tpy1) should be coplanar. Use
consequently tensor angles of the radins-vector rotation with their spherical coordinates:
Bz in the plane {ry,Ta), B in the plane (i, z3), ..., Biv g in the plane (= . 0 g}
Due to the triponometric nature of the transformations, we have the following formuolae:

cos 12 = cos oy /+/cos® oy + cos® aag,

cos A1 = oos® oy + cos” ag /v oos® ay + cos® ag + cos® ag,

]

cos By = y/oos” @y + - -+ + cos® ap_y = sinag.
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The consequent rotations are executed with the matrices rot Spa, rot Gy, ... . :

rot '312 ot ,81:3
- o u - i !
cosfPip | —sinfyy | CDEIZJI? v 1 Sﬂaﬁl ' Z
sin By | cosfa ' sin frg | 0| cosfia "
7T In_1 P In_n

The result isthe base of the simplest 2x2-cell form for the element ary rotation E =rot §-Ey,
where rot 8 = rot fi2 - rot Brz-- 7ot Bru.wn. Then construct the 2-dimensional form for
this elementary rotation in the hyperplane {=f,..., 25, Tpe1) with respect to the base E:

{rot &}

cos | 0F | —sing
0 |In 0 . (316)
sme | 0 Cos i@

Further we transform the matrix in E-form applying the inverse base rotation

'[TE'E' ql}{n+1jx[ﬂ+1j = rot ﬁ v '[]"Dt ‘t"}mn v TE'H ,B.

The result is rotational tensor function (314) with the frame axis {zp4a) for the motive
tensor angle & in (n 4 1) dimensional quasi-Cartesian base Eypy, of (@) with naturally
appearing (thanks to the reflector tensor) eigen binary angles — primary and mutuwal, as sign
alternative Fipy or Ly depending of the choose of counterclockwise or clockwise angle's type!

In {Q™!) = (™ B ¥, due to structures of (313), (314). the function rot (+&)
rotates at adopted counterclockwise primary angle 4+ in the direction to the frame axis 3
from the Eoclidean hyperplane (E™). The function rot (—®) rotates in contrary direction.
These structures explain: why rot (£®) in realizes rotations at £ — similar to acting S-arm!
We see that due to Rule 4 with (267), after change in rot & of the principal angle & by its
complement 2 =I1/2 — &, the new function rof & pives the complement ary rotation at Z:

rot = (£ € [+7/2;0]) = ot & (p € [0;+7/2])
e e } ; e e
cos§ - €aa’ +€a€y’ | —sin £-€q SNy - €a€a’ +€a€a | —COSP-€a | (397
+sin £-ef, cos £ +cosy - el sin

We will distinguish the two kinds of principal angles: counterclockwise @, measured off the
frame axis g as cooriented ones, and clockwise £ measured off the Euclidean hyperplane
(E™) as counteroriented ones (both named here with respect to direction of 7). Obviously,
@ and £ are complementary iff @ + £ = /2 (for compatible tensor angles iff & + 5 =11/2).
The angles @ in rof ® and in rof @, seeming as the same, are distinguished peometrically.
ln functions rot® and Tof & — both with their identical trigonometric quadratic invariants

rot & -rot(—®) =sin® & + cos” ® =] = cos” E+ sin” = = rot = -rot(—Z), (318)

such angles @ play roles in (317) either as adjacent to the frame axis ¥ or as adjacent
to the Buclidean hyperplane (E™). Hence, both variants of rotations are realized also in
the counterclockwise direction from (€2) to 3, but at £ This will manifest itself much
more important for the more complex hyperbolic rotations in Chs. 6, 8A and 10A. In quasi
Euclidean spaces, in particular, ITI/2 is the angle between 3 and (™). See further in Ch. 8A!
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In addition, finally we consider briefly elementary spherical deformational matrix func
tions def & (292), but also with frame acis, similar (213), (214). The deformational matrices
with the minimal trigonomet ric subspace for homogeneons deformation of a vector, a straight
ling, and a hyperplane in an Cartesian base have too the unique trigonometric 2 x 2-cell.
Notation def @ is used for them as the particular case of Def & Elementary deformations
have also one eigen scalar deformation anple @ and accordingly the same unique deformation
frame axis. The more important variant, if the frame axis is (Tpgq) in (@), Then the
matrices in the special Cartesian base By, = {I} hawe the canonical structure in E-form:

{def(+®)}zxz =sec & +tand

1+ (secig — 1)cos”ay | (secy — 1) cosay cosan | £tan g - cosey
(secy — 1) cosmycosan | 1+ (secp — 1)cos o | £tany - cosas |, (319)
+tany - cosa +tany - cosog seC {7
{def(£2) }nt1yxin+1y
Inyn + (secp —1)-eqel, | Ltanp-eq .
Ttang e, — . leqe, =eqey) . (320)

The coordinates of the deformational matrices are expressed, as usually, with respect to the
right Cartesian base Eyy,. The oriented straight line (Tnyq) is the frame axis for the angle @
of tripopnometric deformation, this anple i positive for def +& and has the directional cosines
cosag, k= 1,...,n, with respect to the base (xy, ..., oq) 85 of {Tpyq) orthocomplement.
The canonical E-forms (319), (320) are inferred by similar way with their quasi invariants.

Note, that {1t} = —{IF}. Furthermore, in the quasi- Euclidean :ip:-l.-::-:_'{g""'l} lg=1) as
initialy not azes-oriented and having the complete quasi-Cartesian base E = {eg} = Ay E
with the selected last ordinate g4, its reflector tensor may be defined as follows:

{VI}s = Ry {I*}Rly = ens1€hi1 —€ni1€nsy = 2-€nsi€fhq — 1, (321)

where epyq is the frame axis {Tpyq) and simoltaneonsly the orthogonal reflector’s mirror
— see (176), and therefore, here we have: {VI}s = ref{ens1epy1 ) (In the most general
case, X g quasi-orthoponal matrix By from (129) in Ch. 3 instead of epyg may be used.)
Thus this chapter represented complete fundamentals of the Tensor Trigonometry in its
affine, Buclidean and quasi-Buoclidean versions, which are realized and act in the same spaces.
Latter two spaces have the quadratic Enclidean metric. In different quasi-Euclidean spaces,
their reflector tensor may be given either by the simplest sign-alternating unity form {1}
(g <n)and {IF} (n < q) orin the general form {VT}s = {RwIT R} }. Further (1) number
q is an index of any similar binary space as a quantity of negative eigenvalues, here —1, of
a reflector tensor of a given binary space — see in Chs. 6, 10-12 and in Appendix. Above
it is g = 1. In the quasi-Euclidean space, its reflector tensor penerates the continnous
group of own quasi-Eoclidean rotations incloding the set of principal spherical rotations
and the subgroup of secondary orthospherical rotations, and, in addition, the set of own
gquasi- Buclidean reflections including the set of principal spherical orthogonal reflections and
the set of secondary orthospherical orthogonal reflections. This continuous group of the
admissible own rotations together with the full set of the admissible own reflections form
the complete pronp of quasi-Eoclidean motions of the given quasi-BEoclidean space. So, the
reflector tensor of the index g with the quadratic Eoclidean metric are main attributes of any
quasi- Buclidean spaces. o particolar, the nedimensional Eoclidean peometry, when g = 0,
and the gdimensional anti-Euclidean geometry, when n = 0, are two extreme cases of the
general quasi-Buoclidean peometry with unity {41} and antiunity {1} reflector tensors.



Chapter 6

Pseudo-Euclidean tensor and scalar trigonometry

6.1 Hyperholic tensor angles, trigonometric functions, reflectors

Passive transformation e (271) of spherical angle & pives in (272) pseudobyperbolic anpgle
{—i®}, in complex psewdo- Buclidean space (PP, with its Psewdo-hyperbolic trigonometry
and the space reflector tensor {IT} as in {Q™F9)! The scalar product is always invariant:

x'X = (ReZo1)’ - (Rezo1) = [(VIE)z01]’ - [(VIE)Z01] = 2 {VIE 201 = 2y {TF}201,

where Zgp = Rc_l -xin By, = R. - Ey. according to (271); E, = {I't. Thus in (P"), we
have {_Ii} —R.-R.=R:= {v"".f_i}% as the metric tensor too. With respect to the original
base Ej the latter may have the form {Rw -T%. Ry} = {vT}s. Hence, in {P™+9), reflector
tensor and metric tensor are equivalent! lmportance of this complex psendo-Enclidean space
consists in simple transition off intermediate psendosnalogoes (277), (278) into hyperbolic.
Thus, for motive tensor angles, this is tealized by two ways with generalization in (341):

b —id e, & —ig & vy, (Xin By & Zgy in By & uin Ey), (322)

To +il & &, 4 &iy & @, (Win By & 2 in Egp & X in E)). (323)

This transition between imaginary and real angles s called spherical-hyperbolic analogy of
abstract type with preserving binary spaces structure and reflector tensor. Applying abstract
analogy (322) to relations (277)—(286), (204)—(207), one obtains hyperbolic analogs of angles,
trigonomet ric functions and reflectors in a real valwed binary pseudo- Buclidean space (P77
with the metric reflector tensor {v/T}g, also in their W-forms, with paired eigen angles v,

—in their D forms, in the trgonometric base of diagonal cosine E,=Rw -E {as in Ch. 5):

coshvy; sinhy; _ . _ _ P
Gnhr ooshn —coshT +sinhT = Roth T = Roth' T =exp T,  (324)
Roth (~T') = cosh T —sinh T' = Roth™! T = exp(-T). (325)

= Roth (+T) - Roth (-T') = exp (+T) - exp(—T') = cosh® T’ — sinh®T" = I.

It is the hyperbolic rotational function of the motive angle T' or =T and its tensor lovariant.

sechy;  —tanhqy;

+tanhy;  sech = sech I' +itanh ' = Defh (+T), (326)

Defh (-T') = sech T —itanh T = Defh~' T = Defh' I. (327)

— Defh (+T)- Defh (-T') = Defh T - Defh' T = sech® T + tanh?®T = I.

It is the hyperbolic deformational function of the motive angles with tensor quasi-lnvariant .
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coshy;  Lsinhqy; _ I
Fsinhy; — coshn =cosh Fsimh " — (339), (340), (328)

sech ;. Ftanhy;

LI —sech T Ftanh T — (337), (338). (329)

cosh® I —sinh® " = I, sech® + tanh® " = 1
They are the hyperbolic orthogonal and oblique reflectors with the projective angle T and
their lovariant and quasi- lnvariant.

ln psendo-Boclidean trigonometry, the general reflector tensor (253) is identical by form
to a metric reflector tensor of the non-conzially oriented pseodo-Eoclidean space:

Ref {coshT}® = {VT}s = {Bw - I* - Ry}, (T = Traz = q)- (330)

Apply the principle of binarity and take into acconnt (271) and (324), the result are the
following conditions of annihilation similar to (257) for secondary orthospherical rotations
Hot 6 and for quasi-Eoclidesn principal rotations as

RothT - {VT}s- Roth T = {/T}s.

Further the inverse passive modal transformation Bo! converts hyperbolic angles and
functions into psendo-spherical ones. Angles {iT}, have spherical form. Psewdo-spherical
trigonometry is realizable in isometric to original (P 4 comples quasi- Buelidean space
(@), The scalar product is also invariant in both these isometric spaces:

u' - {I*} - u = (Rcu)'(R.u) = 20, - Zoa.

Such space (@), is a complex somorphism of the real pseado-Euclidean space by
Minkowski. 1t was introduced by H. Poincaré in 1905 |63] as the 3-dimensional model of a
relativistic space-time with the Lorentz transformations group called so also by Poincard.

Abstract analogy (323) applied to psendo-spherical angles and their functions gives finally
the original spherical notions in our quasi-Enclidean space (@19, The whole closed
cyele (322)—(323) with abstract spherical-hyperbolic analogy is deseribed.

The analogy with spherical formulae (269) and (270) connects hyperbolic projective and
motive angles and their functions in common bases in terms of mid-reflectors:

—ilya - Ref {coshT1a}® =T1g = Ref {coshT'12}® -ila, ( {T12}* = {T12}? ).

6.2 Covariant and countervariant spherical-hyperholic analogies

Abstract analogies in (322), (323) give no any quantitative relation between real-valued
spherical and hyperbolic angles or functions. However such relations may be determined
if a one-to-one specific correspondence in the original (universal) Cartesian base E; = {I}
between both these arpnments-angles is fived. Spherical and hyperbolic angles, funetions and
transformations with this isomorphic correspondence in all eipen quasiplanes and pseado
planes in By may be represented clearly at the general trigonametric diagram (Figure 3).
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Figure 3. The Trigonometric Diagram on the base of unity circle and quadrobhyperbola
with spherical-hyperbolic analogies in an eigen plane — psendoplane of a tensor angle with
respect to the right universal base By (The angle @ is spherical, the anple v is hyperbolic.)

Here we use the following notations:
L 10 LI 1Y are the hyperbolic guadrants of a pseadoplane with conjugate hyperbolae (1
Y and 1 1V) and hyperbolic angles dividing by the two asymptotic disgonals.

’?‘ and ?)? are the positive and pegative angles of hyperbolic rotations determined along
hyperbolae, they are shown in 1 and L1

wlv) and () are the examples of specific sine-tangent spherical-hyperbolic analogy, they
are shown in 11 in hyperbolae focus we define especial angle w = qp = y(w/4) /= 0.881 rad.
wr(7) and yr(yp) are the examples of specific tangent-tangent analogy, they are shown in 111
Besides, bisection and duplication of an hyperbolic angle with respect to the base By, with
the nse of these two analogies, are shown in the left and right parts of 1V, and in sect. 6.4

The identical ranges of certain trigonomet ric functions of two complementary hyperbolic
angles v and v and of two complementary spherical anples @ and £ = 7/2— () allows us to
define covariant (or sine-tangent) and countervariant (or sine-cotangent) specific analogies,
but correctly only in the so called wniversal bases, nsnally in the simplest base By = {1}

sinh(y,v) = tan(g,£), tanh(y,v) =sin(p,§) [1(e) & @(v), v(§) & &) (331-1)

sinh(y,v) = cot(¢,¢) tanh(y,v) =cos(§, ) [1(§) & &V, viv) & @(v)]. (331 -11)

(See more strict and descriptive justification of this below in sect. 6.4.)
Then, on the basis of (331A), arpument angles are connected by the following equalities:

v = 7(w) = artanh(sin @) = arsinh(tan ¢) = In(sec @ + tan @),

i = () = arctan(sinh ) = arcsin(tanh ) = —i ln(sech v + i tanh ~).
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Funection i) { Lambertian) as in (331-1) was introduced by Johann Lambert in 1760 |36].
ln 1830 Christoph Gudermann added to it the inverse function () (Gudermannian) |51].
Besides, at Figure 3, in an illustrative sense, we show only covariant anslogy (331) between
the hyperbola with hyperbolic angle-argument and the semi-circle with spherical angle in
the anpular interval or sector with B = 1 indicated above beginning from the zero points C.

For application in our Tensor Trigonometry, we added else in (331-11) two functions of
the types — direct y(£) and inverse £(). So, the latter gives the spherical parallel angle of
Lobachevsky € = m/2 — () as one-step in By and in hyperbolic geometry. Trigonometric
definitions of four functions for covariant and countervariant specific spherical-hy perbolic
analogies, emphasize the fact, that in Geometry, including Tensor Trigonometry, they can
be wsed only in the wniversal bases By or widely Eyy = {rot 8- {1} and from zero point (!

According to our Trigonometric Disgram at Figure 3, the main values of spherical anples
are in [—w/2; +w/2)], as in Ch. 5. For this range of the angles their cosines and sines are
nonnegative, thus formulae (331) may be supplemented by two analogs:

sech y =cose =0, coshy=sec p>=0. (332 —1)
coshy=cacf =0, sech v =smmg =0 (332 —IT)

dy(p) = secyp dp = coshy dip, dip(7y) =sechy dy =cosp dy; (df = —dyp). (332 IIT)

Differentials and derivatives will be useful in the instantaneous bases Ep — see more further.
The range [—w/2; +w /2] of spherical angles is sufficient for trigonometric transformations

(rotations, deformations) of lineors and bivalent tensors. ldentities (331) penerate specific

sine—tangent spherical-hyperbolic analogy, represented in vector-scalar form usually in By

sin® = tanh [, tan ® = sinh T, . )
cos® =sech T, sec @ = coshT, } gy € [-m/2; +/2], £y € (—oo;+o0).  (333)

Most generally covariant specific analogy is eapresed using spherical and hyperbolic tensors
of rotation and deformation with respect to the wniversal base By = {I} in two directions
(with identities in 2 x 2-cells for binary primary and mutwal eigen angles) as follows:

Roth T = Def & (in the base By = {I}) (334—1)

coshy;  sinhyg secy; tang;

Roth T — Cbs o) = ) ] — Def #(T),
DefhT=Rot & (in the base By = {I}) (334 — IT)
_ sech 7y — tanh 4 _ cosp;  —EIngy _
Defh ' = +tanhy;  sech g = +sing;  cosgg = Rot ().

Analogy (334) infers the Rule 5 for spherical deformational matrices in sect. 5.10. Functional
relations between both these motive tensor angles in the base By follow from (331-1):

I(®) = In Def ® = In(sec & + tan®), i®(I') = In Defh T =In(sech T + i tanhT).

Countervariant analogies are realised by replacing principal angle by complementary one.
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Most generally countervariant specific analogy is expresed wsing spherical and hyperbolic
tensors of rotation and deformation also in the universal base Ey = {1} in two directions

Roth T =Def = (in the base E_!1={I}} (335 —1)
_ coshyy  sinhoyy _ cacEj oot £ _ =
Roth ' = ainh’]r; cmh’]r-:' = cnt.ﬁj csc £y = Def E(I).

Defh T'=Hot (I (in the base By = {I}) (335 — IT)
_ sech ¥y — tanhy; _ sin £5 —cosk; T
Defh ' = +tanhy;  sech g = +eoosf;  cosé; = Hot S(T).

Rules 1; 2, 3 (sects. 5.3 5.7) stay walid also for trigonometrically compatible hyperbolic rotational
matrices and arthogonal reflectors. Rules 3 is foundalion for principal spherical and hyperbolic refalions
the quasi- and psendo-Buclidean geomelries  see sect, 6.3, Here Rule 3 halds for trigonometric functions
amd transformations in pseudoplane. In particular,

m m ™
H(aat: wj + tan qu]"i = l_[{cush*]rj :I:sinhf]rjj"i = exp z :I:hjf]rj) = (336)
=1 j=1 i=1

= expy = coshy + sinhy = sec @+ tany, e [—m/24m/2], (see sect. 510
If the mid-reflector (330) for T'g is used as & reflector tensor, then hyperbolic reflectars (328), (3249) are
hyperbalic analogies of spherical ones (178], (1749) and (211}, [(212):

Ref{BB'} =sech Ty —tanh Ty, Ref{B'B} =sech T'p + tanhTg; (337), (338)

Ref{B} =cosh T'g —isinhT'g, Ref{B'} = cosh I'g 4+ isinhTp. (339), (340)
Spherical hyperbaolic analogies of the two types  abstract in B and covariant specific in the base By generates
the following fuari-Carele of motive matrix functions transformations:

Rot (iT") Defh (—i®) 4  RothT Def @

E (341)

&=

Rot & Defh T &  Roth (—i®) Def (ir).

I'he sine-tangent anslogy generates hy perbolically orthogonal forms of affine pro jectors, quasi-inverss matri-
s, and reflectors considersd before, if the mid-reflector for Ug is used as & reflector tensor, Then hy perbolic
réelations are similar to spherical ones (2449

Ref{B'} - Ref{B} = (cashT'g +sinh Pg)(coshT'g — sinT'g) = Roth 2T'g. (342)
I'his means here that reflection {(ﬁ]“mﬁ]h} w here I:\.-"T:Ih # (\.-'T};. the prime non-symmetric square

roat, is the double hyperbolic rotation similar to (251), Hence rotational matrix Roth Ug is & frigonomelric
hyperbalic square root of the symmelric matrix in square brackets similar to spherical one in (251} but in
this case it is also an arsthmedic roat:

Roth Ty = [(£Ref{B})' - (+Ref{B})]s/* = [Roth 2Tg]y/*. (343)

If ay,8g are the non-oriented vectors or planars im ag,im ag of rank 1 and ajag # 0, then they may
alsa determine the elemeniary refalional hyperbolic mairizwith v = 1

1/2

Hoth 'y = [U— E;E}U - 2:‘1_"51.\-'] (344)

! I 172
<o (s 2 oy 2]

7 7
ana; ajag alag

+—— @gal 4— Aaia
where: agal = - 1 ajal = A2

ajaz ahai

. —
(In particular, a3 = ey, ag = eg,—+ ehey = e} ez = cos iz =sech 113, eze] = egel.)



6.2 Covariant and countervariant spherical-hyperbolic analogies 105

—
Hecall, that {agal} is a projector inta {im ag) parallel to (ker a)) = (im ag)*.
The spherical angle ap in (288) is evaluated quantitatively with the use of (331) and (324 )

|De_f ag = Roth g = ag = arctan(sinh 2yg). |

Thiz relalion comments commulabivily of the Irigonomeirically compalihle malriz funclons of their molive

angles  edther @ ar [ according fo the quart cirele (341!
The sine-tangent analogy lesds to the following four expressions for the mid-reflector:

Ref{eos®}P = Ref{sec )2 = Ref{coshT'}Z = Ref{sech ['}2. (345)

Hight multiply the matrices in quart circle (341) by the mid-reflector, we obtain the smidar guard cirele
for the reflectors. Hepeat this operation once more and we return to their original motive type. Definitions
af projective hyperbolic angles g and functions may be obtained from the spherical onss with the use of
sine-tangent analogy (331), if the mid-reflector (345) for g is used as the pseudo-Euclidean space metric
reflectar tensar.

Application of spherical Formulae (255], (256) and [(303) gives the similar hyperbolic modal relations:

Ref{B'} = Roth (+T'g) - Ref{B} - Roth (—T'g); 1
Ref{B'} = Ref{coshTg}2 - Ref{B}- Ref{cosTB}2,
Ref{B} = Ref{coshTp}2 - Ref{B'} - Ref{cosTp}¥; } (348)

ﬁ Roth (+Tg) - F . Roth (—I‘B}=Ref{cmhf‘a}’f’-%-ﬂef{mf‘a}a- )

Add to them the set {Tp) = (RHoth I'g - Rot 8g) of modal rotational matrices performing operations (346,
Here the matrix Reth I'g determined by (343) hes the trigonometric subspace of the minimal dimension
among all matrices of (Tg). In particular, it enables one to evaloate the rotation variant of modal matrices
for transforming affine projectars into D-forms, i e, developing further relations (311}, (312]:

Ry - Ruth[-l—l"gl.m}-%-ﬂath (—I'p/2)- By =D{z§}, (347
Ry, - Roth (—I'g/2)- B'- Roth (+T'g/2) - Rw = D{B'}.
As in the guasi-Luclidean space and geometry — see (257), (258) in sect. 5.7, in psendo

Euclidean ones only the compatible rotations and reﬂt.'{.t ions of two types as principal hyper
bolic and orthospherical are used. lo the motive version, these rotations satisfy relations:

Roth {+T13} - Ref{coshT}® - Roth {£T12} = Ref{coshT}%, (342)
Rot' {+613} - Ref{coshT'}® . Rot {+8012} = Ref{coshT'}".

For the projective version, we use analogue of (256) in (356) with reflectors in anpular
variant from (211, 212} and adding to them one orthospherical reflector; and we obtain the
compatible hyperbolic reflections of two types, which all satisfy relations:

Refa{¥L12}} - Ref{coshT}® - Refa{£T12}} = Ref{coshT}®, } (340)
Refa{+61} - Ref{coshT}® - Refa{+B1} = Ref{coshT}°.

Transferring through the reflector-tensor Ref{coshT}2, the principal reflector is trans
formed into its muatual one aonihilating; the secondary reflector is transferring through both
unity parts of the reflector tensor without chanpes and annihilating too!

Relations (348 349) are psendo-Eoclidean analogues of quasi-Buoclidean ones (257, 258).
They produce the pseudo- Buclidean space (P9, its geometry and tensor trigopnometry with
the given reflector metric tensor, introduced independently, as well as for the external type of
the two non-Euclidean hyperbolic geometries with an index g, The latters at g = 1 are two
hyperholic geometries on two hyperbolic hypersurfaces of the constant negative curvature .
These two and peneral hyperbolic geometries realized on twg hyperboloids of the radins
parameter B embedded into the pseudo- Buclidean space (PP with a set reflector metric
tensor. We will continue this topic in Chs. 11, 12, 6A, TA and 10A with complete tensor and
differential trigonometric descriptions of such motions with the laws of their summation.
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6.3 Reflector tensor in quasi- and pseudo-Euclidean interpretation

Applications of hyperbolic and spherical matrices of the two principal motive types and
reflective ones in tensor triponometry need in correct theoretical justification including
a choice of binary spaces with their reflector metric tensors, admissible transformations
and coordinate bases.  Fix an initial arithmetic (affine) space with the universal unity
base By = {I}. Then introduce in this space by quite independent way the reflector
tensor for beginning in its general form as {VT}s (see in sect. 5.7). In this initial base,
it determines the non-conzial orientation of the guasi-BEuclidean and pseado-Eoclidean
spaces and | for example, the tensor rotations of three types defined before in (257) and (348):

in the space (Q"9) = (E™) H (£9) = CONST, set of principal spherical rotations (Rot ®)
Rot ® - {V1}s- Rot ® = {VI}s = Rot (—®) - {VI}s - Rot (~&);
in the space (PP = (EMBE(EY) = CONST, set of principal hyperbolic rotations (Roth T')
Roth T - {VT}s - Roth T' = {+/T}s = Roth (-T) - {+/T}s - Roth (-T");
in both spaces, common group of induced or independent orthospherical rotations (Rot ©)
Rot' © - {\/T}s- Rot ©® = {\/T}5s = Rot © - {\/T}5 - Rot’ ©.

The new guasi- Euclidean space (@) (see initially in the end of sect. 5.7) is determined by
Euclidean gquadratic metric and the set reflectar tensor {v/T}g. They define the admissible
transformations, forming the new complete group of guasi-Buclidean rotations {motions |:

Ey=Rot®-Rot ©.E, or E3 = Rot © . Rot & . E,. (350)

Ey. Es. Ez are called rotationally connected guasi-Cartesian bases. The quasi- Enclidean
sealar, vector and tensor trigonometries are realized in spaces {@™9), with respect here to
the right quasi-Cartesian bases such as (350).

The well-known psewdo-Ewclidean Minkowski space (PP (see in Chs. 10 and 11)
is determined by pseudo Eoclidesn gquadreatic metric with the set reflector metric tensor
{vT}s. They define the admissible transformations, forming the complete Lorentzian group
of psewdo- Euclidean rotations (motions):

Ey=RothT -Rot ©.Ey or E3 = Rot ©.Roth T - E,. (351)

..'_:_.-'1, ..'_:_.-'2, .E';; are called rotationally connected psendo- Cartesian bases. The psendo- Enclidean
sealar, vector and tensor trigonometries are realized in spaces (PP, with respect here to
the right psendo- Cartesian bases such as (351). ~

lntroduce the right so-called universal bases including the original base By = {1}

(Ery) = (Rot ©-Ey) (Ej,Ey =1, Ep {VI}sEp, = {VI}s, det Ep, =+1).  (352)

The transformations {Rot ©) form the orthespherical subgroup, what s the intersection of
these Quasi-Enclidean and Lorentz groups, but only with respect to universal bases (Epy)!
A reflector tensor and a choice of the principal triponometry from two kinds (spherical or
hyperbolic) determine the spaces quadratic metric with internal and external multiplications
from their two kinds (either Euclidean or pseado-BEuoclidean); and vice versal  The two
complete sets of admissible rotations in these two binary spaces {quasi-Euclidean or pseado
Euclidean) contain the subsets of Special quasi-Eoclidean or Lorentzian pseoado-Eoclidean
rotations with the parallel translations, which stipulate the spaces isotropy and homogeneity!
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Recall (1), that g is a quantity of nepative unity eigenvalues of the reflector tensor of any
binary spaces with such a reflector tensor — see in Chs. 10-12 and in Appendix.

The original base E; = {I} is the simplest universal base by its form. Universal bases
enable one to jointly realize quasi-Buclidean and pseudo-Euclidean trigonometries on the
basis of concrete spherical-hyperbolic analogy, but only with one-step motions. Note, in
particular, that in STR (special theory of relativity) physical one-step motions with respect
to relatively fixed Observer are described in terms of universal bases.

Consider how a reflector tensor acts on matrices eigenprojectors in both spaces.

Let B be a null-prime matrix, used initially in an affine space (A™). lotroduoce in the space
the reflector tensor as the mid-reflector of the tensor angle for the matrix B in two following
variants (with introducing metrics for external and internal products):

{VT}s = Ref {cos®5}° = Ref {cosh[5}°. (353)

We got gquasi- and pseudo-Fuoclidean spaces. Here the identity is true only in (Epg).
ln the first case, the symmetric projectors EH’ and BB are spherically orthogonal each
to another in Euclidean and quasi-Euclidean spaces with a metric tensor {I1}, 4. e, reflector
tensor (353) does not determine here internal and external products.
In the second case, the non-symmet ric projectors E and g are hyperbolically orthogonal
each to another in a pseudo-Euclidean space with metrie reflector tensor {11} according to
(353). This fact follows taking into account last formula in (346):

(BYRef {coshT5}°B = Ref {coshT5}°-B.B = Z.

Consequently, B~ (sect. 21) is a hyperbolically orthogonal guasi-inverse matriz with
respect to reflector tensor (353) if B is null-prime. Also, in this case, the direct sum {im B) &
{ker B) is hyperbolically orthogonal. Then for non-symmetric projectors E and g, their
eigen subspaces corresponding to the eigenvalues 0 and 1 are hy perbolically ort hogonal too.

Equirank projectors E and E as well as gaud ﬁ and their planars are transformed into
each other with hyperbolic rotation in (346) as hyperbolically orthogonal 2-valent tensors
and tensor objects. Projectors E and ﬁ hyperbolically orthogonally project respectively
into {im B} and (ker B}. Projective formulae (186)-(197) are transformed. 1o the symbolic
octahedron (Figure 1) the diagonal RS penerates two psendo-isosceles trianples BZS and
RIS with equal hyperbolic angles FRZS = ARIS =Tg. These facts are responses to the
introduction of reflector tensor (353) in the hyperbolic form.

As hyperbolic analogues of Moivre and Euler formulae, we have the motive tensor angle
from the rotation tensor in cell-forms — see in (287):

Roth{mI'} = cosh{mI'} + sinh{mI') = Roth™ T =

— exp{mI'} = {mI'} = In Roth{mI'} -+ T =In RothT.

Ci_:ﬁhm}‘j sinh myj 0 myy
sinhmry;  coshqyy Y 0
{Roth™T'} = . = exp

ol m

ln particular, here the value m = 1/2 gives arithmetic and trigponometric square root [ 343)
of the rotational matrix.
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Properties of the matrix, no depending on the rotation angle, are the same ss of a spherical
deformational matrix. This matrix is symmetric and positive definite, its eigenvalues are
pay = coshyy +sinhqy = 0, payp1 = p:;jl = cosh y; — sinh vy > 0, and also may be in
addition gy = +1.
Any pair of positive numbers £ and 27! may be uniguely represented in terms of a scalar
hyperbolic angle, in particular, as 8 2 % 2 matrix (see sect. 5.10).

In order to establish compatibility of certain transformations for some tensor angle with
the space reflector tensor in both kinds tensor triponometries on the basis of quadratic
metrics, one may use the defining relations (257), (258) and (348), (349) as criterions.

6.4 Scalar trigonometry in a pseudoplane with main relations

A diagonal reflector tensor {IT} produces a conzially oriented pseudo Enclidean space
(P™H9), which has binary structure and admissible to it the pseudo-Cartesian bases E.
Bepresent the hyperbolic rotational matrix Roth T at alevel of the jth 222 cell in W-form
(324) with respect to the trippnometric base By = {1}, where the rotation realizes along the
charaeteristic quadrohyperbola of coupled hyperbolae (Figure 3). In the jth eigen pseado
plane, two acxes — ordinate and abscissa are the eigenvectors @ and v for the Dforms of
cosh T (with £ cosh~y) and {Ii_} (with £1); two asymptotes of the gquadrobhyperbola with
respect to any admissible base E are the main and latersl invariant diagonals — lines with
zero quadratic metric. Hence, these two asymptotes for all similar quadrobyperbolae are
invariant under hyperbolic rotations of the base. If a psendo-Eoclidean space dimension
n is greater than 2. then the disgonals correspond to an invariant dividing hypersurfoce.
Atg=1 n > 2 it is an asymptotic hypersurface for the embedded hyperboloids 1 an 11
(psendospheres of radii B = £1 and B = 34) — see more in Ch. 12, 1f the j-th pseoadoplane
cuts such hyperboloids, then, on it in the base E;. the rotation {Roth T'}ays is performed
along the quadrohyperbola. In hyperbolic quadrants, pesitive sealar angle vy is measured off
the coordinate azis till another side of the angle in divection to the nearest main invariant
dingonal, and vice versa. Hence, the angle cannot be visually more, than w/4 in the universal
base By at Figure 3. Accordingly, for the pseudo-Eoclidean scalar and tensor triponometry,
we adopt that the complementary to 7y hyperbolic angle vy are measured off the second side
of -y till this invariant diagonal. The identical definition is done at front Cover of our book.
Then visually their sum is equal 7/4 and last is right! See this further more and in detail.

The psendo-Buclidean length is noted further as A with Lambert anpular measure .
The Eoclidean length [ of the are s obviously greater its psendo-BEoclidean lenpth A

T2 Ya
A= R [ @S~ @eain)? = Rirs — ) < R [ /@Sh + decshi )
T T

The area of a hyperbolic sector is § = R (v — 71)/2. In these four quadrants the radius
vectors of psewdocurvature £R or £iR is hyperbolically orthogonal to the hyperbola tangent
at the point of tanpency in an admissible base E and dA = Rdy. These vector and tan
gent determine local hyperbolically connected coordinate axes. The focos of the hyperbola
corresponds to the especial hyperbolic angle w == 0881 rad:

sinhw =1, coshw = +2, tanhw = v2/2, cothw = V2. (354)

By sine-tanpent analogy, plw) = o4, y(7/4) = w. Thos the angle or the number w is the
hyperbolic analogue of the angle or the number /4. We shall often use the angle w in the

sequel. For example, sin{m/4 + iw) = 1 £ (v2/2)i; cos(7/4 + iw) = 1 F (v/2/2)i.
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There exist infinitely many kinds of specific analogies. Let us consider some of them.
Introduce specific tangent tangent analogy for the viswal angle @r (or gr) also with respect
tothe base By (i e, at g = 0) with this simmetric condition (see at Figure 3, quadrant 111):

tangy =tanhy — @r = pr(7) = arctan(tanhy), (—7/4 < pr < +/4). (355)

This angle-analog e of the angle  are determined by the same radivs-vector . That is
why the angle @p(y) i called here visual Thus, this visual angle @r may be is used for

deseriptivity in STR (see Ch. 1A), what is useful only with respect to the universal base Ey.
This mapping leads to other relations between spherical and hyperbolic Inoctions:

sin e = sinhvy/+/cosh 2y, cosio = coshy/+/cosh Ty, } (356)
sinhv = sin g, /08T, coshvy = cos gy /y/cosh Tp,.

w7} < @2(7) <9 < Yr. (For example, @p(w) /2 35%, (7/4) = 00.)

Generally, such visually obvious specific spherical-hyperbolic analogies (in that number
for angles € and v) are reduced to their identities in varions angular intervals similar to

o) <m0 ) ) e

where spherical interval is limited: —w/4 < k12 < /4. These two variants are import ant:
1) k1 = k2 = 1 (this corresponds to (331-1) with Lambertian and Gudermannian functions),
2) ky = ka =2 (this corresponds to main visual anslogy (355)) also in By

The joink application of (2] and (1] gives pure geomefric (using a compass and a ruler!] duplicafion
and hzseclion of hyperbolic angle v with respect to the base B, becanse we don't have & hyperbolic compass
[see at Figure 3], Under their joint acting, with preliminary duplication of e and bisection of @ we get:

(a) ¥ = wr(7) = 2¢ — tan2p = 2tanp/(1 — tan” @) = 2tanhv/(1 — tanh? y) = sinh 2y; } 59
(B) v = wlv) = ¢/2 = tang/2 =sing/(1 + cosy) = tanhy/(1+sech 7)) = tanh /2.

= |er(7)] < le(1)l < R2er(v)l-
Indesd for the inequality, if cose = sech v and cos(2pr) = sech (29). then cosy > cos(2pg): but if
tanp = sinhy and tangpgr = tanh -y, then |tang| > [tangg).

ln 1763, ). Lambert, using abstract analopy of his hypothetical imaginary sphere with
the real-valued sphere, revealed the anpuolar defect of a hyperbolic triangle and connected it
with its area and radius of this sphere |33], in addition to the Th. Harriot connection from
1603 for the anpular excess of a spherical trianple. Great creators of the hyperbolic non
Euelidean geometry, as a holistic axiomatic system, N. Lobachevsky and . Bolyai used the
abstract and specific spherical-hy perbolic analogies with respect to the spherical ppometry
for inferences of the hyperbolic non-Euclidean geometry all metric relations.

Thus, for the Lobachevsky spherical angle of parallelism, there holds: {a) = £, where
the latter & complementary to spherical motion angle @), According to countervariant
analogy (331-11), we obtain the well known Lobachevsky formula I{a) = arceos tanh - [40].
It was by the first manner of introduocing in the hyperbolic geometry of its principal motion
angle ~, namely, through the finite and visnal spherical conntervariant parallel anple of
Lobachevsky II(a) = £, but it is correct only in the universal base, for example, simplest Ey.
Contrary, the angle of motion ~ generates by direct way (331-1) the covariant finite spherical
angle of parallelism @ = arcsintanhy = 7 — £ also in By

Tensor Trigonometry given us the opportunities to found the fundomental ezact and
correct connection in any own base .E'k between principal v and complementary v hyper
bolic angles in [16] - see further in (360 1Y, Y) and on the book Cover. Their bond is
sipnificantly more complex. Moreover, vis the parallel angle correct also in any own base Eg!
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The analogy (331} gives all trippnomet ric formulae for a pseoado-Euclidean right triangle
ABC (plane triponometry began with solving a right triangle!). See visoally at front and
biack Covers of the book! Its legs a and b lie in two hyperbolic quadrants (suppose a < b).
The principal angle v at the vertex A is contrary to the leg a < b Denote the pseudo
hypotenuse as g The common pseudo-Euclidean Pythagorean Theorem is g2 = B — a2,
becanse a << b If the angle v is in hyperbolic quadrant 1 (Figore 3), then the triangle ABC
is exterior, g is "space-like" | i e is outside of two sotropic, or light in the relativistic physics,
dinpgonals. If |a| = |b|, then « is infinite, g is situated onto the disponal with zero pseado
Euclidean length If the angle « is in hyperbolic quadrant 11, then the triangle is interior,
g s "time-like" i e is inside of two isotropic diaponals. Below for determinacy we choose
the exterior triangle ABC, i e at back Cover. lts legs a and b belong to distinet eigen
subspaces of reflector tensor with eigenvalues —1 and +1. In order to infer all trigonometric
formulae between hyperbolic angles of the right triangle ABC, we consider preliminary the
locations and behavior together of all its hyperbolic angles and sides with Euclidean analogs,
preliminary, according to sine—tangent analogy (331-1) in the universal base Ey.

The hyperbolically acute angle v at the vertex A is contrary to the leg a < band adjacent
to the leg b Positive scalar walues of the angle are measured in direction to the main
invariant dingonal off the leg b = AC (i, e, Cartesian axis x). The hyperbolically acute
complementary angle v is defined by us correctly as the angle at the vertex B between the
psendo-hypotennse g = AB and the internal isotropic diagonal passing through the vertex B
lts spherical analogs are (7/d—@g) by (355) and (7/2 —) by (331-1). Positive valoes of the
angle v are meassured also in direction to the isotropic diagonal off the psendo-hypotenuse.
ldentically both these acute complementary anges are defined topether as it is shown at
Figure 4, Ch. 12, and in Appendix at Figure 1A, Che 3A.

The infinite_angles § = oo (with analog pr = w/4) are disposed, for example in the
universal base By, between the pseado-Cartesian axes and the internal isotropic disgonals.

The as if hyperbolically right angle v is disposed between the legs a and b within of both
hyperbolic quadrants | and 11 The angle is equal to zero in hyperbolic metric, becanse it
consists from two infinite antithetical angles +48 and —4 {pr = £x/4) (directions of these
angles measurement are to one side, e off b= AC tv a = BC).

The combined hyperbolic obtuse angle ABC at the vertex B is contrary to the leg b > a
Geometrically it consists from the hyperbolic intrinsic acute angle v with the hyperbolic
infiite angle § = +oo (it is as if the geometric sum v+ 8). Such an obtuse angle appears on
the psewdo-Euclidean graph with a compensatory angular excess due to the fact that we can
wse only Euclidean geometry for viswalization, but v and v in the right triangle are acute and
guasi-aeute angles and with equal rights. 1o the right triangle, they complement each other
up to infinite angle 4. In the plane and eylindrical hyperbolic geometries, on the
Minkowski hyperbolids (Ch. 12), these complementary hyperbolic angles relate
to the lengths of the hyperbolic figures legs, including of right triangles!

When the psendoplane is convoluted into a hyperbolic surface, these original hyperbolic
angles now express the lenpths of the opposite legs instead of their previons pseado-Buoelidean
lengths, and the original hyperbolic angles are transformed into spherical analogs with the
angular defect of Lambert in hyperbolic triangles [36]. Onthe tanpent plane and psendoplane
to the hyperbolic surfaces, the Enclidean and pseado-Eoclidean pictures are restored!

The sine-tanpent analogy determines one-to-one correspondence between 3 hyperbolic
angles: v, v, § = oo (as principal of motion, complemetary and infinite with right one)
and their spherical analogues: @, £ d = 7/2; and for three sides of the right triangle in
psendoplane and in quasiplane with respect to the universal base E; for specific analogy.
Accordingly, elassification of hyperbolic angles differs from spherical anples. This relates for
all angles as we saw above. We add to them the independent orthospherical angle 8 (or ©).
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Under this map the first Buclidean axis (with the leg b) is invariant, now as the fiest
Cartesian axis; the main invariant disgonal is transformed into the second Cartesian axis
(under the angle () = 7/2). The leg a = CB is rotated to the left at spherical anpgle
wly) into the new leg ag = CB', 1. e, up to its contact with the central circle of radius
gg = g = VB — a2 at the point of tangency B, now as the new vertex of the triangle AB'C
in the guasiplane; the psendo-hypotenuse g = AB is transformed into the new leg AB' = g
with the same length. Now the principal anple @) at the vertex A s contrary to the
rotated leg ag = a, the complementary angle £(v) at the vertex C s contrary to the new leg
AB' = gg = g, and the new right angle d = «/2 (from the infinite anple £48) at the vertex
B is contrary to the new hypotenuse AC = bg = b The guasi- Euclidean Pythapgorean
theorem is & = g° +a®. And we have two psendo-Euclidean Pythagorean theorems with
hypotenuses g and legs a. Now we can realize the covariant sine-tanpent (at @ # £ /2) and
conntervariant sine cotangent (at @ # 0) analogies, together with various functional bonds
of two complementary hyperbolic anges | Under metric tensor {IT} for 4 angles we obtain:

sinhy =a/g =tany, tanf = g/a =sinhv — sinhy-sinhv =1,
coshy =b/g =secyp, sing = g/b=tanhv — coshvy-tanhv =1,

coshy - tanh v = coshv - tanh v = 1 = sech - cothv = sech v - cothy; (359)
(hv=0&uvy==200) & (p{=0&Lp==r/2).
sinhy = csch v =a/g =tanyg = cot &, [sinh(y,v) = csch (v, 7)),
coshy = coth v =b/g =sec p = csc £, [+cosh(y,v) = coth (v,7]), (360 — 1)
tanh~y = sech v = |a|/|b| = sing = cos&, [tanh(y,v) = +=ech (v,7]));

(sinhy =sinhv =1 < coshw=cothw=+v2 & y=v=w/)

cosh®(7,v) — sinh?(, v) = 41 = coth®(v, 1) — cseh®(v, ) — two invariants !
tanh® (7, v) + sech?(y, v) = 1 = sech®(v, ) + tanh?(v, 7) — two one step quasi-invariants !
—1 < tanh(v+v) =sine < +1 & {—oo=—-4 <v+v < +d = +oo} — the Theorem!

For v, with (357), var. (1) and +d£ = Fdp, we obtain useful functional and specific bonds:

dv,y = —dy,v/sinhy,v = —dp,{/sing,§ = +df, p/cosé,p &
+ +y,+v = Incoth{v/2,v/2) = Incot(£/2, /2) « (331)
+ —,—v = Intanh{v/2,+v/2) = Intan(£/2, x/2) + (331)
 exp(—y, —v) = tanh(v/2,v/2) = tan(£/2,©/2); (¢,€) € [0+ 7/2].

One of applications of all analogies (360) is a natural introdoction of the various
parallel angles in non-Fuclidean geometries — see above and in the end of Cho 1A The
as if visual parallel anpgle of Lobachevsky H{a) [40, 49 is not an angle acting in by perbolic
geometry, because it has a principal spherical nature and correct only in the universal bases
Eiy, 5o, in Ey 1t is equal to complementary spherical angle £ = Tl{a) in (331-1). In
Lobachevsky form it is gotten by a brief way, with countervariant anslogy (360-11) and only
in the universal base By (in fact, in the enveloping binary space (P™1)) as follows

(360 — IT)

tan £/2 = exp(—y) = £ = 2arctan|exp(—7)] = 7/2 — = arccos(tanh~y) (360 — IIT).

(See it in well-known monograph by H. 5. M. Coxeter [49, p. 208] with more complex infer )
From (360-11) we get the parallel and complementary angle v = Pla) correct in any bases By,
with their exact connection:

tanh v /2 = exp(—v) = |u = 2 artanh [exp(—)] | = |"I" = 2 artanh [exp(—v)) | (360 — IY).

|sinh~y -sinhv =1| & |cosh®y - cosh® v = cosh® y + cosh® v (360 —Y).
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Rule 4 (sect. 5.8) stays valid also for by perbolic principal rotations, reflections and one-step
deformations. For instance, after an change in (324) of angle T' by complementary angle T
with the use of formulae in (360), the new rotational function of T pives the rotation at T:

Roth T = | cothy, | .

| 8

And two invariant relations above correspond to these two types of rotations!

sinh vy
cosh v;

cosh vy
sinh v;

coth i

cach (361)

6.5 Hyperholic tensors of rotation and deformation with frame axis

Consider matrices of quart circle (341 If & certain matric structure in this quart circle is
known, then other ones (spherical and hyperbolic) may be quickly evaluated with the use
of abstract or specific spherical-hyperbolic analogies (for the latter, initially in the common
universal base Ey). So, with the same natural reflector tensor as (1TAL), from spherical
rotations (3137, (314) or deformations (3197, (320) obtained in Ch. 5 in canonical E-forms,
the analogous structures for such hyperbolic matrices in canonical E-forms follow (with their
useful Invariants and quasi lovariants as above in (360)):

{roth (£I')}axa (362)
1+ (cosh~y — 1) cos” ay | (coshy — 1) cosa cosaz | (coshy — 1) cos o cosaa | & sinh -y cos an
{coshy — 1)cosoy cosag | 1+ (coshy — 1) cos” g | (coshy — 1) cosag cosayg | +sinhy cos ag
{coshy — 1) cosoy cosay | (coshy — 1) cosogcosay | 1+ (coshy — 1) cos® g | £ sinhy cosog

+sinhy cos a +sinhy cos oz =+ sinh+y cos aa cosh y
{roth (1)} nityxmsn (363)
Inyn + (coshy — 1) -eqe), | Xsinhy-ey ,
+sinhy-el, cosh y (ea€y = €aty).
Such tensor function realizes the hyperbolic rotations at £00 alse similar to acting 5 arm!

{defh (£I') }axa (364)
1+ (sech ¥y — 1)cos” an | (sech v — 1) cosan cosaz | (sech 7 — 1) cos e cosaas | F tanhy cos g

(sech v — 1) cosay cosag | 1+ (sech v — 1) cos®ag | (sech v — 1) cosazcosag | F tanh -y cos ag
(sech v — 1) cosay cosay | (sech 7y — 1) cosageosay | 1+ (sech v — 1) cos® g | F tanh-y cos ag
=+ tanh -y cos on + tanh cosaz + tanh  cos o sech

{defh ()} nsnyxn+ny (365)

Inwn + (sech v — 1) - eqef,
+tanh - e,

Indicated 4 x 4 E-forms (362), (364) with frame axes as hyperbolic analogs of (313),
(319) may be also inferred directly from their original 2 x 2cells (324), (326) as the same
analogs of (259), (202) with the scheme similar to (315), (316).

An inversion of E-forms (363), (365) of element ary rotational and deformat ional matrices
consists in application of the simplest reflective operations: e, — (—e,) equivalent here to
rotation rot I1- ey = —€y and analogical T' = (—I'). Generally, orthospherical rotational
change of an universal base rot 8 - By = Eyy leads only to chanpe of the directional cosines
unity vector: rot’ Opun -8 = 1ot (—Bpywn) -8 = €4 within the same Euclidean subspace.

Ftanh~y-e,

(eqe], = eqel)
sech ot el




Chapter 7

Tensor trigonometric interpretation of prime matrices
commutativity and anticommutativity

7.1 Commutativity of primme matrices

Two biorthogonal prime matrices Py Pa = PPy = Z are commutative and anticommut ative
simultaneously: PPy = + PP = —PBP) = Z. By the reason, they always are sinpular:
ry + 12 < n Duoe to commutativity, the biorthoponal matrices Py, Po as prime ones may
be converted also into their D-forms Dy, Ds in a certain common base, where D Da = 2.
Consequently, such muoltiplications PyFPs may be analyzed from the trigopnometric point of
view enough only for nensingular prime matrices (they have not such biort hogonal blocks!).

Commutative prime matrices Py and Py are disgonalized always in some common base:

D(P) D(P)

ERIEE

—1
o , b , D(P)=V_!PVoy.

lndeed, if wis any eigenvector of the matrix Py with the eigenvaloe poioe, Pp-uo=p -1,
then the commutativity of the matrices Py and Py implies the equalities:

FRh-u=EP-u=FK - (pg-u)=p-(B-u)sFHB-u=v-u

From where the same eipenvector w of Py relates to Py too. Further, we must continoe this
process onto the rest invariant subspaces as the direct complements to Wy, 0g, ..., W _yy.
This property determines a set of common k transections of invariant subspaces of Py, Py
(see them in sect. 2.2) with the eigenvalues of the prime matrix P = Py Py as pg - vy, which
uniguely determines the set of common bases of disgonal forms for commutative Py and Pa.
Contrary, if prime matrices of the same size P) and Py in some common basis have their
diagonal forms, then they are commutative in it and, therefore, in the original basis too.

This diagonal structures in the common base with commutativity of prime matrices are
invariant under the following modal transformations of the pair binary (7, k)-th cells, that
are compatible, in their affine three W-forms:

Wy Wa W3
EUR I R I R
b) :l:d_l 0 1

| |

The first matrix is similar to affine reflection, it merely chanpes pairly directions of the
courdinate axes, in peneral with their deformation. The second and third matrices are
similar to rotations, they permute pairly the diagonal elements as well as coordinate axes
(with their compression-stretching ).
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All compositions of such transformations of these three types form the complete set of
maodal matrices with respect to the invariant D-forms given above. Figenvalues of Py and Pa
are supposed to be distinet, ot herwise the set should be widen, it should contain base changes
in the intersection of Py and o invariant eigen subspaces with multiple eigenvalues.

The three affine types of modal matrices indicated above pive rise to their admissible
trigonometric Wforms in (£7) (i, e, at d =1):

Ref{I*} Rot (I1/2) Roth (+ iI1/2)

EPTI R R
R

Main corollaries

1. According to (366), the following trigonometric Rule is valid: for commutative prime
matrices Py, Pa, ... their common bases of D(P), D(By), ... may differ in (E™) namely by
admissible and compatible modal reflections or rotations at spherical angle- arguments &-11/2
or at psewdohyperbolic angle- arguments k- 400/2, [k = 0,21, £2, ...} wunder their modal
transformation as bivalent tensors.

2. According to Corollary 3 in sect. 5.7, such modal transformations are identical for the
coordinates aves {similar to reflectors) to their real rotations or reflections at double spherical
angle-arguments k-I1 or psewdohyperbolic angle- arguments k-3 (B =0,£1, 2, ... ) under
their modal transformation as monovalent tensors (either from the left or from the right ).

7.2  Anticommutativity of prime matrices pairs

If & pair of prime matrices Py and Ps are anticommuotative, i e, PPy = —PB P, then
PP, = PP}, PP = PP, P!P}-PiP}.

Suppose that the pair of anticommuot ative prime matrices Py, Ps have no biorthogonal blocks
(seesect. 7.1). Thus, in first | sizes of these nonsingular matrices are even and | in second, the
matrices and their multiplications are nonsingular. According to the principle of binarity
(sect. 5.7}, they may be converted into the compatible W-forms in a certain common base

E =Vw{E} with the result:

W(P) W(Py) W(R) = V' PV, i=12.

Execute such modal transformation Vi of W({P)) and W) together, in order to
convert Py into its disgonal form. In the new common base, Py and B oas before are
anticomt ative,
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Now the property is valid iff their compatible j-th 2x2-cells hawe disgonal and contradiagonal

forms (it is proved by the action D(P)Ps = —BD(P):

+a 0 0 bya
0 —a ’ bay 0 : (367)

| SN

If the matrix Ps rather than Py is diagonalized, then 2 x 2-cells in the new base are

e

azg 0 ! 0 -b (368)

In addition in the both cases there holds: a = Jfaas, b= vbhabs at all indices 3.

{The special case when both the matrices may be in contradiagonal forms — see later)

Indeed, for the variant Iy = Py - Ps, in general case, we have:

M — [ a; 0 ] ] [ P11 P12 ] _ [ a1p11 a1p12 ]
! 0 as pu pa ‘ { aspa1  aspae '
And, for the wariant Ils = Py - Py = —1I1y. in general case, we have:

I, — | P11 P2 | , | ay ajpi1  aspiz |

m m P R e
[ S S

We give Py in its disgonal form, and then it s necessary to find the form of Pa.

Obviously, we have the initial conditions: ay #£0,as # 0 (as well as by #£ 0, b 5 0).

Further, there hold:

aipi1 = —a1p11, AP = —asps —+ p11 = para =0,

ajp1a = —aspy2, aspy = —ajpay —+ ay = —az = +a; pra # 0,pn # 0.
Analogously, for diagonal elements of Py there hold: by = —ba = +b

After permutation of a; in (367), for its two contradiagonal elements there holds:
det Pj = —a® = —aja - as;. Analogously, there holds: det Py = —b = —bya - bay !

The covariant column matric converting the contradiagonal form in (367) or (368) into
D-form may be evaluated, for example, with the use of results in sect. 2.2



CHAPTER 7. TENSOR TRIGONOMETRIC INTERPRETATION OF PRIME
116 MATRICES COMMUTATIVITY AND ANTICOMMUTATIVITY

This modal matrix may be represented in the following peneral affine trigonometric form,
for example, for contradiagonal form of Py in (367) as its j-th 2 x 2.cell:

Wei -W(P) Wear =

_ 2\ B 0 bia 2 \/ _
_\."'E by V2 l bﬂl 0 J +v"§ b el
ERRIT) T ER'RIT T
+vbiby 0 B +b 0 3
0 —vER |T| o - [TPP) (369)
Weot = {Rot w/4}ay = W' . {Rot =/4} - W, (370)
D(P)y =W, W(P) We =W Vig' P Vig - Wea =V - P Vg, (371)

Here det{Rot w/d}ar = 1, p1a = cosw/d £isinw /4 Formula (370) determines a spherical
rotational matrix in a certain affine base. In the real Cartesian base, this matrix s Rot « /4;
in complex binary Cartesian base (271), it s Roth (—iw/4). Besides, due to (366)-368),
the diaponal and contradisponal Westroctures are preserved under the base rotations and
reflections of their Wforms as in (366), i, e, at compatible right tensor angles.

Consider most important special cases of normal matrices anticommuot ativity what are
related to the tensor trigonometry in (E™). lo general, aqa = +asy, ba = Lbay, and then
Viwr = Bw. Suppose Py = My, Po = Ms are anticommutative real-valued normal matrices
(or complez-valued adequately normal ones — sect. 4.2). They may be either symmetric (8),
or skew-symmetric (K). Three trigonometric variants ( Sy and Ss, § and K, Ky and Ka)
are exposed with the use of (367) and (368). One else variant corresponds to the case when
the matrices § and K may be together in contradisponsl forms. (But it is combination of
two simple variants) All these variants are:

A)aip =an = +a, big =byy = +b; P = 317 Py = 83, 3:; = —83 - 81. This
corresponds in (183) to §) = cos 'I? Sy =sin® a2+ =1 St + .5@ . Then
. 2 - 2
Viu — Ry - +‘-’E§ﬁ ﬁf; — Rot w/4- Ry.
B) a1z = an = +a, —ba = +bn = +b/i;_ =5 FB=K, §-K=-K-§ This

corresponds in (2090) to § =secd, K i.ta.n@{ — b =18 _K?=1I). Then

Voot = By - _{3%?2 _Ef = Roth iw /4. By, (see in scheme (322)).

We have in (204) § = ms@ K= tta.u@ and the unusual pair § = Dusﬂl K =ism® (in
the last case: cos®sind = {nusﬂlsm@] — sin’ B cos® = — sin B cos B).
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C) a1a = any = +a = ic, —bja = +bay = +b/i; Ky -Ka = —Ka-Ky; - — b =1,
—Kj] — K3 = I. This variant is given for completeness.

D) Begin with conditions from (B), then transform the base E for both the matrices
by Rot w/4d Now the matrix Py and the matrix P (invariant to this rotation) have two
different contradiagonal forms with the jentries ayg = as = +a,, —ba = +ba = +b/i.
This corresponds in (204) to § =sin®, K =itan® (or § =sind, K =isind). The
bases of such anticommutative trigonometric matrices in their diagonal forms are differed

by amalpgamated rotation Roth iz /4. RBot w/4d or Rot w/4- Roth iw /4 (or by the tensor anples
algebraic sum). For the matrices there hold aqabsy = —aaybya.

The main result in the tripopnometric forms i the following,

1. Nonsingular prime matrices Py, Py are anticommutative iff bases of their D-forms are
connected by compatible rotations or reflections at tensor angles £w /4 or / and £ /4.

2. Sizes of nonsingular anticommutative primee matrices Py, Py are even.

3. Anticommutative singular prime matrices Py, Po have compatible biorthogonal blocks,
what may be converted into biorthogonal D-forms in their common sub-base.

Note, as in the end of sect. 7.1, that the rotation angles £ /4 and /4 correspond to the
deformational angle +w or $iw (nenperiodic) in universal bases — see in Ch. 6.

I

Further consider some triponometric examples of the complex-valued Hermitean normal
matrices Ny, Na corresponding to examples A, B, C) exposed above. We have

by = pi(cos By +isinB1), be = pa(cos fa +isinfa), o1 > 0,p2 >0, 51, B € [0;2n],

b= /biby = \/p1pz expli(B1 + f2)/2],
Vb2/b1 =/ pa/p1exp(ifi2), +/b1/b2 =+/p1/p2exp(—if1a), B2 = B2 — br.

As above, variants by; = +bay, ay; = faqy, Viyp = By are possible. And more complicated
vases |byg| = |bag| = po,  |arg| = |asg| = pa; Vw = Uw are possible too.

Let Py = Ny, Po = N be anticommutative Hermitean normal matrices. Here they may

be Hermitean or skew-Hermitean, this corresponds to three anticommutative pairs: Hy and
Ha H and Q. ¢ and Qs The affine spherical unitary modal matrix Vg is

[ g F T L{ —22 . Rot x/4- Ep*‘ﬁ”}? (372)

(it is more peneral rotational complex modal matrix, then ones used abowe), where

Ezxp(+ifh2/2) = {Rot (+512/2)}e = Uw - { ﬂPHEﬁmﬁ} up(—?ﬁm;ij } U

And if f1a = fa — 1 = w/2, then the modal matrix is Roth ix/4 in variant (B) above.

It corresponds to the compler-valued binary Cartesian base — see (287) in sect. 5.9
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More generally, formula (372) expresses Rot m/4 in a Hermitean orthopgonal base with
imapinary shift at the anple {819 in formuolae (367) and (368):

Ny Nz
+pa expli{og + a@3) /2] 0 0 prexplify)
0 —pa expli(a + az)/2] ' Py exp(ifz) 0
Ny Na
. 0 o exp(iceg ) . +pa expli(f1 + £2)/2] o
P Exp{icg) 1] ' 0 —pa expli(By + B2) /2]
For the pair Ny - Na = —Na - N} three important special cases as above are possible.

A) By + Bay = ayy +asy = 0. Then Ny and Na are the anticommutative Hermitean
matrices Py = Hy, Po = Ha. lun the special case a? - El? = 1, then these matrices are the
projective Hermiteized cosine and sine, and H{ + H3 =1, Hy - Hy = —Hs - Hy.

B) By + B2y = m, ey + agy = 00 Then Ny and Na are the anticommut ative Hermitean
and skew-Hermitean matrices Py = H, B = Q. In the special case u? — El? =1, then
these matrices are the projective Hermiteized secant and skew-Hermiteized tanpent, and
H'+(Q?=1. H-Q=-Q-H.

C) Pig+ 2y = agy +oay = m Then Ny and Np are the anticommutative skew-Hermitean
matrices Py =0y, Po = Qo and —Cﬁ — Qg =1

Thus, all most important types of anticommutative prime matrices types are described!

Of course, according to Corollary 3 in sect. 5.7, such modal transformations are identical
Jor the coordinates azes (similar to reflectors) also to their real rotations or reflections at the
double sphevical angle arguments k- IL/2 or the psewdohyperbolic angle arguments k- i0/2,
ik =0,£1, 2. . .) under their modal transformation as monovalent tensors (either from
the left or from the right).

Therefore, in any case, anticommutativity of prime matrices Py and Py is fixed at the
trigonometric divergence of their diagonal forms with the principal angle exactly half that
for the case of their commutativity!



Chapter 8

Tensor trigonometric spectra with general inequalities

8.1 Trigonometric spectrum of a null-prime matrix

Matrix characteristic coefficients of higher orders, as well as eigenprojectors, are prime sin
pular matrices with a unique eigeonvaloe (see Che 1 and 2). Consider a nuoll prime matrix B
with its coefficient Ky(B,7) of the highest order r and angle $5. Represent Ko(B,7) as an
algebraic orthogonal sum over eigen trigonometric subspaces of &g:

r—u'

Ka(B,r) = Y. S, -Ka(B,r) - 5, + S - Ka(B,r) - 5, (373)
=1

where ._?a = cos” &g — cos? g, - I is the orthogonal projector into the ith trigonometric

_} —
eigen plane (Pg) — see (240), 8, = cos® g — I is the orthogonal projector into the subspace
{(Pm) = (im B) 0 {im B") of dimension o' (see Figure 2). Here 0" =0 as the matriz B is
null-prime! The orthoprojectors form too the complete alpebraic sum;

r—u’

S St Smt5=1,
=1

- : :

where 55 = cos®p 41 is the orthogonal projector into the subspace (Pg} = (ker B) N
{ker B"y of dimension n—2r +¢' (Figure 2). The entire sum of these dimensions 2(r —¢') +
v +(n—2r+v') = nis equal to dimension of the whole Eoclidean space. In the direct sum
according to the principle of binarity (see sect. 5.7), we have the following. The coefficient
Ka(B,7) in the subspace {Py) is a sinpular matrix of rank 1 and of size 2% 2, the coefficient
Ka(B,7) in the subspace (Pr) is 8 nonsingolar matric of size »' x o', and the coefficient
Ka(B,7) in the space {Pg) is the zero (n — 2r + ") % (n — 2r +»" )} matric. Thus,

r—u’

KQ{B, il"} _ Z sl H‘?Kﬂ M det BI’::_:KF; 111.";}!:.!.; mz{ﬂ—ﬂf-l-ﬂr}x{n—ﬂl‘-l-ﬂr}, (374}

i=1

where mark B stands for divect orthogonal swmmation; v — " 20, n—2r + " = 0 and,
consequently, there hold:

r—m=pv' <r (375)
If Bisa null-normal matrix (see sect. 2.4) then formula (374) is the simplest:

KQ{B,T} — det B;:cf 1Irxrmz[n—r}x(n—r}_

We used especial notation beginning with formuola (374):

foﬂ for a 2 x 2 matrix of rank 1, its highest matrix coefficient is, according to (29), the
matrix itself, its highest scalar coefficient is the trace of the matrix;

H‘T‘;:“; stands for a v x v matrix of rank ') its highest matrix and scalar coefficients
are det BL Y . Y'Y and det BY*Y' respectively

Zm=2r+vix(n=2r+1") i the ero matrix of indicated size not intersect ing with H,Qﬂ.

The total singolarity of B and of Ks(B,r)is (r—v )+ n—2r+v')=n—r.
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Formula (374) may be transformed, with the use of (62) for ¥ = 2 and r = n, into the

direct triponometric spectrum of the eigen obligue projector ﬁ, it is called the trigonometric
spectrum of a null-prime matriz B:

K‘E{B T) = Hﬂxﬂ " et (n—2r4" )= (n—2r4e')
B- B ZEEI o pr B B2 . (376)

Similar algebraic representation of the coefficient Ka(BB', v) of the highest order and

the eigen orthoprojector EB’, as the trigonometric spectrum of a multiplicative matriz BB
are derived, according to the principle of binarity (see sect. 5.7):

r—r
Ky(BB',r)=Y . 5, -Ka(BB',1) -5 + S - Ka(BB',7) - 5, (377)
i=1
r—u'
KQ(BB: il"] _ z sl Hf:(ﬂ{ﬂr}?}iﬂ sl dﬂtﬂ HI;":}!:L"' . I:ﬂxu’ sl z’{!l't—‘3'F+J!."‘r}3-:{!I't—2‘r+]!."1':l:l {3?3]
i=1

e  KyBB.,r) "X _ BB

BB = = ' _
.F:{HB’,!‘} ; tr [B?KE{BF}?X‘E]

H Ix.-"xx.-" H z(n—ﬂﬂy'}x(n—ﬂrﬂf}‘ {3?9]

Note, that for a noll-prime matrix B, we use similar alpebraic representations of the

coefficient Kao(B'B, r) and the eigen orthoprojector B'B.
From direct spectra (374), (3T6) and (378), (379) we infer multiplicative formulae for the

highest scalar coefficients for matrices B (or B') and BB (or B'B):

r—u’ r—u’
k(B,r) = [ tr BY?det By = [ tr (B")F%det (B')i™ = k(B',r), (380)
i=1 i=1
r_y; ) i
K(BB'r) = [] tr [B]** - (B');*"|det’ B;,*" = k(B'B,r). (381)
i=1

8.2 The general Cosine inequality
For null- prime matrices rank{cos @5} = n (¢ = 0), and due to (186), (194) we have
— - - -
BB —B. .5 cos?dp— (B cosdn)- (B cosdn). (382)

ln ﬁ-ﬁ~mﬁ2&15, represent all the matrices as direct spectra, obtain the following inequal
ities for each triponometric cell with the use of the principle of binarity:

h_ﬂ Hﬂxﬂ
0 < cos” @y = ! < 1. (383)

tr (B (B ~

From (3800, (381}, and (383) the general cosine ineguality in the normalized form for a
square matrix (where @ € (0;7/2)), i. e, in wariant (138), follows:

r_f

0< [T cos o, = [{B2, = ldet cos &5] =

L

K}(B,r)
YE T < & (384)

-
1
-
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Here [{B}eos defines the cosine norm of $5 and $g. Its extremal special cases are:
[{BYes = 0if B is a null-defected matrix, |[{B} e = 1 if B is a null-normal matric. In
terms of the dianal and the minorant of B (see Ch. 3) the general cosine inequality and the
cosine norm of $g and $g (or the cosine ratio for B) are expressed as

|Di{r) B [Di{r)B|
u o = = —
— Mtl:T}B I{ }IL‘DB DII:T}BHF =
Consider {E .cos®pg)- {E cos ®5) in (382) and obtain similar cosine inequalities in the
sign form (where @ € (0; 7))
2x2
—1 < cosi, — tr B, < +1. (385)
Vi (B2 (B2

The cosine ratio |{B}ens is supplemented by the signed cosine ratio as in variant (137):

v k(B,r) Dl(r)B DI(r)B

-1 < cosiy = {Blow =
[T s JRBE  MiE  VDIBE -

The extreme cases (at values +£1) correspond to the nollnormal matrices B with the
positive or negative dianals — see in (138), Ch. 3. Note (1), that Inequality (386), as new
one, is independent on the Inequality of Hermanon Weyl for the eigen and sinpolar numbers
of nxn-matrix B |7]. Both lnequalities intersect in the trivial case of non-singular matrix B.

The cosine distinet ranges of the angles is similar to that for the angle between two
undirected vectors and the anple between two directed vectors (or straight lines). (But the
sine distinct ranges of the angles give algebraically o € [—7/2; 47/2] - Ch. 3.)

Corollary. For spherical functions of tensor angles $g and $g, their eigen angles o4
have the following trigonometric sense: ﬂ:ey are the scalar angles between  planars or
lineors, given by mutn: e85 Eﬂﬂ ard H’ :Jf rank 1in the trigonometric spectra of the eigen

projectors E arud B’ (see (186)—(189), (190)-(193) and Figure 1),

[{ B}Heoe is the cosine ratio for the planars (im B), {im B') as well as the planars (ker B},
{ker B'): but {B}egs is the cosine ratio for lineors determined by B and B

If a binary tensor angle ®42 is determined by equirank lineors Ay, As or planars {(im A;),
{im Aa}, then scalar angles oy in cells have the similar sense. Suppose, for B = A1 A4
condition {224) holds, and consequently bijection (226) between eigen orthoprojectors takes
place. The triponometric spectra for external multiplications are

<+l (3%6)

r—u'
Ky(AA',1) = 3 5 - Ky(AA',1) - 5, + S - Ky(AA",r) - S =
i=1

r—w’
= z E {AAF]EKE Ed&t {AA!];.-';:L; I_Iy"xy' Ez(n_2r+y;}x{ﬂ—ﬂr+y’}? (337}
i=1
r—u' - .
Ks(A A5, 7) = Z ..?n; - Ka(Ay A5, 1) - ?, + S - Ka(A1Ab, 1) - S =
i=1
r—u'
= ) H (4457 Bdet (41457 [V B Z - )xnari), (388)
i=1

o KaAdn) e 5. (44N

Eafu'x:f H z[n—2r+y'}x(n—2r+u'} 280
k(AA'T) tr ((AA")TT ' (389)

i=1
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-’ B
7 _ Ka(A1dh,r) | (A1A5); ! —2r v’ )% (n—2r4v’
AIA! _ 1 _ sl /| Ez(n r4+u o {n—2r4e') {39{]]
k(A Ab,T) ; tr ((A1A5)7* '
r—ut
k(AA" ) = [] tr (AA)P?det (AA'Y™Y = det (A'A), (391)
i=1
k(A A}, 7) = H tr (Ay A5)2*2det (A1 ALY Y = det (A} Ag). (392)

According to (132) there holds det® (A A4 ]I” v _ det (A Af ]If' v det (AaAf ” “' Then
further, from (186), (187), (196), and (226) we obtain

L
h)

: : - — . — _
ArA] - AsAh = A1 A} - cos® B1a = (A1 A cos B1o) - (A2 A] - cos B1a). (393)

In addition, intermediately, by (68) in its special case for n = 2, and the obviows relation

[A5A1); = [A]Aa)s, fur the i-th 2 x 2-cells of rank 1 there haolds
(A145)772 - (A1A9)7% = tr (A A)"2 - (ALAR)P™? = (A A])T% - (Ap49)777 (304)

Represent the matrices in (393) as direct spectra and apply (394) in all the ith cells,
obtain the i-th elementary cosine inequalities

tr? (A A5);
=<1 395
rl:AAiixﬂh_{AAEfxﬂ—? { ]

DEME2¢F1=

and the peneral cosine inequality for equirank lineors Ay, As in the normalized form:

r—u’
- DI (r) (A143)
< 2 _ 2 _
n_gmw, [{A145}oos = Idet cosdral = e

=1,  (396)

where ¢ are the scalar angles between the planars (im (AA4) Eﬂ) = {im {AIA’E]EXQ} and
{im (Aa A5 }EM) = {im (Az4] }EM) Under condition (224) there holds (sect. 3.3):

r—u
: det? (A} 43)
0= Ay AL det Pya| = <1
_1];[1‘333% [{A145}|30s = |det cos ®ys] det (ALAy) det (AbAg) = &
(for non-orthogonal lineors: rank{cos @12} = n (¢” = 0)). The extremal cases are

[{A1 A5} ees = 1 if the lineors are entirely parallel, {47 A5} is null-normal;

[HA1AS Heos = 0 if the lineors are orthogonal, may be partially, {A1 A5} is null-defected.

This general cosine ineguality is a direct product of the particwlar Cawchy Inequalities [24/.

It is inferred throwgh the external or internal multiplications of cosine type of two lineors.
The signed forms of these inequalities and the cosine ratio are

¥ 2:5(2
1 < comep; = ':“‘ A < +1, (307)
Vi (LAt (4945)2°2
B ' _ Di{r)(A43)
1< ] cosgs = {A1A5}cos = AL MioA; = (398)

The numerators and denominators in (384) and (396) under condition (224) are the same
in accordance with (132). (If vy £ 79, then the cosine ratio formally is 001.)
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_ In general cosine inequality (396), the value [{A1A5} cos determines the eosine norm of
B9 and s In the special case = 1, formula (396) is the module form of the geometric
Cauchy lnequality for two vectors |24). The Canchy Inequality is used in analytical geometry
for normalizing the angle between two vectors in [0;w/2]. The sign form of the inequality
similar to (141) determines the signed cosine of the angle between two directed vectors in
[0; 7). It is the same special case of (398). Initially, the Canchy Inequality had the pure
algebraic character. General inequalities (384)) (386), and (396), (398) may be considered
from the algebraic point of view too if they are applied to scalar elements of matrices.

From (229), (230) the following internal multiplication eriterion for at least the partial
orthogonality of two equirank n % r-lineors is inferred:

det Cya = det (AjA2) =0 < {A1A5}eos = 0. (300)

So, we see (or those who wish to see it) that the peneralization of the classic alpebraic
and triponometric lnequality of Canchy for a pair of vectors onto the above matrix geomet ric
objects, and which we previously anticipated in Chapter 3, i now strictly justified for such
general objects in fundamental (386) and (398), thanks to our discovery and application of
the tensor trigonometric spectrium of matrices.

We also revealed that the cosine inequality (386) in its form using eigenvalues for a zero
normal matrie, in fact, only very successfully complements the well known Inequality of
Hermann Weyl |7 for the eigen and singular numbers of nx nomatrix B |7], but at the same
time, it & completely independent on it and has the relation not only to matrix alpebra,
but also to the peometry of lineors, as a generalization of vectors or vector-columns. of a
matrix in our Tensor Trigonometry. However, both lnequalities intersect in the trivial case
of non-singular matrix B

8.3 Spectral-cell presentations of tensor trigonometric functions

Now it is possible to consider in details the structures of tensor trigonometric functions at
the level of elementary 2 x 2 cells. 1t was shown in Ch. 5 that the eigen triponometric planes
corresponding to 2 x 2cells are the same for projective and motive tensor anples. That is
why from the left side of (301) and spectral formuola (389) we obtain the following rot ational
connection between two equirank planars

cosg, —singg | _(AADT? [ cosge  +singg | (A245)77
tsing,  cospy | tr (4,45)7F | sy cosgy tr (A2 4572

{ ¢ 2x2 . -
Further, represent the 2 x 2-cell [AA'];*° of rank 1 for the eigen projector AA’ as the
following exterior multiplication of the unity 2 x lvector eg:

— (AA;]QKE —
(44772 YT {AA:} o3 = €je] = e;e.
i

Here the unity 2 x 1vector € determines the i-th basic line of the planar {im A) in the i-th
eigen plane of the binary tensor angle ®$19. Respectively the two sides of this tensor angle
between planars {fm Ap) and {im As) of rank v at the level of 2 x 2-cells may be represented
as two unity eigenvectors (straight lines). They may be transformed into each other with
rotation or reflection due to (301). Express the Cartesian coordinates of these vectors as

Cos {91 c0s (g9
o= | ] - [ ; ] .
B (9 S 427
Then their rotational transformation is

EE:[ cosipla —singa

; e = pa — 1.
+smya COS2 i| I Fi2= vl
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The vector ey and each of two its orthoprojections are rotated at the same anpgle. And
according to definition (171), the tensor cosine at the level of elementary 2 % 2-cells is

I?x?

- —
[ms@u]ﬂxﬂ = EIE';_ + EQ'E; — = IE1'E’1 +'E'2Ef'2 — 12,

This initial trigonometric definition (171) with (165 - 1) and (177) gives correct final result:

Bo12x2 _ .| teoslerte2)  sin(pr+2) | _ IS _
[cos 4] CSP12" | o+ pa)  —cos(@r + @a) cos Py - {v/ Jaxale

= cos 12 - [cos (@1 + ®a) +sin (81 + Ba)] = cos 1z - Refm{+(®1 + ®a)}. (400)

Here
cos(ip2 — 1) - cos(ipa + 1) = cos® 3 + cos” 1 — 1,
cos(ipy — 1) - sin(ypy + 1) = cos ey sinpg + cosyy sin .

Consider a 2 x 2-cell of the tensor sine. And according to definition (163) it is
. —
[sin @12]2"2 = ege; — e1e] = ege), — eje).

This initial trigonometric definition (163) with (165 - 1) and (176) gives corrrect final result:

i B ]2%2 _ g | —sin(p1+pa)  cos(pr + wa) T _
[sin @ y,] SIN {719 cos(r + ) +sin(p1 + @a) = s s - {y/ faxals

= sin 12 - [cos (@) + ®3) —sin (€ + $2)] = sin 12 - Refi{— (D1 + $2)}. (401)

Here
sin(ip2 — 1) - sin(pa + 1) = sin’ g — sin® iy,
sin(pa — 1) - cos(p2 + 1) = cospasinps — cosyy sin .

Condition ¢y + e = 0 and its tensor form &+ By =2 determines the Cartesian base of
the disponal cosine, i e the tripppometric base for angles & and € Under this condition
all tensor anples and their tripopnometric functions as well as all their eigenreflectors have
canonical forms determined in Che 5. Secants and tangents of tensor angles have similar
represent ations. The mirror of the mid-reflector (253) is the mid-subspase of a tensor angle
it is clearly seen in the 2 x 2-cells considered above.

8.4 The general Sine inequality

The sine ratio (135) defines the sine trigonometric norm of a tensor angle. 1t & nonzero if
the two lineors are completely linearly independent . From (227), (228) the following internal
multiplication criterion for at least partial parallelism or linear dependence of two lineors of
sizes 1 Ty and 13X T or planars {im Ay and {(im As) is derived:

det Gy o = det [(A1]A2) (A1]A2)] =0 < [{A1A5}sin = 0. (402)

Similar to the cosine ratio, the sine ratio may be represented as direct product of sine ratio
(124) in each eigen planes according to the lineors sine trigonometric spectrum.

If lineors Ay and As are linearly independent | the superposition matrix (Aq]A4s) has
rank 1 + 12 < n. lts external homomultiplication By o = [(A1]Aa)(A1]|A2)"] is a symmetric
positive (semi-)definite nox nomatriz. Doe to (120) and (402) we have

kI:BLQ,Tl +1a) = det G1;3 =0 (403)
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Then, by the analogy with (135), through the external multiplication {By 2,7 + 1} (or
internal multiplication {Gra}) of these two lineors of sine type, we obtain

Mt (ry +ra){A4]As} _ k(Bya,r + )
Mi2(r) Ay - Mi2(ro)As k(A1 A}, m1)k(A245,10)

[{A1] A2}, = (404)

In addition, due to (62), (159), and (163), for two completely linearly independent lineors
Ajp and Aq (v =10), in the subspace of non-zero values of sin s, there holds

£ Fo_ Ka(Bya,ry +13)

ind3 = =10 k{sin®s} = <n). (405
sm$qa 12 kI:B1,g.,r1+rg}? (v — rank{sin®a} =1 + 13 < n) (405)

Consider the trigonometric spectrum of the coefficient Ka(By 2,11 +12) and express it
as the following algebraic sum with the use of the principle of binarity:

ri—u"
= =
Ky(Bygyry+ra)= 3. 5 -Ka(Bya,ry+79)- 5, + 55 -Ka(Byg,my +73) -5 (406)

i=1

_b
Here 83 is the orthogonal projector into the defect  subspace of  intersections
{Pa) = {({im Az N ker A} U {im Ay Nker AL)) of dimension (ra —rp + 20").

This coefficient may be represented also as the direct orthogonal sum

ro—p"’
Ka(Bya,mi+7a) = 3 B det [(A1]A2)(A1|A2) |32 - [7°? Bdet (A,47)"""" . """ 5
=1

B det (44,2 —T1 ") X (= +07) gl —n+ ") x(m-n+v") g

mzm—r1—r)x(n—r —ra) (407)

where (as the illustration see Figure 2):

[{Aﬂflg}{flﬂflg}’]?ﬂ is the nonsingular 2 x 2matric of rank 2, which corresponds to j-th
trigonometric cell, its highest matrix coefficient is evaluated by (29), and the highest scalar
coefficient is its determinant (their summary dimension here is 2(ry —o");

(ApAj ]“'"’”"” and {Agﬂ&}bﬂ " are the nonsingular matrices in the spectrum corresponding
to the subspaces {im Ay N ker A3} and {im As Nker A}, their highest coefficients also are
specified as determinants;

Zn—r—r2) X (n =71 -72) is the zero block: if ¢ #£ 0, the dimension rises by 2o’

In the direct sum, the orthoprojector onto the image of homomultiplication By g is
r1 —1.-'"
E _ D2
2= Z HI7 B
=1

H I{T‘g -7+ Eif"] * {Tﬁ -7+ Eif"] sl z{n b :I"g} * {ﬂ — Ty — Tg}‘ {4‘]3}

With the use of the principle of binarity, from (407), (408) and (378), (379) we may infer
relations between higher scalar coefficients and direct products over the triponometric
subspaces as in sect. 810 Buot the two latter for lineors 4y and Ay transform into analogous
formulae (387) and (389). Suppose in the sequel ra > oy (see Figore 2). If lineors are
completely linearly independent, then vy + 13 < noand ' =00
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For the ith trippnometric cell, due to (124) there holds

: det [(A1|42)(A1|42)]*
0 < sin® @y = <1 409
= e (A AT T (A AT < (409)

where g is the eigen angle between the planars {im {Api"ﬂ?ﬂ) and {im {Agﬂa]f"?} of
rank 1 (similar to one in cosine variant (395)).
Further, evaluate the highest scalar coefficient of matriz By o with the use of [407)-(409).

kI:BLQ,Tl + TQ} =

ri—u"’
_ H det [(AIIAQHAHA‘E}’]EXQ - det I:AIA-'I)J:HXH” . det {AEAE}EW—HHJ Ixirg—ri+r") _
i=1
rl_y:’ L M Fr M
= I {sin® potr(A14]) % tr(A2 457 et (A A])" " det(Ag Ay) 2~ H X (mamnsv) -
i=1
ri—r"
= II sin® e K(A141,71) - K(A245,72) (410)
i=1

(here v values of ﬁnztp.. =1, for i >y — ", are omitted.
Finally, the general sine inequality in the normalized form for lineors Ay and As of size
n X 1y and n % ra follows from (404) and (410) (where @, € (0;7/2]):

=4 . Mt (ry + ) { A1 A5}
0< J] sin®w: = {A1]A2}5n = 2F _
= 1 s1n 1 I{ 1| 2}'5111 Mt?{rl: lefﬂirﬂ] !2
= |Dliry +rg]sinii?12| < 1. (411)

If n =2, the inequality has only the normalized form. The extremal special cases are:
[{A1]Aa}| = 0if the lineors are at least partially parallel,

[{A1]As} = 1if the lineors are completely orthopgonal.

If lineors Ay, As are equirank, then peneral inequalities (396) and (411) may be united:

0 < {/[{A1d2}zo + {/ {A1A2}G, < 1. (412)

This is derived with applying the algebraic Canchy Inequality (sect. 1.2) for the arithmet ic
and peometric means to squared eigenvalues of the cosine and sine, and further summating
both the results. The right equality in (412) holds iff |py] =const, i =101

If two planars have the same rank 1 (straight lines) or n — 1 (hyperplanes), then the
tensor angle between these planars has exactly one triponometric cell, it corresponds to
the unique trigonometric eigen plane. Then inequalities (412) are transformed into usoal
identity cos?¢ +sin” @ = 1.

Consider a n % r-matrix A of rank v and its arbitrary partition into § column blocks
A= {A1|Aa]...]4;} This form of the matrix corresponds to the polyhedral tensor angle,
the sides of the angle are determined by the lineors Ag, ..., Ay If each block consists of
exactly one column, then the polyhedral tensor anple is redpes. Apply the general sine
inequality § times sequentially to this blode-matrix A, obtain

Mt(r)A < Mi(r)Ay - M(r)Aa - -- ME(r)A;. (413)

Equality holds #f the lineors (the vectors) are motuslly orthogonal. Inequality (413) is the
most complete peneralization of the Hadamard lnequality |25 of sine nature.



Chapter 9

Geometric norms of varied orders for matrix objects

9.1 Quadratic and hierarchical norms

Norms for matrices and matrix objects have ss usually positive or non-negative values.
The geometric norms must be invariant under admissible geometric transformations in the
space containing the objects, including parallel translations.  For example, homogeneons
transformations in (@™} are determined by a reflector tensor: they are trigonometrically
compatible with pure rotations and reflections. o (E™) the reflector tensor is an unity
matriz. As both these basis spaces have the same Foclidean metric (see in sect. 5.7), the
peometric norms, defined in (™), may be used in (@) too.

For objects of rank 1 (vectors) in arithmetic space (E™), the Fuclidean norm of length
is naturally used. However, for objects of rank r greater than 1, the Frobenius norm (i. e
a norm of the same order 1 similarly to Euclidean one) is ooly the first special norm from
the set of geometric norms of orders ¢ (1 < ¢ << 7). That s why defining peometric norms
of higher orders (up to r) for objects of rank r is the problem of great interest. In principle,
there are two ways for defining a peometric norm of & ¥ X n-lineor A as the peometric object
(or & rm x nomatrix A as the alpebraic transformation).

Way 1. At first, an intermediate norm of homomuoltiplication A4 is evaluated | it depends
on eigenvalues o2 > 0 of this matrix. Then the norm of the original matrix A may be
obtained as the positive square root of the intermediate norm for A'A.

Way 2. A norm is defined in terms of positive eigenvalues oy of the arithmetic square
root YV ATA But evaluating this square root is a long and complicated process.

(If A =5isasymmetric matrix, then the results of both ways are equivalent )

Thus, in the book, we use only way 1. Norms constructed with this method are called
quadratic, as they are based on the set of eipenvalues . For example, symmetric matrix
functions cos ®, sin ®, tan &, sec & are sign-indefinite. Their nonzero quadratic norms depend
on squared eigenvalues of cos? iy, sin” @y, tan? iy, sec? ;. Consequently, they are the same
for trigonometric functions of motive and projective tensor anples. (For tensor angles, the
general cosine and sine norms were defined in previous chapter)

Correct definition of general and particelar guadratic nerms will be given with the use
of peometric analogies similar to (126), (127) in sect. 3.1 and of the peneral inequality of
means, more precisely, its chain (11) for alpebraic means expressed in terms of positive Vidgte
coefficients (sect. 1.2). Our analysis of (126), (127) in section 3.1 gave clear interpretation
of the positive Vigte coefficients for mat rices homomultiplication. Remember, that alpebraic
means (and other ones), inferred from the positive Vidte coefficients, form a hierarchical
sequence. (As before, we use a bar to denote means.)

Let A be s r x nomatrix A and rankd = r. Define its parametric and hierarehical
geometric norms of order # and depree h as

A11E = [ 2/RAA D" >0, (414)

AN = | %/k@ A D/CH" > 0. (415)

Formally all these norms are regarded to be zero if > 7 and unity if £ =0
Parametric norm (414) with h = ¢ may be consider prometrically as #dimensional vel
wmne parameter for the lineor A and with £ = 1 as its length parameter — see (127) in sect. 3.1
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Hierarchical norms (415) may be consider as hierarchical medians of order $=1,...,7
and degree b, according to original chain (11) for scalar coefficients of the matrix B = AA’
{see the peneral inequality of means in sect. 1.2). In particolar, both these norms of highest
orders are identical

IAllF = /det (A"A) = Mt(r)A = ||A|IF.

Accordingly, for quadratic nonsingular and singolar matrices B, there hold:

||Bllz = V/det (B'B) = v/det (BB") = |det B| = || BIl%,

|Bll; = VK(B'B,r) = /K(BB',r) = Mi(r)B = BJIf.

By the definition, any general norms for a matriz have maximal order ¢ equal to its
rank v 1f in (414), (415) h = r, then the general norm of a matrix is its minorant.

In that mumber, this definition belongs to peoeral norms for the tensor cosine and the
tensor sine | projective and motive). For example, general guadratic trigonometric norms of
degree b =1 are defined similarly with maximal order, according their ranks:

r—u!

0 < [|cos @yl = *V/det cos? 13 = 1| [] cos? e = ¥/ (A1l42)[3e <1, (416)
i=1

0 < ||sin®ya||} ., = “rHv—\}/Di{n +73)sin” &1p =

= 42 ] sin®e = 'inmlmg] 2 <L (417)
i=1

These norms characterize binary tensor angles i’m and ®ya between the lineors Ay and Aq
or between the planars (fm Ay} and {im Ag) (the planars {(ker A} and {ker AL)).

In its turn, the scalar characteristic

0 < |lcos®plln = ¥ [{BY&: =1 (418)

is the general trigonometric norm of degree 1 for the cosine of binary tensor angles $g and
&g between the planars (im B) and {im B} (the planars (ker B) and (ker B")).

According to the Le Verrier-Waring direct recurrent formula or the Newton system of
equations (see in sect. 1.1), there exist only r independent peometric norms of each type.
Just norms (414) and (415) completely determine scalar properties of a linear matrix object
of rank r by these two set of its peometric invariants. The quadratic geometric norm of
degree 1 and order 1 is the Frobenins norm, for example:

.
IAl} = Vr (A74) = ZZ#— > ot =llAllF >0, (419)
i=1

k=1 j=1

where age — elements of A, a2 — eigenvalues of A’A. The Euclidean norm ||a]|g i similar.
Note, that a power manner for norms defining {in terms of eigenvalues of A'A) pgive the
Euelidean and Frobenins norms as degree norms of order § with § =2:
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On the other hand, both these ways (1 and 2) of norms defining (see above) are equivalent
only for norms of the highest order, i e, for general ones:

IWAA||L = Bfsrlon) = B/det (AA) = Y MDA = Vor(on) = \detVAA.

(In particolar, this holds, if ¥ = 1) Way 1 defines norms in terms of scalar characteristic
coefficients of the same internal homomultiplication A"A (i, e, not directly in terms of
eigenvalues of A'A). Way 2 of norms defining demands computing & matrix arithmetic
square root through eigenvalues of A’A. This is the essential difference between these two
wiys and the main reason for choosing by ws only the manner corresponding to way 1.

The Frobenius norm of order 1 and depree 1 is the invariant of lenpgth. The peneral
norm of order v and degree ¢ (the minorant), is the imariant of rdimensional volume.
The characteristic ||A||L = J[A[[I is the invariant of degree 1 of this volume (the general

hierarchical norm). The geometric norms |JA||T (the small medians) form the hierarchy in
order of  values (1 < ¢ <) corresponding to inequality chain (11) — see sect. 1.1

The hierarchical quadratic trigonometric norms of order £ =1 are defined similarly:

_— tr cos? d —_— tr sin® &
Teosllf -\ 2=, Tsmallf - =5

Taking into account (182) and (264), we obtain also with =1 the simplest invariant:

Il cos @||7 + || sin &[|§ = 1. (420)

Cheadratic trigonometric norms of the highest order are defined as (416) and (417). So, if
chain (11) consists of mean invariants of a tepsor trigonometric function, then (12) contains
mean invariants of the inverse function (with respect to multiplication). The hierarchical
invariants of the spherical cosine and sine range in [0;1], that of the spherical secant and
the tangent range in [1; 00) and [0;00).

9.2 Absolute and relative norms

Consider definitions and properties of various geometric norms for matrix objects. Let A
be a complex-valued n x m-matrix of rank r. 1t represents alpebraically a certain geometric
object such as either as an Lvalent tensor in (A™), m < n, or as a 2valent tensor in (A™™),
m=n.

For a complex-walued nox mematrixc A of rank v its absolute geometric norm of order
t, 0 <t <r, and degree h is the scalar characteristic ||4||" with the following defining
conditions:

(a) [JAIZ =[IIAIE]" >0 if 1<t <,
(') 14115 =1 if t =0,
(@) IAIIE =0 if t >,

(b) lle- Allf = lel® - [IAII,
(e) |lUL- A-Us|lf = [IAIIF,

(d) [14°1]g = l|Allz.
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For example, (414)—(419) are definite absolute geometric norms. I the symbol " =" in
defining condition (a) is replaced above by " = " | then such norms arve called semi-definite
absolute geometric norms of order # and degree b They are used only for square matrices

B representing 2 valent tensors and denoted as [{B}P. Their examples are
{B}; = |K(B,#)| = 0, |{B}|; = [k(B,r)| =0, |{B}|;=ltr B|=0. (421)

A relative norm of order t and degree b is the ratio of a semi-definite absolute norm and
definite one. They are always dimensionless and have here trigonometric nature. Examples
of relative norms of order £ = v are the cosine and sine ratios introduced in Ch. 3. These
geometric norms are called general if + = r oand particelar if + < r. Geoeral norms were
interpreted before. Rewveal the pepometrical sense of particular ones.

9.3 Geometric interpretation of particular norms

Consider particular norms, using #s clear model, the particwlar cosine ratio (i e, under
condition ¢ < ). The general cosine inequalities (396), (398) and the cosine ratios corres
ponding to these inequalities may be further developed and their quasi-analogs for orders
t < rmay be inferred.

Let Ay and As be nox rlineors. For each j-th subset of £ columns, j = 1,..., CE, choose
the pair of 7% tsubmatrices {A1}; and {As}; with the same subset of columns. Write down
all the submatrices {Aq}; one under another and do the same with {As},. This operation
transforms Ay and As into the pair of ranged nCE % t-lineors of rank t.

For each pair {A1}; and {Aa}y, the cosine inequalities similar to (396), (398) hold:

1 < det (Aida}y/ (\fdet (A1) et (), ) <41

The numerator of the fraction is the j-th principal minor of order ¢ of {A] A2}, as the internal
multiplication of {A1}; and {Aa};. Summate separately 7 numerators and j denominators
of these inequalities, we obtain from two sums a united inequality (that s penerally a Hule
of summing homogeneous fraction inegualities, i e, with constant left and right constraints
and positive denominators, in a united fraction inegquality):

Gl.
1< Py det {AjAs}y <41
—_ Gl. —_
3 oyo1 vdet {A1A1}; -/ det {A3Aa},

Further, apply to the denominator the peometric cosine Canchy Inequality (sect. 3.3) for a
paired set of positive numbers, obtain the following intermediate inequality:

ot
T odet {AA
Ej=1 { 1 2}_1 - +1‘

1<
- ot ot -
VL det (A3 Ar}y - Y57 det {4345},

Using (120) and {121}, obtain the particwlar guasi-cosine inegualities in the sign form:

k(AjAq, ) k(A1 A5, 1)
-1 = 1. 422
= VE(ALAL ) - VE(AL AL 1) E(ALALLE) - (A2 AL, ) =* “2)

The gquasi-cosine inequalities in the signless form define the particolar relative norms:

[{A1 A5}
= —— =" _ =<1 (1<t<r) (423)
| A1} - || A}
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Trigonometric sense of the quasi-cosine ratio as a norm of order £ < 7 is explained with
its inference | it is connected with ranpged lineors. 1f £t =1, then

tr (A14s) _ tr (A1A5) 1 194
S Ur A Jir G VE Ay Ay @Y
(A}
= T -4 =

From these inequalities the classical triangle and parallelogram inequalities for the Frobenins
norms (£ = 1) of the original n % r-lineors follow:

(425)

|41 + As|l} < [|A41]]] + [l 2]} (426)

| 114411} — 11421} | < 1141 = Aa|l} < 1441} + 114211 (427)

These particular inequalities are of linear nature. They define the Frobenios norm of lineors
as an invariant of extent (or lenpth for vectors). However, particular inequalities (422), (424)
and (426), (427) characterize the lineors Ay and As if v > 1 not directly, but in terms of
ranged nCE x t-lineors {A;} and {Aa}. For illustrations, get Frobenius norms: they describe
these lineors in terms of ranged nr x Lvectors a3 and as:

AL} = llaslle, 11420} = llazlle, (|41 = As|l} = |lay £ ag||&;
tr (A} - Ag) =tr (A - A}) = aag.

Consequently, the Pythagorean Theorem for the Frobenius norms of the lineors Ay and As
holds iff ranged vectors 8y and 8 are orthogonal:

ajap =0 =tr (Ald2) & |41 = As||] = [JA4]]] + [|A2]]}. (428)

Similarly, from the trigonometric point of view, particular quasi-cosine ratios (423) and
(425) as relative norms characterize also tensor angles $45 and $45 between the lineors 4,
and As not directly, but only in terms of ranged lineors {4} and {Aa}

9.4 Lineors of special kinds and some figures formed by lineors

ln the lineor Euclidean space (E™), according to (130) in sect. 31, an n x rlineor
(of rank A = r) may be represented in the unambiguous guasi-polar decomposition

A={A-(VAA)'}. VA'A=Rq- |4,

where |A] = v A'A is the r x rmatriz moedule of the original n % rlineor A, and matrix
Rg = {A- (VA'A)"'} is its own quasi-orthogonal lineor. This decomposition is similar to
one for a vector: a=e-|a|, where |a] = v/a'a = |Jallg. The v x & matrix module of the
lineor is similar to the scalar module of a vector, but with respect to the set of v basis unity
vectors {eg} = Hg in {E™). These vectors determine independent directional axes in {E™) of
the given n % rlineor A, Consequently, there hold

AX' —Rq-Rf =Rq-Ry, Rq-Rq=Rq"-Rq=Irxr, (Re =Rq").

Each lineor formally belonps to its basis planar: A € (im A) (as a8 € {im a)). The
condition (154) determines the set of coplanar lineors with respect to the basis planar {im Ap}
(for the vector as this condition is as € {im A)).
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Eguirank lineors (rq = r = const) with the same basis planar {(im A) form the complete
set of colplanar lineors with respect to the basis planar {im A). If r =1, they are collinear
vectors.  Two equirank lineors are colplanar iff they satisfy (153). The complete set of
colplanar n % rlineors (ACY with respect to the basis planar {im A) is parametrically
determined with a free nonsingular r x rmatrix © by relation

T
AA’ = (AC)(AC)' = Const. (429)

Colplanar lineors Ap are defined by the following invariant relations:

— —
ApAL = RqeRg. = Rqp - Ry = AA" = Constpyen, By - Bge = Ipwr = Constpyp.  (430)

Further in the set of colplanar lineors {A), separate the subset of coazial ineors. They

are defined stronger with additional condition RBge = Rg = Const = {e;}. Such lineors differ
only by their matrix moduoli [Ag] I Ay, Ag are coaxial lineors, then

2
|41 £ Ao]? = | |A1] £ 40| |7 = (JA1] £Aa])?, Ajdo = |Ay|- |4a], Af- Ay =|As|- |Ay].

Let Ay and As be equirank lineors, may be linearly eotirely independent or not, but
under the same conditions (224) and (230), and lyving in their own basis planars (im Ay)

and {im As). Then the obligue projector Ag A% exists. Using formulae {186) and (187) from
sect. 5.2 and (226) from sect. 5.4, we obtain:

I - -
A1A} = RqiRq; = Rqy Rqj - sec®y3 = sec ®12 - Rga Ra). (431)

Expressions (430) and (431) may be nseful in QR factorizations of lineors with similar
conditions — see (1297, (130) in sect. 3.1, They can be illustrated easily and visually on the
simplest unity lineors e and es, as we have done earlier too.

ln conclusion, define also rotationally congruent lineors:

A2 = Rot ®12- A1y = {Rg = Rot 13- Rq1, |A1] = |A2]| = |4]}. (432)

Such lineors differ only by their quasi-orthogonal lineors R
For these lineors Ay and A we have these symmetric matrix module expressions:

A1+ Agf? = 4. |A2 - [(I = cos ®12)/2),
|A1 + Aa|* = 4. |A]? - sin® ($12/2), (433)
|4y — Aa|* = 4. |A]? - cos® ($12/2).

With the use of parallel translations, rotationally congroent lineors Ay and As form a 2r
dimensional rhombus. In particular, centered equimodule vectors are rotationally conpgruent .
If &40 =w/2, then these lineors form the following 2r-dimensional square:

| Ay + As] = v2- |A|.

One may construct from such lineors corresponding triangles, parallelograms and so on.
Thus lineors, as well as vectors, can form, but more complex, geometric fipures with varions
geometric properties. Boclidean and quasi-Euclidean spaces of lineors ( ineor spaces) have,
as well ss vector spaces, valency 1.



Chapter 10

Complexification of tensor trigonometry

10.1 Adequate complexification

Complex-valued projective and motive spherical angles are expressed adequately in terms
of real-valued spherical and hyperbolic tensor anples with their binary eigen anples in the
following forms

V=& +il, (W =& —il); U==0+il, (¥ =—&+il); oy = +iyy,  (434)

where & =&, "= —T; & = —&, I'=T (see the angles in Chs. 5 and 6).
ln the adeguate compler n-dimensional Euclidean space, complex tensor trigonometry is
realized in the complex Cartesian bases with the use of adequate complexification (sect. 4.2).
Complex tensor angles have their transposed forms indicated above. All geometric notions
and formulae except norms and inequalities stay walid and do not change. In particular,
complex minorants and complex matrix moduoles are defined with the use of transposing.
Complex numbers 4¢ and —e have the analogons adequate complex module ) and it is
evaluated also in terms of ¢ by Moivre formula:

+ec=tpleosa+ising), <<,
(+c)? = 2 = p*(cos2a + isin2a) = p*(cos f + isinf), 0 < 8 < 2,

| £ ¢l = le] = plcos(8/2) + isin(5/2)) = plcosa + isina). (435)

It is seen that |¢2] = &

The adequate matrix Euclidean module |A] = /A’A of 4 complex matric A (sect. 9.4)
is evaluated with intermediate diagonalization of its interior multiplication and complex
orthogonal modal transformat ion:

R'-A'A-R=D{A'A} = {0]}, oF = pj(cosBy +isinfy) = |oy*, 0< By <2m
From this, by Moivre formula, we obtain
logl = pyleos(B;/2) +isin(By/2)],  |A|=R-{|og]}- R, |A]? = A’A.

ln the adequate complexification variant, all peometric characteristics, as complex anples
and their trigonometric functions, are decomposed into real and imaginary parts, though
each whole characteristic may be represented in the most suitable adequate form. The
adequate variant in its simplest form is wsed in complexcvaloed Euclidean plane geometry,
in particular, in sealar complex Euclidean trigonometry. 1o peneral case, complex squared
identity (142), in that number in its variant of the sine-cosine Lagrange ldentity for two
vectors, does not change. The scalar sine and cosine ratios in (124) and (141) may be used
for evaluating of the complex angles between two vectors and their trigonometric functions.
The peneral scalar ratios (135) and (140) have also their adequate complex-valued forms.
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10.2 Hermitean complexification

ln the Hermitean space, Hermitean complexification of real-valued Euclidean geometry with
tensor triponometry is used (sect. 4.3). A projective spherical tensor angle is an Hermitean
matrix H = & +il' = H* where &* =&, T = —T' lts eigenvalues are real spherical angles
+my and zero. A motive spherical tensor angle is a skew-Hermitean matrix K = & +40" =
—K* where &* = —&, ' =T (Chs. 5, G). Its eigenvalues are imaginary pseudohyperbolic
angles iny and zero. Hermitean modules of linear objects are positive definite. Normalized
general inequalities (Ch. 8), peometric and trigonometric norms (Ch. 9) preserve their real
positive forms in the Hermite's variant.

The principle of binarity also stays valid in complex adequate and Hermitean variants of
tensor triponometry, as all its preliminaries do hold.

Hermitean anslogs of cell formulae (399) and (400) in sect . 8.3 are inferred with anslogons
complex-valued unity vectors. Here the two sides of the tensor angle Hpa between planars
{im Ay} and {im As) of rank r are represented at the level of elementary trippnometric
2 3¢ 2eells as unity eigenvectors:

COSE 0

m = .
SI (¥

] Uz =

COS (ra
sinag |’
where
. —
coscy - CoS + sino - siner = 1,
cosa = cos 7 - exp i, sina = sin 7 - exp ifs,
9 . —_— . 9
coscq - COBEE = Cos™ 1], SIn ¥ - sina = sin” 7;

_ Iﬂ}iﬂ

ﬁ 2x2 - - _ - - Iﬂxﬂ_
[ﬂﬂﬁ 12] =13 -1 +Uz- Uy =1p-Uy +Uz- Uz — =

COS (ry - 510 C¥y + COS g - SI0 0k
81T (¥] - SIN k] + S0 g - Si0 o — 1

_ [ +e| s ] .
51 —lex] |
—det [1:«:!8?'-'.::mrhc2 = |1’:1|2 + 81 -5 = UDEE{"H -m)—A= m2ﬂ127
A = (1/2) - sin(2m1) - sin(2n2) - [1 — cos(Be, ) cos(Be, ) cos(Bs, ) cos(Bsy;

- —
[sinHia)? =ug-uj —uy-u} =uz-uj —uy -uj =

COS (k] - COB 0] + COScks - coS g — 1

COS (¥ - S0 (¥ + COS kg - 510 kg

COS (kg - COB (g — COS (Y] - COS ] | COS c¥a - SN (kg — COS ¥y - 510 ] B [ —|ss| T2 .
B +|sa| |’

SIN (k3 - S0 (ry — SII cEy - S11 C¥y ca

TOE tig - 51N (kp — TOB ¥y - 511 €k
—det [sin H1a]*? = |sa|* + e2 -5 =sin’ (g2 — m) + A = sin® a.

For the residue A we have A =0 < cos(f,, ) cos(8,, ) cos(F,, Joos(Fs,) = 1 = | cos Fg[;

A=0 & ma=m-m, A#0 & ga#m-—mn. (436)

The cell forms with respect to the trigonemetric base (see sect. 5.5) are

[cos Hi2]**? = cosma - [ -El _01 ] ,  [sinH1a]**? =sinma - [ -IE—]I +nl ] (437, 439)
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In the Hermitean wvariant, all canonical W-forms of tensor trigonometric functions are
real-valued and do not chanpe. They are constructed with complex unitary modal matri
ces Upgr. In an Hermitean plane and with respect to the triponometric base (of the diagonal
cosine), Hermitean shift of paired functions (cosine-sine, secant-tangent) at a phase angle 8
may take place — see respectively (179) and (259):

Ezp (—iB/2) - Ref {B*B} - Exp (+i3/2) = Ref {B*B}., (439)
Exp (—if/2) - Rot {{} - Exp (+i53/2) = Rot {c}., (440)
[ R 0 ] , [ P | _ [ R———
l a wp (HE) J [ wimm J l o

- (42) J B

+ coum winm - mp{—ifd]
- wimm - oeep] i) — comw 3

1

e (=52) J =

+ minn coE T

[ —%
l 0B

coun  —ming l . “P(:";E}

|

cau n — winm - mep{—if]
= + wimm - wep4if) aun

That is why the Hermitean trigonometric base should lead to the disponal cosine as
before and also to real-walued W-forms. o each eigen Hermitean plane (at the level of each
2% 2eells), Hermitean shift at a phase anple 8 may be eliminated with the special unitary
rotational modal transformation Exp (i8/2), and as final result with reducing in real-valued
canonical forms of tensor trigonometric functions.

Hermitean analogs of Canchy and Hadamard Inequalities of cosine and sine nature (see in
Ch. 3) and their cosine and sine tensor forms (see in Ch. 8)) with complex Lagrange ldentity
(142) for coordinates of two vectors or in general two lineors are inferred with the use of
Hermitean transposing in their internal produocts. Hermitean spherical anple is a composite
function of the linear objects coordinates. But in its trigonometric base, the tensor angle
have the real-valued canonical form.



136 CHAPTER 10. COMPLEXIFICATION OF TENSOR TRIGONOMETRY

10.3 Pseudoization in binary complex spaces

Consider psendoization as the important special case of adequate complexification of real
vilued algebraic and geometric notions (see Ch. 4). Fix a binary complex affine space
(A"H), of index g In any admissible binary affine base, this space may be considered as
linear one. In particular, with respect to a certain pseudounity base Ey, the space (4™,
is the direct sum of the following real and imapinary affine subspaces:

(A", = (A™) @ (iA7) = CONST. (441)

Here the sum space and dimensions of summand subspaces are constant. In (A" we
admit linear transformations V opreserving the binary structure:

v Ey E
Vir  iVia qn=n o Fmxg Vi Ve

First n columns of the base matrices generate (A™), other g columns generate (1A%, The
modal matrix V! has the same structure, this matrix transforms an arbitrary binary base E
into simplest one, i. e, into diagonal (psendounity) base Ep and performs passive modal
transformation of a linear element: 2{E} =V - 2{Eg}.

The bhinary local complez trigonometric bases are expressed in the left and right muteal
forms connected with the local realvalued trigonometric base By = {I} by psendounity
passive modal matrices (see initially in sect. 5.9 and sect. G.1):

[ - 1

| . By = (VIB)p - (I} = Rar - {I} = {Ra), (443)

E'Mj 10 ].E1=gm;51~{f}=ﬂd~{f}={ﬂd}. (444)

1

With respect to an admissible binary complex base B a linear element and the whole
space are direct sums of their real and imapinary affine projections:

z=x$iy=[;;]. (445)

The space { A", is affine, and hence the translations in it at linear elements (445) are
admissible, and hence the space is homogeneons.

Right local base (443) is identical to one in (271) and wsed in canonical forms of psewdo
hyperbolic trigonometric matrices with angle eigenvalues —igy = @y /() (see sect. 5.9).
The sign "minus" at angles is due to the moltiplier +4 at ordinates.

Left local base (444) represents canonical forms of trigonometric matrices in the
pseuwdospherical variant of tensor trigonometry with binary eigen angles iy, = 2y;/(—1) -
primary and mutual. This base is identical to inverse (271), i e, with the multiplier —i at
ordinates.
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The modal transformation translates into base Egy (443) similarly (322):

(Vi)™ VIE

cospj  —ising; _ cosh(—ip;)  sinh(—ip;)
—ising;  cosg; sinh{—ip;) cosh(—ip;)

And the modal transformation translates into base Epg (444) similarly to (323):

VIt {v"l'.f_i -1

_ coshy;  —isinhy; cos(iy;)  —sin(iy;)
+isinhy;  coshvy; +sin(iy;)  cos(ivy;)

Accordingly, in Em anl Eug of (@™, we have the mixed psendoized angles in two forms:
e B (—iy) and @ B (at the counter-clockwise angle ) — see sect. 6.1 too.

Express coordinates of linear elements (445) in (A™9), with respect to base (444).
Define in Ega the same and invariant under passive modal transformations scalar prodoct
for elements 2 (445) in (@™, as in a usual Euclidean space:

z1{I"}22 = 2122 = X1 - X2 + 1y} - iy2 = XiX2 — y1ya2 = const.

This is valid in the special compler quasi-Buclidean space with index g, its metric is as if
Euclidean-like; but it is either real-valoed or zero or imaginary-valued. First this construction
(with n = g = 1) wis made by H. Poincard in his growp variant of the relativistic t heory |63).
The space is binary, it is the direct spherically orthogonal sum of the real-valued Eoclidean
subspace and the imaginary-valued anti- Buclidean one:

(Q™9), = (E™) @ (if7) = CONST < (P™H9) = (£™) B (£9) = CONST. (446)

Here B and B stand for divect spherically and hyperbolically orthogonal summation.
Admissible transformations in these binary space are determined by the simplest reflector
metric tensors {I£} and {IF} - see initially in Chs. 5 and 6. In particular, (i€9) degenerates

into the axis iy or iy or into the time arrow 1 - 3‘ according to H. Poincaré.



Chapter 11

Tensor trigonometry of general pseudo-Euclidean spaces

11.1 Realification of complex guasi-Euclidean spaces

Beturn to binary complez quasi-Euclidean space (446). 1t is defined by the unity metric
tensor {11} and the reflector tensor {I¥}; its trigonometric base is Egg (444). Further, apply
to complex-valued space (Q™9), realifying passive transformation (443) as R, = (VIE)p
(here passive transformation e has a peometric sense contrary to By (271) in sect. 5.9):

Ep = {(VIE)5'} » (VIE)p-Ep =By = {I}, (VIE)5!'-zn=u.  (447)

The modal matrix is not admissible as VI - TE £ It} it transfers into a realificated
psewdo- Euclidean space (P™9) of index g with the metric and reflector tensor {IT}. lts
quadratic metric is psewdo-Luclidean, The scalar product for the same element is

Ty - Tz = [(v"’f_i}ﬂ -u - [[:v"'f_i}ﬂ ‘u =w' - {IE} - u=const. (448)

So, the spaces (@™, and (P are isometric and expressed only in different forms!
Now the same element is expressed in the buase E;. and it is denoted as . The new metric
tensor {1t} in this coazially oriented space (P™9) is also its reflector tensor!  Realification
(@, 5 (PHY, with introducing the metric tensor {I£} at g = 1 was suggested hy
Hermann Minkowski in 1909 |65], at the beginning into physical 40 space-time with (X, of).

Further, realize next and also isometric passive modal transformation in the similar
binary space, but with an affine base E. connected with Ey = {1} by the constant binary
real-valued modal matrix V. It is not compatible again with the former metric tensor {1}
ln result we have the sequential transformations of the original base and element

E=V.Ey, Ei=(VI%)p-Em, (449)
w=V"1. (VIE)p 202 = [(VIE)p - V]! - 2. (450)

Now the original element Zgs is expressed in the affine base E. it isdenoted as w. The inverse
modal matrices of the passive transformations are written in direct order for sequential ones.
The scalar product of this element |, as its immanent characteristic at passive isometric base's
transformat ions, does not change with respect to the new and now affine base E, and hence
the metric reflector tensor (with the same reflector tensor) {I£} does change into the new
certain symmetric metric reflector tensor:

zZhy Zo2 = [(VIZ)p -V - W) - [VIE)p .V . W] =w'- {V'.I* .V}.w=const.  (451)

What is important, in fact, the binary basis space (PP is preserved apain, becanse
we introduced in it only other (affine) base with one-valued linear transformation V.

Let V' # Const and respectively to its changing the metric reflector tensor does chanpe
too, becanse it is subjected to the permanent general congruent transformation

{GE}={V'. 1.V} ={V'. .V} = {Gt}. (452)
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Then the pew metric tensor operates in Special curvilinear coordinates in the binary space
with Riemannion local metrie due to function {GTHw). Its mutual tensor is

{Gt} = (6T} = [v-L1.[E.v 1y (453)

This binary space with variable local metric and zero Riemannian—Christoffelian corvat ure
is isometric and topologically equivalent to (PP where latter is the basis space by the
definition. Curvilinear and psendo-Cartesian coordinates act in fact in the same flat space.
However, if the curvature is non-zero, we have the psendo Hiemannian space. Both these
binary spaces (Hat and curve) will be used in Chapter 94 The geometry, if V' = Const, may
be considered as linear mapping of psendo-Eoclidean one in admissible affine bases

(Ear) = (Tag) - E (454)
with the constant metric reflector tensor GE. There holds
Top-{V'-I*-V}-Top = Tp; - {G*} - Tap = {GF}. (455)

Equalities det Ty, = £1 follow from (455). We define the group of affine continuous
trigonometric transformations (Typ) with respect to GT by more exact conditions:

Tas q{G*} Tap = {GF} = Const,  det Tay =+1. (456)

Due to (448), the metric tensor {IT} is identical to its mutual analog. This condition,
generally, is G = &' = G o {Gt} = {VT}s. Hence, in any metric spaces (P™9Y and
only in them, contravariant and covariant coordinates are identical, in particolar if g =0or
n = 0. That is why pseudo-Cartesian bases are uniquely applicable in (PP, The metric
reflector tensors {vI}s are the general variant of ones for pseudo-Euclidean spaces, when
their metric is guadratic and has no distortions.

11.2 The general Lorentzian group of pseudo-Euclidean rotations

ln (452) put V = R, this spherically orthogonal transformation is not compatible with the
simplest metric reflector tensor {I£} too (sect. 6.3). Then we obtain the following metric
reflector tensor in the general form, what is identical to its motual analog:

{R-I*-R} = (VI}s = {VI}s = (V5" (457)

Here {vT}g is a symmetric and hence prime certain square root of T (see more about these
in sect. 5.9). Formula (457) describes o metric reflector tensor of the non-coazially oriented
psendo-Euclidean space (PPH) as well as a reflector tensor of the similar quasi- Buclidean
space (see their common definition in sect. G.3).

The complete group (T of rotational trigonemetric transformations in (PP is deter
mined by conditions similar to (456) with the new metric reflector tensar {VT}g as follows:

T {VI}s-T={VI}s =T -{VI}s-T' = Const, detT = +1. (458)

In space (P9}, admissible transformations may be defined in terms of internal or external
products, what is equivalent to the identity of contravariant and covariant coordinates:

T - {(VI}s-T={VI}s & T -{VI}s-T-{VI}s=1 &
T - {(VI}ts-T-{VI}s-T'=T" & (459)
o (VI}s - T-{VI}s - T'=1 & T -{VI}s-T' = {VI}s.
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The relation T - {¥T}s - T = T - {¥T}s - T" = {¥/T}s is pseudo-analog of Enclidean one
R-B=R-R'=1 But if V=1Iin (452), we have again the coaxially oriented space with
the metric reflector tensor {7t} and admissible trigonometric transformations:

T {I*}y-T={I%} =T - {I*}-T' = Const, det T = +1. (460)

ln (458)—(460) the set (T is called the Lorentz group of homogeneous transformations
in {P™) — in accordance with the initial definition of Poinearé |[63]. (Its complex analog
exists for the binary complex psendo-Euclidean space (P91} The groups (T} and (Tyy)
are isomorphic and homot hetic:

VvV T.vy (V.IF. V. (VLT V) ={V'.T5.V}, (Tap)=V~'-(T).-V. (461)

An absolute psendo-Buclidean space with respect to its metric reflector tensor {VT}s
may be represented in any its pseado-Cartesinn base Ey by the hyperbolically orthogonal
direct sum of the two real-valued relative Eoclidean subspaces:

(Prtay = (gm0 ® (£9)(® = CONST. (462)

Muoreover, the real-valued subspace (£9) is obtained as result of realification (447) from the
imaginary anti-Buclidean subspace (i€9). In original complex variant, the absolute quasi
Euclidean space {Q™9), is represented in any its quasi-Cartesian base {Eg}e as a spherically
orthogonal direct sum of the Eoclidean and anti-Eoaclidean subspaces:

(@™, = (Em)®) [\ (i£9 %) = CONST. (463)

Here and in the sequel, B and B stand for spherically and by perbolically orthogonal direct
summation with respect to a metric reflector tensor. In the indicated both absolute spaces
decompositions, these paired summands as the orthogonal complements of each other (in
admissible bases Eg) are connected one-to-one rigorously functionally, as (£9) = Y (E™) and
(E™ = Y~ Y{£9). These subspaces are relative, but the whole space is absolute | Here Y (X)
is some matrix function, connected one-to-one these two spaces. So, for example, we have
ylr)=a—x+ z(y) =a—y, where a is an absolute.

Due to relation (462), the psendo-Euclidean space has binary structures determined
generally by the reflector metric tensor {vT}s and psendo-Cartesian bases Eg. In this type
space, an Lvalent tensor 5 decomposed in the two hyperbolically orthogonal projections into
(E™) and (£9)%): 4 2 valent tensor is decomposed in the homogeneous n x n-biprojection
into (E™)*) and g % g biprojection into (E9)%)) and the mixed n x g and g % n projections
into (E™® and (£9)%) transposed to each other.

For 1-valent tensor objects (under unified compatible binary structure with {I%*}and T),
the internal and external multiplications in the base E =T - Ey) are determined as follow:

aj - {IT}.as = cya, A} {IF} - Ay = Cya;

VIE . T - (a,a9) - T'VIE = Byy, VIE-T-{A;A}} -T'VIE = Bys.

(464)

These multiplications are translated into original complex quasi-Euclidean space (463).
Thus they may be used in Enclidean geometry including its tensor triponomet ry!
Henee, a metric reflector tensor in the space (P™H) executes the following operations:
e it defines the space binary strocture,
e it determines the admissible transformations,
e it translates internal and external products into the original space (P72,
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ln particular, by this way the following analops of (120) and (121) are inferred:

c1a = tr Bya,  K(Cia,t) = k(Bia, t);
a' - {I*}.a=tr (VIE.T a2’ - T' - VTE); (465)
E[(A" - {I%} - A) t] = k[(VIE -T - AA" - T' - VTE), ).

These scalar characteristics of admitted vector and lineor objects in a psendo-Eoclidean
space are their real valeed psendonorms, in addition to semi-definite norms of sect. 9.2
For t =1, define the psewdominorant and the psewdodianal:

MpA(r)A = K[(VIE - T - AA’ - T' - VTE), 7] = det (A’ - {I¥} - A),
(466)
Di(r)By2 = k(Bia,r) = det Cya.

Rotational matrices and reflectors compatible with a metric tensor do not chanpe internal
multiplications (464) and scalar anples in Wforms of projective trigonometric functions
of tensor angles between linear objects (vectors, lineors, planars). Note, that in (PP},
reflectors as well as projectors may be also spherically, hyperbolically, or, generally, pseado
Euclidean orthogonal. The same relates to geometric objects too.

Lwvalent tensor objects are psewdo-orthogonal if Cya = £, this is similar to (155); and
they are at least partially psewdo-orthogonal if detCys = 0, this is similar to (229).

If two objects are spherically orthogonal, then they both are either in (E™), or in (£9)!
If two objects are hy perholically orthogonal, then one of them is in {(E™) and another one is
in {£7Y! The latter is true for decompositions of (PP into its relative subspaces.

Also hyperbolic and spherical analogs of eigenprojectors considered in Ch. 2 operate in
this space as shown, for example, in sect. 6.3

The set of wniversal bases is identical to the set of orthospherical rotational matrices
compatible with I with respect to the trigonometric base Ey = {I} — see (352):

E)={Rot 8)-{I} = {{Rot ©

E%af>9~gfi}-}?fto¢{9}= E}i} =;}13-..} 0. {I*}- Rot' ©. }MﬂtRﬂfe: +1) (467
The scalar anples in triponometric rotations (460) and invariant scalar anples between

linear objects (in W-forms) are real valued numbers | they may be spherical (83) or hyperbolic

[7¥4) compatible separately with the constant-sign or alternating-sign parts of the metric

reflector tensor IE. In their W-forms, these structures correspond to exactly pure rotational

trigonometric types considered in Ch. 5 and 6:

T — {Rot (+6)}can %
{ Soinby oty L { Tas } (468)

T = {Roth(+T') }can

[ coshy;  *sinhvy; ] ’V +1 0

l +sinhy;  coshq; ‘:}{ 0 F1 (469)

|
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These structures generate with not admissible modal transformation Ry, two pure types
of general rotational matrices determined with respect to reflector tensor (457) as in (458)
and a certain new base. These types are orthospherical and hyperbolic:

RBw - {Rot B}n - B:,V = Rot © =T(1:|, (T{l} ~T.[1} =T[1:| rT[’l} =1,

470
Tty {14} Ty = (I} =Ty - {12} -T0,,  det Ty = +1; (470)
Ty - {IX} Ty = {I¥} =Ty - (It} -Tpg), det Tpg) = +1.

Modal matrices Ry not compatible with {I£} change it as in (457) and condition (460)
into (458). Thus the group (T contains as pure types Rot 8 and Reth T (Ch. 6).

Generally, an arbitrary transformation T may be a composition of them with respect to
certain unity base By of their definition:

T =...Rot B[t—l}t . Roth F[t—l}t, ey, (4?2]

Hyperbolic rotations in trigonometric cells, by (469), must correspond to two different blocks
from the positive and nepative unity parts of a reflector tensor. 1If g = 1, the elementary
hyperbolic rotations with their frame axes are (363) and (364). Orthospherical rotations
must be compatible with the positive and negative unity parts of a reflector tensor as below:

Rot © It

(473)

|:RO¢ gnxn Fnxg :| [ 4 = Fnxg
Fgxn Bot ©1=9 | Faxn _Jax=q

The zero quadratic Minkowski invariants p?(u) = 0, centralized with respect to any centered
admissible bases B partitions the pseado-Boclidean space into three subspaces. For metric
tensor {7}, the middle of them is the fullowing dividing conic hy persurface of the 2 nd order:

n q
PP = - @ =FX Ay =0, or pf(w)=u'-{I*}.u=0.
a=1 =1

The hypersurface is invariant with respect to Lorentz passive bases transformations (460).
According to this equation, the metric p(u) is zero over all of the dividing conic hypersurface.
Its generating lines are central middle straight rays. This hypersurface divides (P9 into
its invariant conic internal and external cavities (if n > g) called the internal and external
isotropic cones. The vertex of these two isotropic cones with this dividing hypersurface is
the common origin of all the centralized admissible psendo-Cartesian bases Ej.

For visuality and determinacy, we choose an universal base By for tensor trigonometric
descriptions with the use sometimes of the dividing hypersurface and two cones at n > g. The
external isotropic cone { p2(u) > 0) is the open region outside the dividing conic hypersurface,
it is also the union of the subspaces (E™)* in decompositions (462). The internal isotropic
cone |p?(u) < 0) is the open region inside the dividing conic hypersurface, it is also the
union of the subspaces (£9)®) in decompositions (462).

The set of admissible rotations in the space {P™) with respect to any centralized
psendo- Cartesian base consists of the two connected subsets of Lorentz homogeneous
transformat jons inside and outside the dividing conie hypersurface, what stipulates isotropy
of these internal and external cones. In general, these motions of any tensor objects have
hyperbolically orthogonal homogeneous and mixed projections into instantaneons (E7)0)
and (£9)%) i e these motions realized in these two instantaneous isotropic cones.
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Hence, (P™9) in the whole is isotropic too for any admissible motions. On the other
hand, the parallel translations into its any point are admissible too, and stipulates homo
geneity of the space (PTH),

If g =1, then (P™1) is the Minkowski space (see in Ch. 12) with its internal double
isotropic cone (p2(u) < 0) and external cirele isotropic cone (p?(u) = 0). In special theory
of relativity (STR), the double internal isotropic cone, where 0 is time-like, s formed by the
upper and lower conic parts as so called the cone of the future and the cone of the past, i e,
in accordance with the positive and negative directions of the ordinate 7 axis. These
parts are situated inside the same dividing conic hypersurface, in STH called the light cone.
They are the union of the ordinate 7™ axes. In its turn, the external circle sotropic cone,
where 1 is space-like, is the union of the spaces (E™))

11.3 Polar representation of general pseudo-Euclidean rotations

Any composite continuous transformation (460), for example (472), of geametric objects in
internal and external cavities of an isotropic cone, with respect to an universal base By,
may be reduced to the non-commuotative product of hyperbolic and orthospherical modal
matrices (and s general measureless tensors of motions) in the following twe polar forms:

&
T = Roth T - Rot © = Rot © - Roth T, (474), (475)

where Roth T = {yTT"}+ = v/Roth 2 = Roth’ T = Roth~" (-T),

& &
Roth T={VT'T}s: =V Roth 2T

are one-valued symmetric arithmetic (and trigonometric) square roots (sect. 5.7, 6.2);

Rot © = VTT' ' .T — Roth (—T).T =T -T'T ' = T Roth (- [') = Rot' (—9).

Note (!): the polar representations strictly correspond to definition (351) of (P7F2),
From (474}, (475) the simple connection between these two principal rotations as well as
their two motive hyperbolic tensor angles follows:

&
Roth T'=Rot' © - Roth T - Rot © = Rot (—) - Roth T - Rot ©. (476)

Polar representation can be inferred with the use of arithmetic roots by the two ways:
1) T=8t*.R = Tr'=5*, "T=R'-5*.R= T'T=R-TT'-R =

= VI'T=R.-VTT'-R = T=vVTT'"-R=R-VvT'T; detT =+1 = R = Rot B
2) (460),(267),(325) = (TT")-I* . (TT")=1* = (T'T)-I* . (T'T) = (471) =

{ TT' = Roth 2T, TT' = Roth T = (474),
=

P P det T = +1 = (476).
T'T = Roth 2T, VT'T = Roth T = (475);

i
By (476), T and T have the saome angles eigenvabees spectram ().
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We shall use widely such polar representations of a geoeral rotational transformation for
simple description of polysteps hyperbolic or spherical principal rotations, for example, of
the relativistic motions in STH, and motions in spherical and hyperbolic geometries.

Further consider the polar representation of trigonometric modal transformat ions:

5 =(5- -R-57 } 8 =

=;, -"T=;,32=|:R R"} }{R=Rﬂte} (4???4?8]

The symmetric matrices of principal rotations 51 = Roth I and 5 = Roth f are expressed
in (474), (475) in canonical form (324) in the unity base B = {I}. But the latter acts in
the I.u-un* Eyy = Rot © . Ey and then is transformed in it by the rotation B
The orthospherical rotation Rot © is expressed initially in Ey = {I} too. But Rot © acts
really in the base Em = Roth T - E1 and then is transformed in it by rotation 5.
According to (477) the matrix Sy acts in the base E; and realizes the base rotation at
the angle ', and then the orthospherical matrix R acts in this hyperbolically rotated base
Ejp and realizes the base rotation at the angle 6. According to (478) the matrix R acts in
the base By and realizes the base rotation at the anple 8, and then the matrix Ss acts in
this spherically rotated base Eqy and realizes the base rotation at the angle I'. Both these
modal transformations of the base Ey are formally equivalent.

Similar sense of these two variants of moltiplications § and B appears in s passive
transformation of an element u'Y coordinates:

u® = (8 Ry uW =Rr1l.57 . u = (R85 Ry RLu =

=(R-Sg) - =853t R = {S;1R- S}t Syt uf (479)

In a linear pseudo-Euclidean space, separate the full set of right psendo-Cartesian
bases (T - By, All these bases are rotationally connected as det T = +1. Transition
from E) to anew base E may be represented, by (474) and (475), in the following two polar
forms — straight and inverse:

E=T.E =RothT-Rot ©.E; = (RothT-Rot ©-Roth ' T). Roth T - E;,  (480)

- - £ - £ -
E=T.E =Rot©.RothT -Ey = (Rot ©- Roth T -Rot’ ©) - Rot © - Ej. (481)

These two forms give the two possible sequences of these hyperbolic and orthospherical
rotations execution. For both these variants: in the left multiplications these matrices are
expressed in the base {1} of their definitions; in the right multiplications these matrices are
expressed in the bases of their actions! Hence, these two polar forms realize the principal
hyperbolic rotation in different bases: straight polar form (480) in the base By and inverse
polar form (481) in the other universal base Ey, = Rot © - Ey.

For any psendo-Cartesian base Ey, first n columns of its matrix determine the subspace
{(E™® other g columns determine (E9)%) in hyperbolically orthogonal sum (462). The
matrizx Rot 8 has structure (473)) that is why only hyperbolic rotations of any pseado
Cartesian base E} pive new subspaces {E“)m and (£9)1 determined by the columnns of the
new base By matric. If the new base E connected with By = {I} by a modal matrix T or
Roth T, then in the base we have the following identities:

(™) = im [E]®+0*P = im [T)+0X0 = im [Roth T|(n+0)xn, } s

(£9) = im [E]("+0%4 = iy [T]("+0%4 = jm [Roth T](m+a)xq,
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This means that all trigonometric rotations (460) applied to the Euclidean subspaces (E™)
and (£9) in the whole as sets of point elements are reduced to their pure hyperholic rotation
from (474). In particular, for a Minkowski space (P!, the n and 1 columns of the matrices
E. T, roth T determine the space (E™ and the axis 7 as the relative subspaces in the base
E after the base E; rotation by the matrix T or roth T

Hence, the polar formula (474) reduces any admissible transformation T of the two
relative subspaces in the whole from the original base By = {I} into any admissible pseado
Cartesian base E till their pure hyperbolic rotation Roth T = TT".

The polar representation of a general trippnometric transformation of the relative sub
spaces in the whole as hyperbolic rotation does not hold for subsets of these subspaces, in
particular, the base coordinate axes. This can be seen in (481): the coordinate axes are
subjected to orthospherical rotation and then hyperbolic rotation.

The matrix of a transformation T, due to (460), is a bivalent pseudo-Euclidean quasi
biorthogonal tensor. This is true for the matrix of the base E =T . {I} too. The tensor is
splitted projectively into the pair of symmetric homogeneons (nx n and g % g) and the pair
of mutually transposed mixed (n x g and g % n) tensor projections:

[E]"*™ is orthoprojection of space-like unity basis vectors into the subspace (£™)1);
[E]9%9 is orthoprojection of time-like unity base vectors into the subspace (g9,

[E]"*9 and [E]9*™ are mutually transposed obligue projections into (£%)) and (£9)(1.

If the base matrix is transposed, then these projections are reflected with respect to the
matrix main disponal. This takes place, in particular, under changing the direction of a
multistep hyperbolic rotation sequence (see in next sect.).

If g =1, then the matrix Rot 89%7 in (473) degenerates into I Then in the Minkowski
space {P™1) an 1-valent tensor is decomposed in two hyperbolically ort hogonal projections
into (€™ and onto F®; a 2 valent tensor is decomposed in an homogeneous projection
n % ntensor into (™) an invariant scalar onto %) axis, and two mixed projections —
n x lvectors into (E™®) and onto ¥%®). World events in STR are described here from
the view-point of a relatively immobile Observer with respect to an universal base. Among
them, Ey = {I} is the simplest original one.  Any concrete spherical-hyperbolic analogy
(from sect. 6.2) is realized with respect to this base!

In this Minkowski space, Lorentz transformation (460) of a point element on the 7
axis is reduced by polar representation up to either it hyperbolic rotation together with
the ordinate axis (under passive transformation), or it hyperbolic rotation off the ordinate
axis in the direction given by the orthospherical tensor angle (under active transformation).
Consider two examples with elementary matrices useful in STR.

Exanmple 1.
u? = {rot' © -roth T -rot O}~ ! .rot' © .uV) = {rot' O .roth T'-rot O}~ .ut), (483)
where u'il]'_'E (7 is a point object with respect to Ey, and u is the same object with

respect to By =Ty, - By However, its pure hyperbolic passive transformation (in brackets)
was realized here from the base Eyy = rot © - Ey into the final base Ey!

Exanmple 2.

u, =T, -1, = {rot © . roth [ -rot’ ©}-rot © .1, = {rot O -roth T rot’ O} -1, (484)

where wy € (F'Y) is a point element, it generated in E, the element u; = Ty -uy. Here
the pure hyperbolic active rotation was realized off ?(13 under the angle 8!
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11.4 Polysteps hyperbolic rotations with polar decomposition

The summarized polysteps hyperbolic rotation is pure hyperbolic if its particular rotations
are triponometrically compatible with each other (see Ch. 6), i. e, they can be reduoced to
cell-forms (324) in common base_ In particolar, vectors of directional cosines for elementary
hyperbolic rotations in (363) are equal to each other up to coefficients £1. If particolar
rotational matrices are not triponomet rically compatible (thouph each of them is compatible
with the given metric reflector tensor), then a composite formula of non-symmetric (in
general) polysteps hyperbolic rotations can be redoced always till polar forms (474), (475).

Specify the sequence of particular by perbolic rotations as measureless hyperbolic tensors
of motions, realizing geodesic motions on hyperboloid hypersurfaces, at p(u) = const, and
expressed in the original unity base By = {I't: Roth I'ta, Roth T'az,..., Roth I'p_1y. -
with their canonical form (324) in (P9}, either elementary one (363) in (P™H1).

For descriptive analysis in By = {I}, the matrices in the own briases Ej have the new
forms, becanse the following matrices realize hyperbolic rotations in By, All these forms
correspond to an adopted tensor {I%}. These sequential bases are transformed as follows:

Ey = {I},Es = {Roth T2}, - E1,..., By = {Roth T_1ye} i, ,, - Ee-1.

Translate the matrix E; from the base of its action into the original base By = {I} for
rotations analysis, obtain the doal formula for resulting multisteps transformation:

E; =Ty -Ey = {Roth Ty_1y.}5, -~ {Roth Ta3} g , - {Roth T1a} g , - By =

— Ty, - By = Roth T'ya - Roth Taz - - - Roth T_yy, - By. (485)

It is the Rule of executing multisteps transformations (proved by induction on ¢ = 3).
E3 = {Roth Doz}, - By = {Roth Pastig,y - {Hoth Ta} By =

= {Hoth 'y - Roth Tag - Roth™! Iya} - {Roth Tya} r.E-"1 = Roth I'ya - Roth Tag - E‘l. (486)

The sequence of the canonical matrices in (485) is inversed (see, for example, |21, p. 428]).
Coordinates of linear objects are transformed passively, but the sequence of the inverse
rotational matrices in their canonical form s direct:

u't! — Bath (—T'¢¢—1y) - -- Roth (—Ta3) - Roth (—T'1a) -alt =

= {Roth T3 - Roth Ta3--- Roth Ty_yy,} " - u'Y, (487)

u® = Roth (—T'a3) -u™® = Roth (—T'a3) - Roth (—T'12) - u't) =
— {Roth T'y3 - Roth Tag}~1. u®, (488)

Aetive polysteps hyperbolic rotational transformations of generating element u, for example,
in By = {1}, are realized similarly to anslogous polysteps hyperbolic transformations of the
base, when particular rotational matrices are ordered inversely (as in (485), because they
are determined and act sequentially with respect to Ey:

u; = Roth T3 - Roth Tag- - Roth Tjy_y), - uy, (489)

uy = {Roth I'ya - (Roth Fgg]E'_,l . Rﬂfh_lrm}ﬂ",ﬂ - Roth T'ya - -1y =
= Roth I'ys - Roth Tag -1y = {Hoth FEE}E_.', - 3. (490)
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Formulae [485)—(490) are special cases of the General rule of polysteps transformati ons.
Other special cases of the rule relate to similar sequences of principal spherical rotations —
muotions in a quasi-Euclidean binary space (@) (Ch. 8A).

ln pseudo-Euclidean geometry, matrices of pure hyperbolic {principal) rotations can be
or not be symmetric, but they are always prime. This depends on the bases of their definition
and action. A matrix is symmetric in canonical forms (324), (362), (363) with respect to any
unity base of its definition. The matrix T - Roth T -T—! represents the hyperbolic rotation
with respect to the universal base B} and acting in the pseudo-Cartesian base E =T - E,.
Prime matrices of hyperbolic rotations also belong to the Lorentz group with the metric
tensor T, A prime hyperbolic matrix may be represented in By in polar forms (474), (475)
for its analysis. The analogous statements hold for orthospherical rotations Rot © and
T -Rot © -T—! too. They may be expressed with respect to either the original base Eq, or
the base E = T - Ey of their action. All pure orthospherical rotations form their complete
continuwous subgroup of the Lorentz proup of homogeneons (or continnons) transformat ions.

For a generating or transforming element W, its continuwous Lorentz transformations do
not change the value of the invariant p*(u) = [T -u)’ - {I*}. [T -u] = v’ - {I*} - u similar
to continuous motions on the hyperboloid surfoce with invariant p®(1) = const!

Further, in order to analyze and reduce the expressions for two-steps and polysteps
hyperbolic rotations, we use apain polar representations (474), (475). There hold:

- - - £ .
E;, =Ty - Ey = Roth T’y - Rot 84, - Ey = Rot By - Roth Ty -Ey, (491)

Roth T'yg = VTT' = \,.l"rREHL I'ya - Hoth (2Tag) - Roth I'ys =

=/ Hoth (2T'13),

Hot 813 = Roth T'yy - Roth T'ya - Roth T'ag = Rot' (—843) =
= Rot™! (—B13) = Rot' ©3; = Rot (—Ba,),

(t=3) (492)

u® = (Rot' Oy, - Roth Ty, - Rot ©1,)~! - Rot! Oy, -ull) =
= {Rﬂth Flt}_ﬂ'!-:‘ - u(lﬂ}?
(£=3) (493)
AY = (Rot’ By, - Roth Ty, - Rot ©1,)~1 - Rot' By, - AWM =
= {Roth F“}_é: . Altu),

The rotation Rof B43 is executed separately in the bases of particular rotations actions in
the sequence 31, 12, 23 along of legs of the orthospherical triangle 123 in Eoclidean subspace.

So, polysteps hyperbolic geodesic motions of a point element, when p?(u) = p® = const,
sequentially produce apices of a certain peometric fipure, for examples, triangle or polygon.
A necessary condition for such entire construction be a geometric fipure is that the sequential
hyperbolic rotations form a closed cirenit with summarized hyperbolic angle annibilation:
szaﬂﬂﬂl F.[k:,l.h = Rot 91; - 1y.

Geometry of such fipures from geodesic hyperbolic sepments is realized, for example, on
two invariant hyperboloid hypersurfoces, L oe., penerally of maximal dimension, with their
given quadratic centralized Minkowski invariants p®(u) = £R? (see above in sect. 11.2):

n q
u I u=) "5 =) =p () - p(y) = pP(u) = £R?, (R=const).  (494)
=1 =1
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If R = 0, then, in any admissible to {I* pseudo Cartesian bases with the same origin,
we have a centralized invariant conic surface dividing the pseado-Eunclidean space into its
internal and external cavities. For pure hyperbolic geometric figures, their sepments are
continnous, that is why, this constructed figure 5 contained in exactly one cavity of this
comic surface: either inside the internal cone with g2(u) = —R? (p(y) = p°(x)), or inside
the external cone with p®(u) = +R? (p*(x) = g2 (¥)).

However from (494) we may pet else, as trivial cases, realvalued nooand g dimensional
spheres with their equations: $0_, 72 = p2(x) = +R? if we put g = 0 = p*(y) =0 and
¥l v =P y)=—R¥if we put - = 0 = p?(x) = 0. They have the usual spherical
geometry for a sphere in Euclidean space. Here the ppometry may have place on the spheres
with the radius B in two Buclidean subspaces (E™) ¢y and {£9) g in any admissible bases of
the psendo-Euclidean space (P9,

The active homogeneons Lorentzian transformations perform motions of the generating
element 1 = T -1y on this hyperboloid with Minkowski invariant g?(u;) = p?(u) = const.
If this circuit of hyperbolic motions is complete and closed at £+ =3 or £ = 3 in (485), i. e,
these principal hyperbolic motions form on it a closed geometric fipure (hyperbolic triangle
or hyperbolic polygon) with the quadratic Minkowski invariant p?(u), then here as the result
is the appearance of the indouced secondary orthospherical precession Rot 8. In Appendix
we'll prove that its ort hospherical angle 8 is equal to the anpular deviation of Ganss—-Bonnet
in such a closed fipure in non-Foclidean geometries of constant radivs-parameter B and the
precession is the deviation algebraic canse explained by tensor trigonomet ry!

In the Minkowski space-time (P31} of STR, the orthospherical rotation in (491) is the
result of summing motions (velocities) with different directions eg and eg. In 5TR, this is
a secondary rotation. lts well known case is o Thomas precession. The principal hyperbolic
motion is called a boost. The feature of velocities summation law is explained by hyperbolic
nature of principal motions in this space.

In conclusion of this Chapter note, that the sum of motions is invariant under a choice
either passive or active transformations of coordinates. We choose T for the original base By
transformation as a more descriptive variant | and we shall use this in Appendic.



Chapter 12

Tensor trigonometry of Minkowski pseudo-Euclidean
space with geometries of two embedded hyperboloids

12.1 Trigonometric models of bi-associated hyperbolic geometries

Now consider more in details the coazially oriented pseudo-Enclidean space (PP, i e, as
geometric Minkowski space and as Minkowski space-time of STR at n = 3 [G5]. Due to (462)
at g = 1, it is expressed in the base Ep as such a hyperbolically orthogonal divect swm

(P = (MBI R F® = (g B R E® = CONST {under acting I or IF (174)}.

Tensor trigonometry in this pseudo-BEoclidean space are realized in elementary forms of the
tensor angle T' and its trigonometric functions (362)-(365) with the frame ordinate axis 7,
as g = 1, — see this in sect. 6.5, Note, in any psendo-Eoclidean and quasi- Boclidean spaces
— see in sect. 6.3, the tensor trigonometry in its different kinds is realizable and applicable
due to homogeneity and isotropy of these spaces! First homogeneity and isotropy to the
space-time of events were stated by H. Poincaré |63, 64]. We use two quadric relations for
definitions in the base By of (P™*1) of two perfect hyperboloidal hy persurfaces (Ch. 6A) with
different topologies and Minkowski invariants p2(v) = +R? and p*(u) = —R? at R = const:

VI v =) mi-y’ = o0y’ = p'(V) = +R° = (R)%, (IIxlle > lylp), (495-1)

a=1

w-{Ithu =) xl-y? = pA(x)—y? = pP(u) = —R? = (iR)*, (I|xlle < |ylp). (495 —II)

a=1
Here 1 and v are the radins-vectors of points on these hyperboloidal hypersurfaces, X is their
vector projection into (€™, y is their scalar projection onto 3 (and [|ullp = ||vllp = R).

As invariant geometric objects in Ey = {I'}, they are Minkowski hyperboloids | and 11 |65].
They have own two non-Euoclidean geometries: two-sheets hyperbolic (11) and one-sheet
hyperbolic—elliptical (1) — see further. Their internal geometries are equivalent to their
external tensor trigonometries, with exactness up to coefficient of similarity "R". (Such a
property relates to all perfect surfaces — see their definition in the Introduction.)

Due to equation (1), for any valoe of the ordinate g it is possible on a hyperboloid 1
to realize spherical fipures (till circles) of radivs 7 = +/y? + B2 Due to equation |11,
for the walues of the ordinate |y| > R it i possible on a hyperboloid 11 to realize also
spherical fipures of radins r = +/y? — B2, Their equations are Et:l 2 = 1, (k < n).
At p° = 0, these equations give an asymptotic invariant isotropic or light cone, dividing
and placing these peometric objects in external and internal cavities of the cone (Figure 4).
Our mensureless hyperbolic tensor of motion (363) as roth (£ = Fxv, e,4) determines
homogeneous motions of the points @ and v on both these Minkowski hyperboloids, — as well
as our measureless spherical tensor of motion (314) as rot (£28) = Fxp, e,) determines
homogeneous motions of the point 1 on the Special hyperspheroid. All these main geomet ric
objects are constructed in the universal base By = {I}, in order to study descriptively on
them various types of motions and equivalent rotations in their enveloping binary spaces,
using various spherical-hyperbolic analogies. (They are trigonometric at parameter B = 1)
Hyperboloids are invariant to Lorentz transformations (sects. 6.3, 6.5, 11.2). Hyperspheroid
is invariant to new Special transformations, introduced by us in sects. 5.7, 512, 6.3, Both
hyperboloids with B =1 may be seen in cut at n= 2 on Figure 4 with hyperbolic motions
on them. Their initial points (the unique vy for 11 and, for example, vy for 1) are rotated
by perbolically into other ones wg and v along the pure hyperbolic meridians of 11 and L
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Figure 4. Trigonometric models of the hyperboloids 1 (tanpent -secant) and |
{cotanpent-cosecant), and of the hy perspheroid (sine-cosine) — in their upper parts.

A Trigonometric correspondence between points of the Minkowskian hyperboloids | and 11
{at B-1) in the cut by centered pseudoplane in (PPH). The hyperbolic angles are presented:
acute principal -, complementary v, especial w (sinh w = 1), right infinite 8, obtuse v 8.
B. Trigonometric models in the universal trigponometric base By = {I'}, or projective models
with respect to the Cayley absolute oval into the projective hyperplane {((E™)).
(1) one-sheet hyperboloid 1 of p= 2R with cylindrical topology and cotangent model,
where coth (7, v) = cosh{v, ), identical to projective model outside the Cayley oval,
(11} a two-sheets hyperboloid 1 of radii p = +iR (upper) and p = —iR (lower) with flat
topology and tanpent model identical to projective Klein model inside the Cayley oval,
(3) tanpent-cotangent projections with Klein disk and Cayley oval as an isotropic cone,
(4) conjugate parallel straipht lines {geodesic) inside and ountside the Cayley oval,
(5) correspondences between straight lines (geodesic) inside and outside the Cayley oval.
Ruotation of a time-like hyperbola penerates the one sheet hyperboloid 1 (it is seeming as
"horn shaped ). Rotation of two space-like hyperbolae generates the hy perholoid 1 from two
coupled sheets (they are seeming as two symenetric cups) inside the external double cone.
One sheet hyperboloid 1 has radii +8 (y = 0) and —R (y < 0). Two sheets hyperboloid 11
has 1ost sheet radins +iR (y = +R) and 2-0d sheet radins —iR (y < —R). This stipulates
their constant radins parameter R at constant nepative Gaussian curvature Kg in (P7H).
Rotation of a large circle around the ordinate axis 7 generates a hyperspheroid with radius
R in the base Ey. This stipulates its constant radivs parameter B at constant positive
Ganssian curvature Ko, These rotations are executed with (n — 1) degrees of freedom.
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Centered (with the center Q) pure hyperbolic motions in By of radius vectors uy (space
like) and vy (time-like) at Figure 4 on these hyperboloids are expressed by rotational mat rix
functions roth T' = F(y,eq) due to formulae (362), (363). Non-centered in Ey hyperholoidal
motions of elements We and vo are presented as purely hyperbolic only as centered in By as
Tiaf{roth ]._'23}5_,1’1"1_21 —see (490) in sect. 11,4, In both these cases, it is possible to have own
orthospherical rotations degyy and doggy as independent or secondary induced ones in polar
decomposition (111A4). (The angle 7 ranges in [0; +00) if dy > 0 and in [0; —oc) if dy < 0.)
(The angle 7 ranges in [0; +o00) if dy > 0 and in [0; —oo) if dy < 0.)

On the hyperboloid 11 in {(P™1), the extent of space-like geodesic hyperboloidal ares is
the psendo-Eoclidesn external natural measure of a lenpth Xin the base B expressed in the
centered cutting k-th psendo-Euclidean plane. On the hyperboloid 1 in (P™+1), the extent
of time-like peodesic hyperboloidal ares is the pseado-BEuoclidean external natural meassure
of a length A in the base Ey, expressed in the same centered cutting k-th psendo-Euclidean
plane; but the extent of space-like extremal ellipsoidal ares is the psendo-Euclidean external
natural measure of a length X in By, expressed in the centered cutting j-th pseudo-Euclidean
plane. In all these cases, these cotting planes include the point O and such lines ares. Sinee
these hyperboloids are perfect hypersurfaces (see in lntrodoction and Chs. 6, 6A, TA, BA),
their natural A and anpular AR Lambert measures expressed proportionally with radios
parameter B Their external pseado-Euaclidean geometries are isometric to their internal
non-Euclidesn geometries. Hence, both hyperboloids have own isometric external psendo
Euclidean and internal non-Eoclidean geometries on their perfect superfaces of constant
radins parameter B with affine and cylindrical topologies. They may be simplest descript ive
isometric representations in (P of two certain real-valied n-dimensional non- Eunclidean
geometries with natural [ and angular 1R measures of a lenpth of segments and ares.

The two-sheets hyperboloid 11 with space-like hyperbolae as principal geodesics has
natural measures Ay with its angular . The upper and lower parts of a hyperboloid 11 are
reduced by tangent cross projecting to the isomorphic finite tangent model as the Klein open
disk (ball at n > 2), with its affine topology of usual (™), on the projective hyperplane
{(E™Y) inside the Cayley oval of radius R (trigonometric circle at B = 1), when v — tanh -+,
cosap = constg, k=1, n(Figure 4). 1o the Klein disk, hyperbolic and hyperboloidal ares
are mapped as straight segments in own eross bases (Chs 44, TA). The tanpent projections
of two limit cirewmferences of radius B from two upper and lower parts of a hyperboloid 11 are
asymptotes inside to Cayley oval (with orthospherical ares r < R). External peometry of 11
is isometric and hence homeomorphic to the internal Lobachevsky—Bolyai peometry [40-42|
with their identical natural messures and the same parameters noand R |52, 53], Indeed,
tangent or Klein model is also projective map of the Lobachevsky—Bolyai plane or space into
the homogeneous coordinates onto the same projective hyperplane as n-dimensional disk
{ball) of radivs B without its border inside the Cayley oval in ({E™}). (This first finite model
of the Lobachevsky—Bolyal plane was anticipated by Eogenio Beltrami in 1868 |44, 45]!)

The peametries on both sheets of a hyperboloid 11 are different ooly in the sipns of the
hy perbolic angle and of its directional vector in triponomet ric matrices for mirror-symmet ric
motions with respect to (E™). Latter statements must true also for twe antipodal parts of
the two-sheets Lobachevsby- Bolyai space and geometry. If B = ¢, then at n = 3 this radios
vector, as time-like d-velocity e of Poincard |63, gives proper ¥v* and coordinate v velocities
as its hyperbolic sine and tangent orthoprojections into {({(£2}). In the Kleinian model, the
natural measures of a length (for both peometries) are transformed into projective tangent
measure Rtanh{A/R) = Rtanh(l/R), identifiable in the projective hyperplane {({(£™)) with
Euclidean measure inside the Cayley oval. This projective measure is limited by R, Note,
if B — oo, then two sides of Klein disk together with two sheets hyperboloid 1 are trans
forming into two infinite antipodal Foclidean spaces (£™). On the n-D hyperboloid 11 in
(P™1y the hyperbolic n-D space with the Lobachevsky—Bolyai geometry maps without
problems for any n > 2. But this has not place in its real-valoed isomorphism — see below.
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On the hyperboloid 11 (top sheet), diametrical hyperbolic lines inside the Cayley oval
has the center O which is the center of projecting in By and the origin for connting the
Euelidean tangent measure inside the Caylay oval at B =1 (Figure 4). If v — 0 at any B
the natural measure A = Ry and the projective Buclidean tangent measure Rtanh A/R
in the projective Eoclidean plane ({(E™}) are became identical as By — Rtanh+y with the
lofinitesimal Pythagorean theorem on the hyperboloid 11 (see in detail in Chs TA and 104).
If B =¢, then it is the hyperboloid of 4- and 3-velocities.

For the hyperboloid 11, the countervariant wvisual spherical Lobachevsky parallel angle
II{a) = &, correct in universal base By, is produced from the chain: tanh 4 = sechv = cos g,
where v and g are countervariant and covariant hyperbolic parallell anples in hyperbolic
geometries, correct in any admitted pseado-Cartesian bases — see in detail to the end of Ch. 6.

Corollary 1. The Minkowski hyperboloid 11 of constant radii +iR and —iR in {P™1) has
interal n- L} hyperholic non- Euclidean geometry, with affine topology, isometric to the two
separated antipodal Lobachevsky Bolyai geometries. Its internal geometry is equivalent to its
external tensor trigonometry in (PP with the ezactness up to the similarity coefficient B

The one-sheet hyperboloid 1 with time like hyperboloidal geodesics and space-like
ellipsoidal extremals is mapped by cotangent cross projecting into the isomorphic infinite
cotangent model on the projective hyperplane ((E™)) outside the double Cayley oval as the
double ving with twe its ezternal radii B and without external borders, when ¢ — coth «,
cosay = constg, &= 1,...,n (Figure 4). Its first measure Ay with 4 associates this cotangent
model of 1 with the tanpent model of 11 through the double Cayley oval lndeed, the four
conjugate pure hyperbolic lines on 1 and 11 may be interpreted as the quadrohy perbola in the
common cutting psendoplane on the trigonometric hyperbolic disgram (Figures 3 and 4).
Such a pseudoplane is determined by two coupled eigenvectors along sotropic diagonals of
rath I, In result of such projecting, the centered psendoplane with the guadroby perbola cuts
the projective two-sided hyperplane [({£™)}] along four straight lines as projective maps of the
quadrohyperbola in their United tangent-cotangent projective flat model inside and ontside
double Cayley oval. The cotangent projections of two limit cirewmferences of radinvs B from
the upper and lower parts of a hyperboloid 1 are asymptotes outside to Cayley owal, but for
the two sheets hyperboloid 11 its both limit cirewmferences of radivs B from two upper and
lower parts are asymptotes inside double Cayley oval contrary each to ancther in tangent
projection of 1L and cotanpent projection of 1 at Rtanhy = Reothy = Rif v — oo

Express simuolt sneously the equivalent connections of the natural length Aag of segments
between two points on the hyperbolic lines: on the hyperboloid 11 with Eoclidean tangent
projective lenpth Rtanh A/R and on the sceompanied to it hyperboloid 1 with Eoclidean
cotanpent projective length Reothy = Reoth(A/R) as difference [—R(cothy13 — cothy12))
outside the Cayley oval for the cotangent projective model. Then, in a collinear case, alenpth
of the sepment between two points on the hyperbolic geodesic with natural hyperbolic and
Euclidean tangent—cotangent projective lengths are calealated in the tvs-forms as follows:

uz = {roth 'z} - w1, vz = {roth 'z} - {roth 23} - w1 = uza = w3z —uz, I3 =T - T

vz = {roth [z} -v1, va = {roth ['a}- {roth Taa}-v1 = vza =va— vz, ;=T -T2

{1+ tanhy3)(1 — tanhyyg3) —R.In (coth g + 1){coth 2 — 1}-

I:]. — tmh’}’ig}(l + t-m:l.l:l."}’igzl {Dﬂth T3 — 1}(11“:-]1 Tz + 1

The identical formulae for a distance between points correspond to the Rule of tanpent
cotangent summing collinear hyperbolic motions in Appendic (time-like and space-like).
They are interpreted thronpgh Caylay oval the unity of the flat tangent-cotangent common
model with conjugated straight projections in ((E™)}, as it is demonstrated at Figore 4.
But all this applies so far only to the hyperbolic part of the hyperboloid 1 non-Eoclidean
geometry. Its internal peometry includes psendo-normally directed time-like hyperboloidal
geodesics and space-like ellipsoidal extremals, separated by the porolines with zero metric.
The closed ellipsoidal geodesics lead to the cylindrical topology of the hy perboloid L

Azz=HR-In
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On the hyperboloid 1, these three types of extremal curves exist together: hy perboloidal
with time-like slope, ellipsoidal with space-like slope and porolines with iofinity slope. In
each point hyperboloidal and ellipsoidal curves are intersected. See more in Chs. TA and 10A.

The hyperboloid 1 is also perfect regulor hypersurface, but as hyperbolic-elliptical one;
and, maybe, there is corresponding to it a certain real-valoed hyperbolic—elliptical perfect
regular surface, with the same hyperbolic—elliptical internal non-Eoclidean peometry. This
hy perbolic—elliptical non-Euclidean geometry is 3-rd one and it is additional to the well
known classic elliptical and hyperbolic non-Euoclidean geometries. However it has a feature
as the limited freedom of motions of the peometric fipures due to its cylindrical topology.
Generally, it is clarity seen, how two points on the hyperboloid 1 can be connected unigquely
with two manners: either by hyperbolic or hyperboloidal segments, and either by circular or
ellipsoidal extremals in two direction, i. e, without restrictions in the base By Of course,
such simple solutions for two points do not relate to motions of fipures.

The projective open ring between two upper and lower Cayley ovals (without them) in
the closed whole two-sides projective hyperplane [((E7)}], as the flat cotangent map of the
entire hyperboloid 1, is equivalent topologically to cylindrical space {C™). It & produced
continuously through the conventional infinitely far border between two sides of the projec
tive hyperplane (in its upper and lower halves). This border is projected into the infinite
cotangent map —as i an equator of the hyperboloid L at Fipure 4, when v = oo (cothy = 1)
If B — oo, the hyperboloid 1 is transforming into the infinite cylindrical pseado-Eoclidean
space (but its cotanpent projection is transforming into infinite FEoclidesn double ring).
If'R = ¢, it s a hyperboloid of cotanpent supervelocities (chs. 4A 6A). Note, that this
hy perbolic-elliptical non-Euclidean geometry is presented in both cavities of isotropic cone.

Corollary 2. The Minkowski hyperboloid I of constant psendo-normal radii £R in {P™1)
has internal n- D hyperbolic—elliptical non- Euwclidean geometry, with cylindrical topology, and
infinite simally psewdo- Buclidean. s internal geometry is equivalent to its external tensor
trigonometry in (PP} with the ezactness up to the similarity coefficient K.

The super descriptive, whole and finite tangent model of the hyperboloid 1 is realized as
its tangent projection onto the projective cylindrical psewdo-Euclidean hypersurface [((C™)}
with the same radivs B =1 and with the heights £/ = +1 centered in By along the axis
upper anf lower of the center O, Its lateral cylindrical surface is bounded from above and
below by two Cayley ovals (trigonometric circles) without them. From the triponometric
point of view, this model is & tangent map under v — tanh, cosap =consty, k=1,..., n
Such map is the descriptive Special eylindrical tangent model of the hyperboloid 1 realized on
the lateral eylindrical psendo-Euclidean hypersurface [({C™))], where the original hyperbolic
and hyperboloidal peodesics are mapped as if straight lines on this cylinder under their
visual inclination pg = |7/2| and pr > |7/4], the original circolar and ellipsoidal extremals
are mapped as if elliptical curves on this eylinder under their visual inclination g = 0
and pr < |7/4] (with horocyeles between them at o — |7/4]). The tine-like hyperbolic
angular Lambert measure  of a length is transformed into the tangent projective measure
Rtanha/R The space like spherical angular Lambert measure @ of a length works here
for the elliptical and circular maps. This model is identical topologically also to open
cylindrical region outside and between two Cayley ovals without them. 1t includes the
centered circular conventional border between its upper and lower parts as if the spherical
neequator of the hyperboloid 1 This eylinder tangent model is ideal for geometric projective
summation of time-like finite segments of the hyperbolic geodesics and of space-like finite
ares of the elliptical extremals.

Both ring and cylindrical models of the hyperboloid 1 are conventionally two-sided, as
they are divided not topologically into halves, with positive and negative valoes of g Passage
from one side to another of the models corresponds to passage throogh the equator of 1

Metric forms of hyperboloids and hyperspheroid are considered in details in Appendix
(Chs. 6A, TA, 10A) in connection with the theory of regular curves in {(P™1) and (@71},
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Main Inference. The United internal non- Euelidean geometry of both confugated Minkowski
hyperboloids — 1 with cylindrical topology and 1 with affine topology of its upper and lower
parts, all with the same radivs—parameter B, and separated asymptotically by the isotropic
cone, so in the original base By, is equivalent completely to the Tensor Trigonemetry of the
enveloping Minkowski space (PP} with ezactness up to the constant scale parameter R.
Note, that analogous Main Inference is inferred for the Special hyperspheroid, presented
at Figure 4 and having the frame axis 3 (introduced us preliminary in Chs. 5 and 6), its
internal non-Fuoclidean geometry with spherical topology is equivalent completely to the
Tensor Trigonometry of the enveloping quasi Euclidean space (@™} with this exactness.

The tangent Whole United Cylinder-model of hyperboloids 1 and 1 consists of two parts:
the Special cylindrical tanpent model of 1 as lateral surface of the cylinder with radios R
and, on the heights £/ of this eylinder, the two Kleinian disks of radins B of the flat tanpent
maodel of 11, as upper and lower bases of this cylinder. For these concomitant hy perboloids
and their trigonometric models, the dividing asymptotically hypersurface (isotropic cone)
and its finite tangent-cotangent projection | (n—1)-dimensional Cayley oval or trigonometric
circle at B = 1) are automorphisms. 1o the base By this oval is determined by the equation:

I%+-~~+IE|_=R2.

Let us dissect ot n = 2 this finite tangent projective Whoele United Cylinder-model of
hyperboloids I and 11 by the centered cutting plane under a certain angle wr(y) to plane (£2).
If this angle is zero, we have an equivalent map as the real equator of the hyperboloid L
If this angle less /4, we get on the cylindrical hypersurface one (at n = 2) closed elliptical
curve a5 4 map of the space-like ellipsoidal extremal on the hyperboloid 1 I this angle is /4,
we get on the cylindrical hypersurface two isotropic segments till the two Cayley ovals as a
map of two horocyreles on the hyperboloid | with zero metrice. If this anple more 7/4, we get
four one-to-one connected straight sepments: two ones on the eylindrical hypersurface as a
map of two time-like hyperboloidal curves on the hyperboloid 1 and two ones on the two
Kleinian disks as a map of two space-like hyperboloidal curves on the hyperboloid 11 Thus,
on this model, they form an united closed projective quadrangle cyele from two pairs of
the connected infinite parallel lines. lts four apexes lie formally on the two Cayley ovals.
Such a geometric tangent projective sum in the Minkowski space (P™1) of hoth conjugated
complex-valued nedimensional by perboloids, dividing asymptotically by isotropic cone, as
the wnited three sheets non- Buclidean hyperplane with its complete Lorentz group, can be
mapped entirely into the whole two-sided projective n-dimensional hypersurface [({£7))]
with topology of n-sphere.

This closed construction maps the United non- Buclidean hypersurface of three sheets
in (P!} is as if "the world in a water drop”. In sect. 6.4 we considered so the hyperbaolic
tensor trigonometry on a psendoplane with solving interior and exterior right trianples
where time-like and space-like hyperbolae at Figure 3 were as the future prototypes of both
Minkowski hyperboloids in this Chapter.

Note (M) that continuing the cylindrical tangent model of 1 we’ll transfer only to the
non-descriptive and infinite semi-closed cylindrical cotanpgent model of 11

Our external tensor-triponometric approach to analysis of the Minkowski hy perboloids
in psendo-BEuoclidean space (g = 1), with vector and scalar projections from the introduoced
and used widely tensor trigonometric functions, represents descriptively and correctly these
two objects initially in the unity universal base Ey = {I'}. At the same time, this universal
base is the initial one for similar representation of the hyperspheroid in the quasi-Eoclidean
space. See on Figure 4 (at (g = 1). As a result, we can apply or notice the abstract and
specific spherical-hyperbolic analogies from Ch. 6 in their connected and understandable
tensor triponometric considerations - see later in Chs. 6A. TA, 8A, 10A of the Appendix.

The opportunities of our Tensor Trigonometry in these binary perfect spaces are more
widely! So, we'll see this in Appendix at simplest constructions of various screwed motions!
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Thus, the hyperboloid 1 and the Beltrami psendosphere are itself homothetic objects of
common similarity coefficient B, i e, similar to trigonometric variants at B = 1. Besides,
they have the same Gaussian curvature Kg = —1/R? and are homeomorphic. Due to the
Minding Theorem, both these prometric objects must be as if isometric in the large each
to another. But, despite on these properties, there is one essential difference between them.
Namely, the Minkowski hyperboloid 1 is a perfect hypersurface in (P, but the Beltrami
psendosphere does not relate to the set of perfect surfaces, as it is embedded correctly in
the Fspecial gquasi-Fuclidean binary space with one step principal spherical rotations and
polysteps orthospherical ones, isometric to motions on the pseadosphere. Therefore, both
these geometric objects are only one step sometric in the large! See in detail about the
psendosphere in Che 6A with its const ruction from the hyperboloid L together with generating
tractriv and their pure trigonometric equations and metric forms also in one parameter B
Note, that local isometry of the Beltrami psendosphere with the hyperboloid 11 due to the
Beltrami interpretation [44], is based on as if Lobachevsky—Bolyai geometry, as it is realized
in the region of only hyperbolic geodesics motions — see in Ch. 6A. The psendosphere was
discovered by Ferdinand Minding in 1838 |43] a5 a surface of constant negative Ganssian
curvature. Its area and volume were occurred by finite in contrast to these hyperboloids!

The fix idea about a possibility of the rigorons geometry in which the Fifth BEuoclidean
Postulate may be not hold and the Hypothesis of the acute Saccheri angle [35) can be valid
on "some imaginary sphere” was expressed fiest by Johann Lambert in 1766 [36]. Later it
became more precise: the first property is a feature of geometry in the large, the second
property is a feature of prometry in the small They are bound in geometry with the free
motions of fipures. Carl Ganss made some deafts in this divection |[39]. Ferdinand Schweilart
introduced the factor parameter B of this geometry [37]. Frane Taurinus (his nephew)
sugpested a model of such peometry on s hypothetic sphere of fmaginary radivs, revealed
that the sum of angles in its hyperbolic triangle is less 7 |38 and proved internal consistency
of its planimetry at n = 2. lotuitive Lambert—Taurinus peometry anticipated the completely
developed non-Eoclidean peometry by Lobachevsky—Bolyai [40-42] presented in the certain
hyperbolic plane and space. Many later, in XX century, this hyperbolic geometry as its
comples-valued analog was presented by Ho Jansen on the Minkowski hyperboloid 11 in
1909 |52, In 1868 Eupenio Beltrami realized it in 1868 |44, 45] locally, but as time-like, on
real-valued psendosphere as a peculiar surface (Ch. 6A), which was discovered and analyzed
earlier by Ferdinand Minding in 1840 [43] as with constant negative Ganssian corvature. The
Kleinian projective model [48] reduced the problem of its non-contradiction on the whole to
that of Euclidean peometry. David Hilbert proved that 2-dimensional Lobachevsky—Bolyai
geometry can not be realized on the whole on some non-peculior Riemann surface embedded
into the 3-dimensional Euclidean space, as the Ganssian internal geometry [48). But it does
not mean that this peometry can not be realized on a saddle Riemann surface in a (3 + &)
dimensional Euclidean space. Such surface must have constant negative corvatore. 1f its
embedding into an Euclidean space of minimal dimension is possible, then this shoold mean
solvahility of the Beltrami problem. The first results in this direction was obtained for (£%)
and more for (£%%=%) by D. Blanusha in 1955 |50, Later also other authors made a lot of
contributions, particularly, E. Rosendorn in 1960 for (£5). The Beltrami problem was solved
peculiarly by the original manner as the same embeddability, but into (P™1), - see above.

Definition of an n-dimensional Riemanoian surface and its geometry is not interrupted
of an enveloping Euclidean superspace, but it is interrupted only of its dimension, which
a priori may be in [(n+1), 00). A posteriori the dimension may be quite definite. Dimension
of a Riemannian surface is the same for all its bomeomorphisms, it is equal to dimension
of a tanpent Fuclidean space in all its points. The latter generalized an one-dimensional
tangent line to a curve, but dimension of its embedding may be in [2,00). So, an infinite
regular curve of constant spherical curvatere can not be realized on s plane, however, it is
realizable in the 3-dimensional Euclidean space as a screw line.
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A similar curve of constant hyperbolic curvature is realizable in a psendoplane as the
hyperbola. Ulisse Dini, else in XIX century, with solving a problem posed by Beltrami of
representing, one surface on a second surface in such a way that peodesic lines in the first
correspond to geodesic lines in the second |[46] (in our Ch. 6A as hyperbola & tractrix),
opened the helical twisting of the Beltrami pseadosphere into pseadospherical helicoid with
constant nepative curvature. He eliminated for pseadosphere irregularity in enveloping space,
turning its circular equator in serew transforming in infinitely far horocyele. Interestingly,
his teacher was Fopenio Beltrami, his favorite student was Ricei Corbastro — 3 geninses!!!

lsometric images of the hyperbolic non-Enclidean peometry with completely free motions
of fipures in different surfaces (a hyperboloid 11 upper, & Lobachevsky—Bolyasi hyperbolic
space, a real-valued Hiemannian surface of constant pegative curvature) differ very muoch
in visuality and complexity. The eylindrical hyperbolic-elliptical geometry may be clearly
realized isometrically both on the hyperboloid 1in (P31}, and as one step one on the
Beltrami psendosphere in the realvalued Especial quasi- Buclidean space (see in Ch. 6A).

12.2 Rotations and deformations in their elementary tensor forms

There is isomorphism of the admissible rotations in the enveloping psendo-Boclidean or
quasi-Buclidean spaces and motions on the embedded into them hyperbolic or spherical
hypersurfaces with radins B, what is inferred by their proportionality with respect to R

The point elements v and 1 on the Minkowski hyperboloids 1 and I in {P™!) are
determined by their pseado-Cartesian coordinates (rp,y), & = 1,...,n, as a rule, in the
base By (Figure 4). Any elements on these hyperboloids with_radins-parameter R may be
unigquely determined by "n" especial parameters in the base By as follows: u = Ri for the
hyperboloid 11 (with p = +iR) and v = Bp for the hyperboloid 1 (with p = +R), where
i = (sinhvy-ey, coshvy) and p = (cosh~- ey, sinh+)" are the unity time-like and space- like
d4vectors in {P™1); ey = (cosag) is their Enclidean vector of directional cosines cos ag,
k=1,...,n (i e, for vector sine on 11 or cosine on 1). In brackets, the orthoprojections in
Ey of these unity vectors are given. For the point won the hyperboloid 11 on its upper part |
7 is the frame axis for counting absolute value of hyperbolic angle  formed with its radius
vector Ri. Therefore n independent coordinates are sufficient, because Y p_ cos?ap = L.
For the point v on the one-sheet hyperboloid 1 its frame axis lies in (E™), and it is always
symmetrical with the axis ¥ with respect to the dividing isotropic conic hypersurface.
It forms the same hyperbolic angle v with its radivsvector Bp. o the tensor trigonometry
we nse scalar, vectorial and most general tensor anples of motive and projective types — see
their initial definitions and conpections in Chs. 5 and 6.

Tensor functions of the motive complementary angles T' and T, including rotation and
deformation, can be reduced in (PP} with {I£} to their canonical hyperbolic forms (31A).
With decompositions (324)-(327) and formulae (3600, (361), we obtain the nseful relations:

roth I' = cosh' +sinh ' = coth (£7T) +csch T =roth T,

rhara L— !
defh I' = sech I'+ tanh I' = tanh(£7T) +sech T = defh T. } (where eq@), = e,ey)

rath T = roth T
— — — —
cosh ¥ - @aea’ + exes’ | sinhy-ea cothv-esen’ +egen’ | michv-eq (496 — I)
sinhy - &l coshy csch w-efy cothe |
defh T = defh T
e T —
serh y-@aea’ 4 eses’ | —tanhy-eq | --- | tanhv-eses’ 4 exes’ | —sech voeg (496 —IT)
+tanh~- el sech y +sech v-ep tanhv |’
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sinh(I", T) = e=ch (T,I7), cosh(l", T) = coth (T,I"). tanh(I", T) = sech(T, ).
ﬂt_'ﬂhz[r, Ty - Sil]hz{r1 Ty=1= l.‘.\':lnt]!lzf']."1 - 1:Et:h2[T1 [') — two invariants. (496 — IIT)
tanh?(T", T) + sech® (T, T) = I = sech®(T,I') + cosh?(T, ') — quasi-invariant.

Corollary 3. In right triangles in (P™Y) with angles ~, v and infinite angle & there hold:
F+v < d=co0uand inaddition y=veay=wev=wI'=T &« I'=0 < T=0- s
original triponometric relations (359)-(361) between these complementary angles (Ch. G).

We used Rules 4 and 5 (Ch. 5) for the tensor functions of motive angles (rotations and
one-step deformations) with expansion in Che 6 and here to hyperbolic tensor analogoes.

So, after exchanges in the cotanpent-cosecant rotational function asin (496-1) of the anple
I by its complementary angle T as the operation I' = T, according to these Hules, the new
matrix function in T gives rotation again at T. This is spread into (P™).  Analogous
peculiarity acts for principal spherical rotations and one-step deformations in Ch. 5A.

These one-to-one functional connections of T' and T in tensor variant of relations (360,
Ch. 6, in tensor psendo-Euclidean right triangles in (P™!) rise geometrically thanks to
the fact that the usual hyperbolic cosine-sine orthogonal projecting with the angle I' is
equivalent to the hyperbolic cotangent—cosecant cross projecting with the complementary
angle T, what is shown descriptively at Figure 4.

Factually in the sine-cosine pair the hyperbolic anple 4 plays role of an ascute angle in
the hyperbolic right triangles (sect. 6.4), but in the cotangent-cosecant pair this hyperbolic
angle plays role of the same, but of complementary hy perbolic angle inside the hyperholically
obtuse angle as intrinsic one (with infinite anpgle +4) at the contrary vertex of the right
trinngle! See this peculiarity in triangles on two sides of Cover to our book. 1t manifests
itself in an unusual way in several places in the Appendix, explaining the dark places.

As we have seen, tensor trigonometry in its vector projective forms gives descriptive
isometric models of both concomitant hyperbolic non-Euclidean peometries on corresponding
to them the Minkowski hyperboloids 1 and I of the radivs parameters B or 1. Tangent
and cotanpent models display geodesic motions on them in their peometries into rectilinear
mappings onto the projective plane or the projective cylinder. They display a linear part of
motions as 1-st metric forms on the local tanpgent plane or pseadoplane at these hyperboloids.

Besides, invariants, quasi-invariants or modules for paired vector triponometric fonetions
of the same kinds of hyperbolic angles are similar to ones for the scalar functions of angles,
becanse their valency is equal to 1. Thus, modules of these functions are bound by scalar
relations (359), (360). For instance, all they form the invariants above in the pairs of sine
cosine and cotanpent-cosecant (the latter is true ooly in hyperbolic peomet ries).

The vectorial nature of such linear mappings allows us in external geometries to impart
this nature for two- and more steps metric forms of the 1-st order with the preservation
of their scalar characteristics as the module values of the vectors. But their unity vectors
determine the directions of motions in these forms. As we have seen above, such metric forms
of absolute motions or sepments on these hyperboloids in their prometries are mapped either
into the tangent Euclidean and pseado-Euclidean plane, or into the tangent Euclidean and
psendo-Euclidean cylindrical surface.

The unity hyperboloids | and 1 are ideal models for displaying metric forms of relativistic
motions — the most varied! Even the cylindrical enveloping surfaces for swirling motions also
fipuratively fits into the vector triponometric model, in that oumber, as partial frapments
of its complete model. Examples of such two-step, multisteps and integral motions, with
simplest mportant types of motions, are studied in Chs. 5A 6A, TA | and more generally in
30 and 4D tensor forms in last Ch. 10A.
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In psendo-Euclidean Minkowskian spaces (P! admissible hyperbolic deformations, as
one step transformat ions with respect to the undversal base Ey (where they are commutative),
are of interest too. They have tanpent-secant form (496) and canonical strocture (364) in
the universal base. Deformations are made in the pseadoplane at the same tensor anple T
With respect to the base of the disponal cosine T these matrices and the metric reflector
tensor have the following binary-cell structure in the eipen psendoplane:

{defh T}ean {roth I'}en I+ (g=1)

R I

l + tanh -y sech J ’ \‘ sinhvy coshqy J : l o -1 J :

This structure generates, similarly to (471), the pure type of the elementary (as g = 1)
hyperbolic measureless deformational tensors (one step) in the original base B = Ry, - Eyq:

Ry - {defh '}ean - Ry, = defh T,
(det defh ' = +1.)
defh' I'-defhI' =1 =defh T -defh' T,

Modal matrices Ry, are not compatible with {I*} and change it as in (457). And the
deformation do not belong to the Lorentz group as they do not satisfy (458) or (460). Note,
that matrices defh I act in sub-psendoplanes, but matrices rot 8 act in sub-planes.
Recall also the following distinetion of tensor deformations: Rule 2 (sects. 5.7 6.2)
for summing trigonometrically compatible angles-arpnments does not hold for deformations,
though any deformational matrices with their compatible anples commuote with each ot her!
However such tensors may be used widely for eross non Cartesian projecting in (P, So,
cross projecting in the space (P31 pives the mathematical model for Lorentz contraction
of & moving object extents coaxially to the direction of physical motion — see in Ch. 44,

Spherical-hyperbolic analogy of the two types (abstract in any E and specific in Ey)
generates guart-cirele (341), Che 6 from elementary motive matrix transformation functions:
rot (il')

defh (—i®) <  rtothT def ®

§

&=l

rot & defh T &  roth (—i®) def (il).

All the matrices compatible with the metric reflector tensor act here in the same planes and
psendoplanes in the universal base By Thos, if the initial conditions act, there hold:

defhU-T* . defhT=vot . IF .qot 8 =I* =roth - It .vothT =def &-1%.def &.

And four relations in the circle with respect to the universal base By hold in hyperbolic
as well as spherical geometry. That is why they are represented with angles T and & of
rotation, and their middle reflector tensor is IT = Ref {cos ®}2 = Ref {cosh['}2.

In the psendo-Euclidean trigonometry in (P™1) and external hyperbolic geometry on
hyperboloids, with respect to admissible psendo- Cartesian bases, defining relations (348)
(349) hold; in quasi Enclidean trigonometry in (@™} and external spherical geometry on
hyperspheroid, with respect to admissible guasi-Cartesian bases, defining relations (257),
(258) hold. Between them, the simple trigonometric relations act with the nse of functions
() and (i) introduced by us in Ch. 6 with respect to the universal base Ey.
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In process of non-collinear polysteps or integral hyperbolic motions in {(P™) and on
both these hyperboloids, we'll deal with the secondary orthospherical rotations of these
non-point geometric objects moving in them. There s a deep distinetion between matrix
representations of rot © and roth I'. For roth T, the angle + is counted from the current
time like frame axis 3§ and space-like frame axis . Structures (362, 363) and pseudoplane
of rotation v are determined by directional cosines with respect to Cartesian sub-hase E‘P}.

Representation of rot © is defined by its general structure (473). So, in (P21, the
structure of rot O includes the 2 x 2-block as its elementary spherical cell of the rotation
in the Euclidean plane. In (P31}, the structure of ret © includes the 3 x 3block as its
elementary spherical cell of the rotation in the Euclidean plane inside sub-space (£%). It
represents the orthospherical rotation with fized normal azis Ty |21, p.o 447 This plane of
the rotation, normal to the axis, are determined by the directional cosines of the noermal
axis of rotation Ty € {(£%) with respect to the Cartesian part of the universal base Ey = {I}:

Tot 8
2
L _ [ La) Ty
cosf + Y Tg+1+‘:¥9 +re+ 125 |0
rirs T3 _ rara
trat s |Cos0t g | Trcos? 0 (497)
. rirg rara A
T2+ Treeg | 771+ 1o | €080+ 1725 | 0
0 0 0 1

i
Consider the angles T and [ in polar representations (474-476), Che 11 for the cases
of direct and inverse orders of two-step pure hyperbolic motions s, o3 (~es, M) with

. . . . . &
their tensor structures (362, 363) and their directional cosines cosog, cos o, k= 1,2, 3:

Fi
8, = {cosop}, e: = {eos o }. Applying stroctures (362, 363) with formula (476) we obtain:
o

rot' Og.a-{e;-eL}-rot Ba,3 = Eé . Eé’, ‘
EQ"E"]_
e, =rot' O3x3-8; = {€;-€;} -8, =cosb-{e.-e;} €, } ey-e'y=——— (408)
T T T cos 3

el - e, = E’é -8y =cosf = tr [rot O)a,.3/2 - 1.

In {£%) € (P*+1Y, the unity vectors e, and e, by (498), unigquely determine the vector
of spherically normal axis of rotation rof Og,.3 as the following vectorial sine product:

P P
r {cmagmsag—cmagmsag]
—F F F . —
IN(f)=| T2 =8: X8 = | cosczCcOST] — COSC] COSO3 = —sinfl - ey. (499)
T £ £
3 COS ] COS o — COS 0y COS 0]

{|=inf| = ||rx|| = \Hr_jl +73 413, trrot @ =2(cosf +1).}

We have {det{eé?eg?ﬁ&} =>0— 8 <0),i e, asthe triple {eé,eg,ﬁr}] is left-handed. The
orthospherical shift angle & in (498) ) (499) is also counterclockwise as the ort hospherical anple
£ between unity vectors €g and eg of 1-st and 2-nd hyperbolic motions. But in (£3) € (P3+1)
and in non-Fuclidean hyperbolic geometry (Ch. TA), they are contrary asin (499). A canse
of this fact is explained clear by our tensor trigonometry, as in it scalar and tensor hyperbolic
angles with hyperbolic increments are imaginary-valued due to their nature — see in detail

tothe end of Ch. 10A. Therefore, we have here the H.ule| sgn B3 = —sgn £ | |{J:"ur two-step

spherical principal rotations in (@**!) and motions in the spherical geometry with real

valued angles (Ch. 8A), under the same condition, we get the Rule | sgn B3 = +sgn £ | L]I
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12.3 The Mathematical principle of relativity

All statements concerning {Euclidean, quasi- Boclidean, pseado Eaelidean) geometry with
out its affine contents have covariant forms in any {Cartesian, quasi-Cartesian, pseado
Cartesian} base of {(Eoclidean, quasi- Eoclidean, pseudo-Euclidean) space. So, any geometry
with the simplest quadratic invariant as a set of its own theorems does not depend in part
of these theorems on a choice of its admissible base. In other words, (Euclidean, quasi
Euclidean, psendo-Euoclidean) peometries conserve covariant forms under their admissible
transformations as {orthogonal, quasi-orthogonal, psendo-orthogonal} and translations.
The mathematical principle of relativity takes place in any flat geometry with quadratic
type metric — thos, in the Minkowski geometry. For instance, in STR space-time, it is a
mathematical source for the physical Postulate of Relativity by Galilei- Poincaré (1636, 1904)
that all physical laws have covariant forms in any uniformly rectilinearly moving frames of
reference up to nearly light velocity, i e under Lorentz transformations.  The physical
mathematical isomorphism unites two Principles. Lorentzian transformations do not change
the absolute Minkowskian space-time with dividing asymptotic hypersurface as light cone:

(P31 = (£ B A® = CONST, (n=3, g=1); Act >0! (500)

Contrary, k-th {(£%) and Er} are relative, chanpe under the Lorentzian transformations of
the bases, but always complementary! Though they with their coordinate axes stay in own
external and internal cavities of the cone. Although space (3% and time arrow ™ are
relative, but mutually dependent as direct hyperbolically orthogonal complements in (P31,
Due to identity (500), there exists an one-to-one correspondence between them. Therefore,
for STH this formula is the mathematical expression of the Poincaré-Minkowski inference
about relativity, mutual dependence and unity of the space and the time! Pay especial
attention here to the foct that the Nature's Euclidean subspace is just as relative as the time!

Let Eg = roth T'(v) - Ey, where v is the velocity. In the psendoplane (P of this
rotation-motion, time and space coordinates axes in By are seeming in By as if dilated in the
direction of v with coefficient coshy = sec () in the Euclidean metric in Ey. Though they
conserve in {PH1Y psendo- Euclidean metric of length as in the base By too —see at Figure 4.
By this graphic reason, Hermann Minkowski in 1908 |66]) introduced for his new coordinates
of relativistic space-time on such a pseudoplane the terms "dilation" for its time and space
coordinates axes in moving system Ep. However on the psendoplane (P, in Ep. we
have relativistic decreasing time and space interval of the given event with the coefficient
cosh™!4(v) (Ch5A) compared with ones in Ey. Such identical dec reasing is caused by
constancy of light velocity in any B, according to the Einsteinian physical Postulate [67].

Such polysteps decreasing of a space coordinate is not 4 one step Lorentzian cont raction,
Though both are gotten by cosine projection.  Lorentzian contraction of space objects is
potten by eross projecting as a consequence of their seeming hyperbolic deformation (Ch. 4A).

In the 4D Lagrangian space-time (£3+1) = {EEQ?}) CONST; At =0, £2 = CONST,
the Laws of the classical mechanics are form-invariant with respect to a choice of Galilean in
ertial frames of reference | or under Galilean transformations. 1t is the physical-mathematical
form of the Galilean Principle of Relativity, The Laprangian space and time-arrow form an
absolute unity, as their sum i direct | but they are not orthoponal and, hence, not muatually
dependent as in (500). From the mathematical point of view, the Lagranpian space-time
is 4 simple case (at n = 3, g = 1) of the general affine Eoclidean space {(E™ @& AY) with
the affine Eoclidean peometry and the Galilean proup of affine Euclidean transformations.
The latter do not change the Euclidean subspace (%) and the scalar time & here they are
absolute in Newtonian sense. Time-arrow £ under slope tan v is not constant as a directed
world line in (£31). It is subjected to so-called "middle rotations" — between spherical and
hyperbolic ones with respect to (£2) (see more further in Ch. 1A of Appendix).
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From the other side, continnous transformations in Minkowskian space-time (P31 carry
out relativistic elementary hy perbolic principal rotations with also elementary orthospherical
induced ones in accordance with its reflector tensor {It}. Moreover, the spacetime fixa
tions of any peometric objects are subjected to relativistic hyperbolic deformations, which
are described completely in the cross base E',J with immobile Observer. Relativistic nature
of the Lorentz transformations takes place according to hyperbolic nature of principal rota
tions and deformations. With Finsteinian physical approach |67], STH was based, in that
number, with the as if sciomatic definition of events simuoltaneity. Factually this definition
corresponds to the theorem in (P*1), that the median and height in the pseudo-Euclidean
right triangle are identical, which motivated the quadratic metric in the space-time of STH.

The abstract and specific spherical-hyperbolic analogies (the latter with respect to the
universal base) connect initially quasi-Boclidean and pseado-Eoclidean geometries, and also
as a consequence the spherical and hyperbolic types of non-Euclidean geometries of the same
radins parameter B This enables one to describe them sometimes in the enveloping binary
spaces (@™ and (P!} by similar clear approaches based on the Tensor Trigonometry.

ln the Lobachevsky—Bolyal geometry, o magnitude B is called the Gawss-Schweikart
Constant (1/R = K characterizes the distortion with respect to the flat Eoclidean space);
il is the radivs of a "hypothetical Lambert imaginary hyperbolic sphere” | realized in 1909
by H. Minkowski as the upper sheet of his hyperboloid 11 This ). Lambert’s original idea
and its development by F. Taurinus pointed out the simplest and natural way for realization
of the whole hyperbolic non-Euclidean geometry on the hypothetical sphere of imapinary
radins iR, This way became quite possible after int roducing pseudo-Eoclidean space of g =1
by H. Poincard in 1905 |63] and later in 1909 by H Minkowski [65] as space-time of STH.

A Sommerfeld in 1909 established hyperbolic nature of the Poincaré — Einstein Law
of relativistic velocities summation |86), considered its acting as if on the sphere with the
imapinary radins te. V. Varitak in 1910 conjectured that this Law of wlocities summing is
identical to the sepments’ summing in Lobachevsky—Bolyai geometry |87 Later F. Klein
constructed the theoretical basis for this Law, when he proved that the Lorentzian proup
in STH is equivalent to the group of motions in the Lobachevsky—Bolyai space. Before he
interpreted this prometry in the larpe (1871) in the purely projective model inside the Cayley
oval on the projective plane, which was anticipated by E. Beltrami in 1868 |44 In 1928
F. Klein added this projective model on the projective plane, using the hyperboloid 1L of
radins parameter B with the sames hyperbolic geometry enveloped in the pseado-Euoclidean
space of Minkowski |48].

The scenario for the further development of events in this area of geometric and physical
researches was predetermined. The decisive role in understanding that different ways of
constructing the same non-Boclidean peometry lead to identical final results was played by
the projective models of Klein and Poincaré. And the choice of the simplest and most visual
wiy of displaying and analytical study of non- Eoclidean geometries with their applications in
physical theories comes to the fore, what, for example, the tensor triponomet ry gives by clear
tools. Due to this all, as important applications, the tensor trigonometry interpretations
of various motions in non-Boclidean peometries and in the Theory of Relativity with its
kinematics and dypamics are exposed in Appendizx, in addition to its fundament als in Parce 11

For yvour better understanding the anthor's presentation of Appendix with comments in
its physical part | which concerns applications of Tensor Trigonometry in Theory of Relativity,
we decided that it will be very useful to refer a little and maximum objectively, i e, only on
the basis of reliable facts given in the literature sources without some PR, to the history of
the origin of this relativistic theory in the early XX century, in which three extraordinary
personalities participated, each with own contribution in it as the great scientific revolution.
The author firmly adheres to the Rule that True Science should not be influenced by national
and political lobbyists, as was in the twentieth century and, uofortunately, this crown of
thorns of the fundament al Sciences has not up to now been eliminated completely.
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Thus, it is appropriate to cite, thanks to French source |03, a very revealing and useful historically
absentee dialogue between the greatest and most honest scientists of the early 20th century.
Henri Poincard [rom his pioneer and well koowo article “Sur la dyvoamigue de Félectron™ [/
Comptes Rendus de I Acaddmie des Sciences, Paris, v, 140, § juin 1905 |63):

“Le point essential, établi par Lorents, c'est gue les dguations do champ dlectromagnétique ne
sont pas alterdes par une certaioe transformation, que "appellerai du oom de Lorentz et gui est de
la forme suivante: ... *

Hendrik Lorents from hi= reaction on this piooeer article by Polocard:

“Co furent les considérations publides par moi en 1904 qui donnérent lien 3 Polocard d'derice
aon article. dans legquel il a attachd mon onom 4 Lo transformation doot e oal pas ticé tout le parti
possible ... Jai pu voir plus tard dans le mémoire de Poincard gue jaurais pu obtenic une plus
grande simplification encore. Ne Uavant pas remargud, je n'ai pas établi le principe de relativite

comme rigoureusement et universellement vrai. Poincard. an contraire, a obtenn une invariance
parfait ... ot a formulé e Postulat de relativicd, terme qu'il a éod le premier i complover.”
Against present situation in the Exact Sciences area, both muost be ranked as Saints!
The psendo- Buclidean spuce-tivee with group of Lorendz transformations, indroduced and someed so
by Henrd Poineard, and his Postulete of Relotivity from 1004 with fundereendel relation E = me®
discovered by bive get in 1000 [62]) are the true foundation of the Theory of Relativity in 1904 1905,
wileat is meore, in o moders understonding. A other following attributes are becarne devived coneepls.
The nwree of his rew theory wes later given by Moz Plonok as "Theory of Relativity ",

Some physicists are proud that Einstein in bis article from 30 June 1905 [67] with derivation of
apace and time coordinates trapsformations, but well-koown theo aod without reference to Lorente,

managed with, as it seems to them, two purely physical Postulates without the serious mathematics,
a2 Poincard did io his works. But what i the Eipstein's proof from the poiot of view of mathematics,
According to the Einsteinian definition of simoltancity with two contrary light beams ways for
fixing of the simuoltaneity of two events in the moviog and resting frames E. they must meet at the
middle point of the path, that is, at the median of the right triangle formed with these light beams.
But then this median must also be the height of this right trinngle, since the relative time and space
must be orthogonally additive each other. This fact of identity of the median and the height in
the external and interoal right triangles = 2 Theorem of psendo-Euclidean geometry (introduced by
Poincard initially on the pseudoplane), which was accepted implicitly. Although from such definition
it would be possible to substantiate long-known Lorentzian contraction. Inference in similar difficult
cases as always: “The Devil i in details® 1o is Minkowski, Poircar®s frimd and Binstein's teacher,
ore advised Binstein to study Poincer's theory, which Binstein did withoul citing Poincerd [110].
Carried away from youth by Dostoevaky's novels with their extreme heros and philosophby (“U there
i# oo God, then everything is allowed!™), for a long time Einstein did not attach importance to the
need to refer to previous anthors and had be subjected to well-known ostracism from some eminent
German scientists with Nobel laureates. and from England by e bt Edmund Whittaker |106].
lo its turn, at the beginning of the 20th century, Poincard's writings were very popular and
much larger than those of Erost Mach with his positivism. In T4, he was even invited in the USA
to give lecture for American physicists and mathematicians, that popularized his relativistic ideas.
Lo 19D, in the article “La Théorie de Lorentz et le Principe de réaction” [44], Poincaré, with
publication of formula m = El,."r_"‘! gives relativistic interpretation to the "temps local de Lorente":

“Clestle temps d'observateurs mobiles qui réglent lewrs horloges par des signaux optigues co ignorant
e o vement de trapslation dont il2 oot animéz” o 1902, in own popular book “La Science et |

Hypothise” he writes: “Il o'y paz d'ezpace abzolu. ot nous ne concevons que de2 monvements relatif=

Il 'y pas de temps absolu: dire gue deax durdes sont dgales, cest une assertion gqui o'y pas de
arns par elle-mdéme ot gqui ne peat enacoqueeis oo gue par convention .. MNous o' avons pag Uintaition
directe de la simultandicd de deox dvénements qui 2e produi=zant 2ur deox thédores differents . Noos

pourriond dooncer les fait mécanigues eo les rapportant i an espace non coclidien " The essenee
of new relativistic theory was published by him vet before his academic publication |63].
Nevertheless, the contribution of the very young at that time and recent student Albert Einstein
(of 26 years), consisted in the facts that be began to operate realistically with time scales in the
different Galilean ames near the light velocity uoder his physical concept of events simuoltaneity.,
i inferring his Law of summing two relativistic velocities, which seemed fantastic for that eral



APPENDIX

Trigonometric models of motions in STR
and non-Euclidean Geometries

Preface

In Appendix we consider a lot of general or specific applications of tensor triponometry in
geometries and physics. For this we use our tensor triponometric functions in the so-called
elementary form with its single principal eigen anple and at it the unity vector of directional
cosines ey, This angle determines intensity and direction of geometric or physical motions.
It is accompanied with the orthospherical angle either 8 or o cansed by rotation of the
directed vector eg. All they are used for complete tensor triponometric descriptive analysis
of these motions in affine Eoclidean, psendo Enclidean and quasi- Euclidean spaces with the
index g =1 and in embedded into them metric spaces of constant radius (and, therefore, of
constant Ganssian curvature) with their non-Eoclidean geometries. The main idea of such
approach consists in that tensor triponometry of these pseudo- and guasi-Buaclidean spaces
exist in one-to-one correspondence with non-Euclidean geometries of parameters noand R!
All their common results are represented in the simplest and clear trigonometric forms. So,
the widely vsed in STR so-called relativistic factors 8 and « correspond in our notations to
functions tanh ~ and cosh~ of the anple « with expansion till vector and tensor analogues.

In Chapter 1A for initial illustration and use of these opportunities, the main Postulates
and notions of the Special Theory of Helativity (STR) in the Minkowski space-time are
represented in hyperbolic forms according to the original group approach of Poincaré in
June 1905 [47] and then by Minkowski in 1909 [49). Stated in the Theory of Helativity,
according to our tensor trigonometric approach, isetropy and homogeneity of the space-time
of events allow us to use the trigonometry in most wide aspects, than in its scalar form on the
psendo- and guasi- planes. This was impossible in the non-isotropic Lagrange space-time.

I the frame of the triponometric aspects, we give renewed and universal conception of the
parallel angle for both types non- Euclidean geometries in the hyperspaces of const ant radins
parameter B embedded respectively into quasi-Eoclidean and psendo- Eoelidean spaces.
Due to this conception, initial definitions of both types non-Euoclidean peometries can be
realized through a choice of the parallel angle type, whether spherical or hyperbolic, with
corresponding to their nature two variants of the global behavior of parallel lines. As it was
demonstrated in the Chapter’s end, the Lobachevskian parallel angle is strictly correct only
in the case of the spherical type geometry, because it has a spherical nature. The wniversal
parallel angle is defined in the universal base Ej of the enveloping or tangent space. In
STR the hyperbolic parallel angle is defined also in By, which corresponds to the immovable
Observer Ny in the Minkowski space-time. And it is covariant, i e, identical to the hyperbolic
motion angle v, defined initially in scalar form by velocity as v = artanh vfe. (Chapter 1A )

The basic parameters of motions in the tensor trigonometric versions of non-Eoclidean
geometries, gquasi- and pseado-Euclidean peometries and also of STR are the tensor anples
of hyperbolic and orthospherical rotations as in (259), (313, 314), (324), (362, 363), (497).
The principal tensor anples € T and 8 are arguments of their rotational matrisx-functions
rot & roth I and rot © as measureless tensors of motion. So, in STH the tensor hy perbolic
interpretations of Einsteinian dilation of time and Lorentzian contraction of extent with
concomitant to them relativistic effects are expressed very easy through hyperbolic rotation
and deformation of coordinates. The Finsteinian physical Postulates with his definition of
events' simultaneity are simplest theorems in the pseado-Fuoclidean space-time, introduced
in first by Henri Poincard in June of 1905 {Chapters 24244 )
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One-to-one correspondence between kinematic characteristics of relativistic inertial and
uninertial motions of material objects or particles in Minkowski space-time with their tensor
trigonomet ric models are established and used. For beginning, we constructed triponometric
descriptive models of various collinear motions (at ey = const) relating to the rectilinear
physical movements. Thos, we exposed the hyperbolic motion at g = const on a time-like
hyperbola with coordinate velocity », on a kinematic catenary with proper velocity v*, and,
with our original method, on a kinematic tractrix with supervelocities s and s* under trans
lation from psendo BEoclidean space into two Special quasi-Euclidean spaces with primary
hyperbolic and real spherical equations for a catenary and a tractrix of two kinds {of Huygens
and of Minding). (In Ch. 10A we'll realize the tensor trigonometric model of psewdoserewed
motion as the 2nd type of uniform motion at g = const) Such Minding tractric equations
wias nsed for presentation of the Beltrami pseadosphere, realized in the Especial quasi
Euclidean space {Qg:“}i with one-step admitted principal spherical motions and polysteps
admitted orthospherical motions. We stated that two catenaries with two catenoids and two
tractrices with two tractricoids are not mapping correctly in the usual Euclidean space, but
only in their four Special quasi- Euclidean binary spaces! We added these surfaces by their
four metric forms in the vector-scalar triponometric presentations. The resolt is proved:
The Minkowski hyperboloid T in (P} is one step isometric with the Beltrami pseudo
sphere in 4-th {Q;‘H)i at n 2 2 and common R, i e, only for their one step principal
motions and polysteps orthospherical ones. By passing way, the hyperbolic relativistic analog
of the Ziolkovsky cosmic formuola is gotten. We calenlated the cosmic travel on the "photon
rocket" with an ideal reversible repime to the nearest Star "Prodima Centauri”. However
its disappointing conclusion: similar even optimal travels, but with acceleration g, for the
contemporary people (non-robots) are unreal in reasonable times! (Chapters 54, 6A)

The general laws of summing two steps, polysteps and integral non-collinear principal 30
rotations in {P*) and (Q@*!) around their frame axis, limiting by constant radins R =1
due to the rotational Tensor Trigonometry, were inferred in their scalar, vector, tensor
("tvs") forms with their polar representation and revealing secondary ort hospherical shift.
And general tensor triponometric formulae for the continnons Lorentzian (as a proup) and
Special quasi-Fuclidean (as also a proup!) transformations were inferred. The peneral laws
of summing 3D two-steps, polysteps, integral anpular motions on corvilinear hypersurfaces
in (P or (@*1) under their non-Euclidean geometries of constant radius parameter R,
with motions (velocities, including superlight) in STH with Looking Glass, are isometric
with the general laws of rotations above with exactness till factor B Therefore both these
rotations and motions have somorphic own groups. For two-steps motions, we represent ed
these laws in non-commutative sine and tangent biorthogonal forms with the Big and Small
Euclidean Helative Pythaporean theorems reduced them to the initial Eoclidean subspace.
But in the case of the second differential principal motion in two-steps ones, the indoced
differential secondary orthospherical anpular shift s revealed as the Thomas precession. In
our tensor trigonometric analysis in the quasi-Euclidean, psendo-Eoclidean, non-Fuoclidean
geometries and in the Theory of Relativity, we connected also the secondary and indweed
orthospherical anpular shift by its common nature: (1) with the Harriot—Lambert angolar
deviations (excess or defect) in convex figpures on the non Boclidean hypersurfoces of the
radins parameter B (2) with the relativistic Thomas precession in the STHR, and (3) with the
Coriolis acceleration in result of motions in the pseudo-Euclidean space along a corvilinear
trajectory. Our tensor triponometric compared descriptions in the base Ey and the base
E have revealed the most universal and simplest formula for these induced angular shifts,
including in time, as "the difference between real local rotation and its cosine orthoprojection
into the original Cartesian subbase". These difference and shift are negative for hyperbolic
cosine and positive for spherical cosine. We constrocted the tensor trigonometric isomorphic
models for kinematics and dynamics of a material body at integral noo-collinear motions
with the induced and oscillating Thomas precession. [ Chapters TA, BA)
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The main measureless concept of the tensor trigpnometry in STH is the hyperbolic tensor
of motion roth TU™ = F(v,e,), generated proportionally with constant coefficients mge
the relativistic dynamic tensor of momentum and energy. 1t produces the pseudo-Eoclidean
interior right triangle of three momenta Py = mge, P = me and p = mv = mgv* with the
Absolute psendo-Euclidean Pythagorean Theorem in (P31 The own 4 momentum Py as
the hypotenuse has own scalar invariant of the Lorentzian transformations. Ao additional
important concept is the hyperbolic tensor of deformation de fh T = Dy, 8,) decreasing sizes

. A - . =3y R .
of any moving object in the original Cartesian subbase Ei Vin the direction of velocity from

its own sizes in moving .E'és} with the Lorentzian seeming contraction. | Chapter 44 5ATA)
With the use of abstract and specific spherical-hyperbolic analogies, a number of similar
notions, formulae and theorems are piven and inferrved in their spherical kinds in the so-called
gquasi- Buclidean space with index g = 1 and on the embedded into it Special hyperspheroid
of the constant radius R with its non-Euclidean spherical peometry. In addition to all these,
we proposed the simple tensor tripopnometric model of the geographic globe. {Chapter 8A)
ln Chapter 9A under the enough logical having and pew arguments, we adopt that
novel opportunities exist for correct studying and description of various relativistic motions
in the presence of pravitation, with simplest and correct interpretations of all well known
GR-effects, in the same Minkowski space-time, using our tensor trigonomet ric approach in
its tensor-vector-scalar (tvs) forms and, in addition, of the differential tensor trigonomet ey,
The historical merit that inertia of any massive object is created by the mass of the Universe
as 4 whole belonps to Ernst Mach |55] — eminent physicist and philosopher of science. True,
the mechanism of action of this fantastic hy pot hesis remained unelear for a long time. Even
Albert Einstein in his GTH refused it. This unique Mach system | associated with the center
of Mass of the Universe, specified a priori the unique inertial system of Galileo, ss Newtonian
too, for example, for space-time, and relative to it all other Galilean systems. In 1964, the
necessary theory was created by Peter Hipps |82], which explained, that during development
of the Universe with formation of its Mass the latter produces the specific Higps field.
It creates the Galileo’s inertia of matter as a specific foree of the Nature, Moreover, just like
in space-time by Poincaré — Minkowski, the inertia at any point and in any direction of
this field in the Universe depends only on the mass of any object, in accordance with the
Galileo’s Law! That is, this new material field of the Universe is homogeneous and isotropic,
and, therefore, it combines with the space-time by Poincardé — Minkowski. Furthermore | due
to the Newton's classical Equivalence Principle, inertial and gravitational mass are identical |
and this fact has been repeatedly and sccurately confirmed | starting with Newton's own
experience. The term “uniform rectilinear motion” in the Hipps Theory has also been revived
in the relativistic space-time! His material field is, as it were, a reincarnation of the rejected
by Einstein world ether. | hope that this brief explanation commented to readers why the
author develops, since first publication of this book in 2004 |15], various applications of his
Tensor Trigonometry in the Theory of Relativity with the Poincard — Minkowski space-time.
In Chapter 10A, we developed the differential tensor trigonometry of world lines in the
flat Poincaré — Minkowski space-time (P31} with the unity trigonometric accompanied
Minkowski hyperboloids | and I and of regular corves in the 3D and 4D quasi-Boclidean
spaces (@) with the unity accompanied hyperspheroid. The pseudo-Euclidean motions
correspond to plane and spatial physical relativistic movements in 30 Euclidean space.
We have identified that the tensor-vector-scalar metric forms of 3D Minkowski hyperboloids
relate one-to-one to the full 3-steps metric form of any world lines. This relates also to the
both connected metric forms of 3D hyperspheroid. These forms were expressed in the 4D
Absolute Euclidean and psendo-Eoclidesn Pythagorean theorems and in the 30D Relative
Euclidean Pythaporean theorems. We given tensor triponometric models of pseudoscrewed
world lines and all gquasiscrewed curves. The former correspond to the planetary movements.
In addition to the Frenet-Serret theory in (€3}, we created the theory of world lines in (P3+1)
and regular curves in (@) and (@*!} with movable tetrahedron and two trihedrons.



Additional notations

{I*}or {RYy ITRy} = {V I }sand {IF}or {R}y, IFRw}={V I }El are metric reflector
tensors of the psendo-Enclidean space (P} by Minkowski and of its Looking Glass, or as
only a reflector tensor of the quasi-Euclidean space {Q™F1),

¢ — dimension of embedding of the given regular curve into binary space (P™1) or (@™,

Ey - the base for canonical trigonometric matrix forms, the initial unity base, in that nnmber,
as the universal unity base for realization of specific spherical-hyperbolic analogy (in STH,

it is the base of relatively immovable Observer); E_,E:“} C By is the Cartesian subbase of Ej,
I — natural Euclidean messure of lenpgth, A — natural pseado-Eoclidean measure of lenpgth,

AW and £30 _ the time arrow and frame axis with the Euoclidean subspace in the initial
psendo- Cartesian base By of (P31,

') or ™ at 0= 3 and x® € £ _ two projections of element u in {P™Y) or (@7,

Ei,t“"} - Ihe k-th time arrow and frame axis as current relativistic time directed to future
in the base Ep of (P!} under hyperbolic inclination T to the initial time arrow ef (1,

7 =t® _the proper time along a world line,
I;k} —the j-th space coordinate in the base By of (P™+1) or (Q™H1),
Note. Greek symbaols as 7 and y are used here for the proper time and proper extent.

&, dip are the principal angles of rotation in the quasi-Foclidean space or identical motion
in the spherical peometry on the embedded hyperspheroid; it is also the angle of latitude
by Lambert’s anpular measure in the tensor trigonometric model of the Earth globe along
spherical meridians as big circles from the Poles or from the Equator in [0, 2w /2],

= T | 3 T 3 . 3
=, &€ are complement ary to motion’s angle above spherical angle in the osculating quasiplane

between the tanpgent or the quasinormal to a repular curve and the ¥ axis; or defined by
simplest formula £ = 7/2 — @ (Ch. §),

T, vy, dvy are the realificated principal angles of rotation in the psendo Foclidean space or
identical motion in the hyperbolic peometry on the embedded one sheet an two sheets
Minkowskian hyperboloids; it is also the angle of latitude by Lambert’s anpular measore
along hyperbolic meridians from the Poles (for 11) or from the Equator (for 1) in [0, £00),

T, v are complement ary to motion angle above hyperbolic angle (in the osculating psendo
plane between the tanpent or the psendonormal to a world line and the isotropic cone or the
isotropic dinponal; or defined by formuolae sinh v - sinhy =1 ~ coshv = cothy (Ch. 6),

A —is internal geometric ort hospherical angle at tops of geometric fipures on non-Eoclidean
surfaces, in particular, as Agag at the top 2 of the non-Fuclidean triangle 123

c, do — are external angles of orthospherical motions or identical rotations,

B, 8, df are external independent or induced orthospherical angles of motions, or as of the
non-Fuclidean anpular shift, or as the angle of Thomas induced relativistic precession,

£ and e — external orthospherical angles between motions on non-Eoclidean surfaces or
identical rotations in enveloping spaces (E=7 — A — cose = —cos A, sine = sin A4),

wy (7) and 3 (7) - spherical and hyperbolic angular proper velocities of rotations of a curve,
wi, (7)) and wgy(t) — orthospherical angular proper and coordinate velocity of e,
wg(t) — induced Thomas orthospherical precession in sine normal plane (€, €y} around ey,

roth & = Fr(p,es) — the trigonometric measureless tensor of motion in (Q™+1),

roth T = Fy(y, @) — the trigonometric measureless tensor of motion in (P,



ADDITIONAL NOTATION 187

e, = (B — cosE - Bg)/sine — unity vector of the sine orthogonal increment of motion,
e, = (ex —cose- €]/ sine — unity vector of the cosine orthogonal increment of motion,

8y, €, — unity vectors of summing two- and multisteps motions for direct and inverse orders
< ]

of partial motions along a world line, at the hyperboloids 11 and 1 at the hyperspheroid.
T - (n+ 1) x Lradius vector of some object in (P™1) or (@™} in the universal base B,

iand p- (n+1) x 1 time like and space like vectors in {P™) including for a world line,
t and m - (n 4 1) x 1 analogous vectors in (@™, including for a regular curve,

€ = ¢ iy — vector of 4-welocity or supervelocity by Poincaré of absolute motion in (P31,
v =dx/dt = v-ey = ¢ tanh - € — coordinate velocity of the physical movement,

v* =dx/dr =v* -8, = c-sinhqy - 8g — proper velocity of the physical movement

8§ =dx/dt = 5-ey = c-cothqy -8 — coordinate supervelocity, so, inside "black hole",

8* = dx/dr = s* - e, = c-csch 4y - 4 — proper supervelocity, so, inside "hlack hole”,
Py=F-ip =mge =mge -1y — own 4 x Lmomentum of a particle M on a world line,

P =mec = Fy - coshyy — sealar cosine projection of Py onto dm (total momentum),

p = mgv* = Py -sinh - 8 — 3 vector sine projection of Py into £3 (real momentum),
F = F.pg =mogs — 4 x 1 free inner force acting on a material point M in (P*+1) in En,
g5 = g5 - Ps — 4 x 1 free absolute inner acceleration of material point M in (P31},

£z = Jo - Pa. EE} = fn -coshy-e, — 4% 1 tangential cosine acceleration with 3-projection,
g = gy - by — 4 % 1 normal sine acceleration with zero time projection,

& = - P — 4 % 1 free absolute inner superacceleration of material point M in (P31,

L

o = Ja - Pa, j{:} = ju -sinhy -84 — 4 x 1 tanpgential sine acceleration with 3-projection,

= ju - by — 4 % 1 normal cosine acceleration with zero time projection,

"F-“

== 1
kp = kp + kp — 4 % Lvector of psendocurvature Kg with quasiorthogonal decomposition,

k; = E + kg — 4 x Iwector of quasicurvature Qg with psendoorthogonal decomposition,
iy, ix — unity 4 x Lvectors of principal and free tangents with curvatures Kg, Q.

Pa. Pg — unity 4 x lvectors of principal and free psendonormal with curvatures Ko, Kg,

by, by — unity 4 x Lvectors of spacelike sine and cosine binormal with corvatures Ky, Ky,
iy or t1— 4 x 1 hinormal of the cosine and sine orthoprocession along frame axis o or 7.

i, — tangent, perpendicular to principal one, for screwed curves,

Py — psendonormal, perpendicular to principal one, for screwed curves,

Yooz Vain — vosine or sine orthoprocession at hy perbolic /spherical /orthospherical motions,
I{a) = £ — countervariant spherical Lobachevsky parallel angle in the universal base E,,

Pla) = v - countervariant hy perbolic Special parallel angle correct in any admitted base Ejg.



Chapter 1A

Space-times of Lagrange and space-timme of Poincaré and
of Minkowski as mathematical abstractions and physical reality

At first, consider the conventionally trigonemetric Muematic model of & material point M
physical movement in the 4-dimensional binary Lagrangian space-time (L3 Choose its
simplest universal base By = I as an initial unity base with the origin O, looit all these

four coordinate axes 1. T, T2, £ are defined as if Euclidean orthonormal ones. The time

arrow £ at the origin O is the time-like orthonormal azis. The time arrow ™ at the same
origin O is the directed time-like affine azis under scalar slope tan v = v with the unity
vector of the directional cosines ey 1t relates to the centered base B But the three space
axes 11, Ta, T3 form the Cartesian space like subbase E® iy By and Epy. 1ts axes 7, T2, T3
stay orthonormal under orthospherical rotations rot © in constant {(£%), they form a right

handed triple in E®_ Hence, 3D Euclidean trigonometry with measureless orthospherical
functions is applicable in (£3). Any universal base By, = rot ©-Ey corresponds to immovable
Observer Ny. If the material point M moves with the vector velocity v = v - €5 = const,
then its proper centered base is E,, = VE,, where its new time-arrow £ U have also the
three particular slopes, with respect to the three space coordinates axes of Ei ). The ratios
of these space coordinates and the time arrow are characterized by the tangent vector tan v
(as a world-line slope in (£31)) identical to the vector velocity v of the material point M
(if frame center O corresponds to zero (Xp = 0,fp = 0) and then x = Ax, + = Af > 0):

tan v =tan v-ex =X/t =V=v-8y, tanyy=1x;/t=w;, j=1223. (14)

Admissible transformations in linear {(£3*1) form the group (Vg) of the homogeneous
Galilean transformations. This i the mathematical foundation of the Galilean Principle
of Relativity, The transformation Vg is continnous as det Vig = 41, and this condition
guarantees preserving base orientation. In Cartesian-affine bases Eg, the space-time (£3+1)
is represented as the direct sum of an Euclidean space and an affine time-arcow:

(L) = () o TP = (€)@ T = CONST, (At >0) (24)

(E3) = CONST . (34)
Seems, there is paradox: const’ + variable—const, but it is not valid for a direct sum!

There holds analogy with binary spaces of Ch. 11 (g = 1), but (2A) is not an orthoponal
sum! All time-arrows form the complete set of affine axes () consisting of time-like lines

with anpular slopes to f':_ﬁ ranging in [0;£7/2]. The invariant Euclidean space (%) consists
of space-like elements. All elements of the Lapranpian space-time are real nnmbers. The
space-time properties are preserved under Galilean transformations, because ones in general
(L3 are reduced to exactly three pure types:
1) antomorphic orthospherical rotations rot © of the space (£%),
2) special parallel {or middle) rotations f(tan ) of £, with respect to the space (£%),
) linear space (€% and T translations P due to this space-time homogeneity.

The general linear transformation Vg of a Cartesian-affine base Ep is the following:

Ve Ey E

(8 118 v]-[F Mo ] newonn @
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For the matrices of the bases, their first three ¢ ulumm determine the constant space (%),
the fourth column determines the variable time-arrow t If ag = 0, then Eu = Eyy) (the
bases are universal), and in particolar, if Bg = I, then Ey=E;. In this case, the inverse
matrix VEI (of the same structure) maps a binary Cartesian-affine base B into its simplest

unity form, i. e, the original universal base Ey. The inverse matrix also realizes passive
modal transformation of a linear element from By into an admissible binary base E. A linear
element of {£3%1) is represented in E as the radins-vector:

X
= = .
—xei=[ %]

Thus homogeneous affine Buelidean Galilean transformations in their trigponometric form
are the non-commut ative products of parallel and orthospherical rotations in the polar forms:

Ve = F (B33, tan v) fitan ) rot 8

rof B33 tﬂ]li!:|=|:1313 tany]_[mte;;,g 0

o 1 o 1 o 1 :| =rot O - _f[{tﬂIl V}E]! (54)

where det Vg = 41, and f(tan v) is the 4 x 4matrix of principal parallel rotations,

fl(tan v)g] = rot (—©)- f(tan v)-rot ©, but(!) (tan v)g = rot (—Oa3) - tan v.

An inverse and passive homogeneous Galilean transformation is represented as

v-l_ [ rot (—B3x3) vot (—Bax3)-(—tanv) ]
o = 0 1

rot (—6) fltan (—v)]

_[rot -Osma H,[Iﬁ;s t“ﬂ“] f[tan (—v)]e} -rot (-€).  (64)

Formula (5A) is the affine Enclidean analog of polar representations (474) and (475) in
sect. 113, On the other hand, transformation of the base By is similar to (480), (481):

E=Vg-E, = f(tan v) - 7ot © . E, = rot O - f[(tan v)g] - E,. (TA)

. . . . o . =3
From the physical point of view, the subbase E® moves, with respect to the subbase Ei },
at the velocity (1A).

Inverse matrix (6A) transforms passively the coordinates of a world point T € (£3+1!) as
follows:

rot (—B3.3) - (x'Y —tan v -t)

r=Vz;".r' = F Yo tan v) . 'Y = :

(84)

If 8 =2 in (5A)-(BA), then we deal with pure parallel rotations in their conventional
trigonometric and physical forms as the Galilean transformations of coordinat es:

x=xV—tanv.-t=xV —v.¢,
(94)
t =,
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In (£¥*Y), the scalar time is invariant too and may be counted on the original axis E

and t'[_"‘3 parallel to invariant (€%}, Due to this fact, so called parallel rotation f(tan v)
of the time-arrow £ (as the ordinate) is peometrically intermediate between spherical and
hyperbolic ones! Note, that f{tan v) is expressed above as a 4 x 4 matrix with the variable
3 x Lvector element tan v, The latter is the tanpent of the angle v Multistep parallel
rotations lead to the classical low of tangents tan v or velocities ¥ commutative geometric
swmmation in the projective Euclidean vectorial space {{E3)}:

f(tan vy3) = f(tan vya) f(tan vaz) = f(tan vaz) f(tan vya) = f(tan vis + tan vag) —

— f(tan v) — f(tan ») = [ f(tan viy) = £(3_tanviy), (v =2). (104)

The set {tan v) is the commut ative group in the projective vectorial space of velocities, i e |
"tanpents". The set of parallel rotations {f(tan ) is the bnematic commutative subgroup
of the homogeneons affine Foclidean Galilean group (Vig). lts another subgroup is the non
commutative group of orthespherical rotations. Note, that rof B is expressed above as a
4 % 4 matrix with the variable 3 x 3 matrix element rot Bg.3. The group (V) consisting
of these two subgroups is the subgronp of the general affine Euclidean Galilean group.

The Lagrange space-time is continnons, but not homogeneous and isotropic entirely (it
is enough for this, that its space and time coordinates have different physical messures)
however its space and time are homogeneous separately due to property of continuity and
equivalence of all their point elements. o particular, any centralized 4 x 1 radius-vector
element in £ can be chosen as the new origin of an admitted Cartesian-affine base, and
the admissibility does not depend on this choice. Parallel translations in (£3%!} form the
commutative translating subgrowp of the general Galilean group. The relations (2A), (3A)
give an affine nature of principal transformations and independence of space and time in it!

The Lapranpe space-time has a lot of applications in non-relativistic physics. However,
as long apo as to the end of XIN century, experimenters and theorists have encount ered some
facts that are inexplicable within its framework. Firstly, it is the "nepative result” of the
farmous experiment of Michelson—Morley (1887, which contradicted the rule of velocities
summing (in the pear-light region). Secondly, the Maxwell electromapnetic wave equation
were proved & no covariant in the Galilean inertial frames of reference, though the latter
due to Maxwell's theory, explains the nature and spreading of light. This non-covariance of
the given equation to the Galilean transformations has mean the crisis of the fundamental
physics to the end of XIX century. That is why, Lorentz suggested in 1892 the Special space
and time transformations, initially for interpretation of the Michelson—Morley result |58)!

#E

ln 1904 Lorentz, taking into account the Poincard physical Postulate of Helativity also
from the same 1904, valid for all physical phenomena, showed that his space and time trans
formations follow from form-invariance of the Macwell elect romagnetic wave equation |59)!!
And Henri Poincard in his pioneer article from June 5 of 1905 established a proup nature
of new transformations, discovered before by Hendric Lorentz, and he named them as the
Lorentz transformations |63], with introduction in the Physical Science of the new more
perfect and united space-time of the Nature corresponding to them and having homogeneity
and isotropy, similar to the Foclidean space!!! o addition to Galilei-Poincaré Postulate
of Relativity (1636, 1904), from the mathematical point of view o June 1905, in fact, the
following quite new physical-mat hematical Postulates were introduced by Henrd Poincaré.
Postulate 1: By nature, the space-time with its various physical fields is homogeneons and
isotropic entirely. (These properties were valid due to speed scale factor "¢, used by Henri
Poincaré for the time-arrow as directed 4-th coordinate )

Postulate 2: This space-time is the binary compler-vabwed 0 guasi- Buclidean space with an
index g =1, oriented by the time-arrow i-g, and with the main hyperbolic angle of motions.
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The new conception of space-time as STH with these two Postulates has no any more
defects of the classical, non-relativistic one. And it realized the opportunity to transfer off
the non-perfect and nonunited Enclidean-affine spacetime (£3+1Y in the homogeneous and
isotropic complex quasi- or real pseudo-Buclidean space-time with its guadratic metric! In
the space-time, we use the opportunities of scalar, vector and tensor triponometries! Thos,
we may apply the principal hyperbolic angle of motion «y in the universal base Ey, with the
use of specific tangent tangent analogy (355), sect. 6.4, with velocity divided by constant o

tan v — tan g = v/e,
tan pp = tanh v = v/e.

} (t — ct) (114)

However, through any initial quasi-Cartesian and psewdo-Cartesian bases B with the
common reflector tensor TE of their spaces (@3 and (P*+1), we can introduce the principal
hyperbolic anple with tripopnometric functions immediately, with the use of the abstract
analogy from the same sect. 6.2, Due to Postulate 1 and 2, with (322) and (323], there hold:

tan |:—¢PR} = V{r‘ic — tanh {—‘igc:lﬂ} = 'l{fc: )
(1) wr — iy, tan iy = iv/e; (2) —ipr — 7, tanh v = v/c. } (t — ict) (124)

Then, under logical development, the Euclidean vector subspace of tanpents (velocities) are
reduced into the hyperbolic tangent (or Kleinian) model inside the Cayley oval (sect.12.1).

Sealar trigonometric functions of iy in the psewdospherical form were first applied by
Poincaré for presenting Lorentzian transformations in the 2-dimensional trigonometric form.
Then for their realification, Minkowski used the realvalued scalar functions of 4 in the
2-dimensional trigonometric form in (P! [65). Both used the plane trigonometry for
presenting hyperbolic motions by 2 x 2 rotational matrices. Note (1), that the approach of
Poincard will give us clear opportunity for right operations with sipns of quadric values from
the internal and external cavities of isotropic cone and right chose of metric tensors £, [F.

With Poincaré mat hematical approach, STHR was founded with his peneralized Postulate
of Helativity (1904) acting in the Galilean inertial frames of reference and introduction
of his new complex-valued isotropic and homogeneons space-time.  Logically the Galilean
transformations were replaced and named by him ss Lorentzian group of this space-time!

With Einstein physical approach, STR was appeared with the use of the similar Principle
of Relativity (1905) and his Postulate of constancy of the light speed in the Galilean inertial
frames of reference with the additional definition of events simultaneity.

The Principle of Relativity is traditionally applied ooly in its physical sense, although
there exists its original mat hematical prototype, see in sect. 12.3. Note, that physical space
time (here (£3F1) and (P*1})is only a certain mat hematical abstraction, and its admissible
courdinates may be used for describing objective laws of matter movement. The adeguate
interpretation of these lows in the coordinates maps the "reality" of the space-time.

The new essential renovation of the real space-time conception is realizing in 1964 |82],
by the eminent now Peter Hipps, within the framework of the Standard Model for the set of
elementary particles, put forward a revolutionary, but up to 2012 still hypothetical theory,
that during the formation of the Universe, according to the Big Bang Theory by the eminent
George Gamow, at the stage when its full Mass appears, the latter creates in the Universe
a certain new material field with its quantum particle “boson”. 1t is this field creates the
fundamental force of Nature under well-known name “inertia®, which acts, due to Galileo,
proportionally to the mass of any massive object (as its charge), but iff this object deviates
from uniform and rectilinear motion. This theory was strictly confirmed with the discovery
of the Higps boson in 2012 st the Hadron Collider in Switzerland. What is very important |
the Hipps material field on the whole is homogeneons and isotropic, with respect to acting
Galilean inertia. The Poincard — Minkowski space-time on the whole is also homogeneons and
isotropic. Then, with the Newton's Principle of Equivalence of the inertial and gravit ational
masses, the Hipps theory proved very strictly a reality of this flat space-time of the Nature.
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Thus, before the renovation, most difficult problem in relativistic theory of space-time was
correct considerations of different world events taking into account gravitation. Historically
first and up to now prevailing geometric conception was the Einsteinian GTR from 1916 |69
with curved by gravitation pseudo-Riemannian space-time. Alternative BMT conceptions
(Bimetric Theories of Gravitation) are based on the nature of the gravitation as action of
some tensor physical field in the Minkowsky space-time. Surprisingly, that historically the
first version of BMT was proposed by theorist Nathan Rosen |7T8], an assistant to Einstein
at Princeton University and later his close colleapue! This shows how Albert Einstein was
loyal to alternative points of view in science and even to his GTH. This is an example of the
true and not just in words, attitude to the freedom of scientific thought. Beginning from
the 1-st edition of our Tensor Trigonometry [15], we are following to similar bimetric point
of view, i. e all events are executed in the flat space-time by Poincaréd — Minkowski, but
any Observer see the same events through the lensed gravity field as distorted from curving
by the psendo Riemannian metric tensor. Our approach is a pood compromise that does
not destroy the harmony of the Universe and exclodes the positivism in real sssessments of
world events. Unfortunately, the agpressive behavior of specific apologists of a really curved
space-time still resists such a peace-loving point of view and they continue to make from
Albert Finstein the new Ptolemy as if from the middle Apges. (See the discossion in Ch 9A4).

Vector nature of space-time takes into account admissible directions to the light cone
contains three isotropic geometric parts with respect to their psendo-Euclidean metric.
They are: (1) the external conic cavity consisting of the space-like elements with their
Euclidean metric, (2) the internal conic cavity consisting of the time-like elements with an
anti-Euclidean imaginary metric, and (3) the degenerated light conic dividing hypersurface
with its zero metric: it separates these external and internal cavities. Therefore rotational
and deformational linear transformations in the space-time may be represented as 4 x 4
tensor trigonometric funetions of 4 x 4 tensor angles I and © (Chs. 6 and 10-12).

Generally, tensor trippnometric languape (with hyperbolic and orthospherical functions)
may be used for explaining all effects of STH connected with the time and the Eoclidean
subspace.  Tensor trigonometric functions of the angle T 10 e in their hyperbolic form
in {P*1) (they were described in Chs. 6, 11 and 12) give us the 4-dimensional tensor
trigonomet ric forms for describing kinematics and dynamics of STH (see Chs. 5A TA L 10A).

The psendo-Euclidean trigonometric rotations correspond to homogeneous continnons
Lorentzian transformations.  Hyperbolic rotations with the psendo-Euclidean invariant
sinh®~y — cosh®y = 2, coshy > 1, interpret clarity the Einsteinian dilation of time.
The tensor trigonometric hyperbolic deformations with the cross Eoclidean gquasi-invariant
:m{:hﬂ*}'+tal:|hﬂ 7 =1, sechy < 1, interpret clarity the Lorentzian contraction of extent. If the
two phenomens are considered in the psendoplane corresponding to tensor angle T then a
psendo- Euclidean right triangle for them is solved completely (see in sect. 6.4). Our special
mathematical principle of relativity for admitted geometric transformations (sect. 12.3) is in
one-to-one correspondence in (PP with the Poincaré physical Postulate of relativity, The
Poincaré—Linstein Law of mutual dependence of the space and the time and their relativity
may be explained with the fact that the relativistic Euclidean space and the time-arrow are
hyperbolically orthogonal direct complements of each to other, they change always together
under hyperbolic rotations, and both do not change under orthospherical rotations:

(PHY) = (3B B A ® = CONST. (124)

This space-time is the united indivisible 4-dimensional continnum. As a whole set it is
an ahsolute, but consisting of these two variable together relative summands of index &
The scaling coefficient "¢", introduced by H. Poincaré for the time, & equal to the lipht
speed in the cosmic vacuum . Note, this small, but great time modification led to identity of
transformations in the homogeneous and isotropic space-time with the Lorentzian transfor

mations adopted before for covariancy of the Maxwell elect romapgnetic wave equation [59].
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Later Panl Dirac generalized the result in his relativistic covariant form of the Schridinger
quantuwm wave equation [61). Moreover, the fundamental Law of Enerpy and Momentum
Conservation, in accordance with the Noether Theorems [102], are inferred in STH strictly
from homogeneity and sotropy of its basis Minkowski space-time in clear simplest tensor
trigonometric form (see in Chs. TA 10A and in the Kunstkammer).

Also two Einsteinian postulates on masdmality of moving matter velocity due to v < ¢
and on constancy of the lipht velocity e (only as scalar value) in all the Galilean inertial
frames of reference follows directly from properties of the hyperbolic tangent moduolus

[[v/ell = [[tanh ~]| < 1, (144)
and from these properties of the hyperbolic angle-arpument of the physical velocity
oo+ =ty + o0 = too, (154)

vilid in any psendo- Cartesian base Ey of (P31 with relatively immobile Observer. Second
rule [15A) implies also that the lipht velocity does not depend on its source movement.
However, the instantaneous proper velocity v* of a material object | from the point of view
of Observer moving with it, changes due to relation ||[v*|| < oo, as ¥v* = ¢-sinh .

In Ch. 7A, we used our most peneral law of summing nultistep motions in (P2
with polar decomposition proved by us before in Ch. 11 for inferring the relativistic non
commutative law of summing velocities in STH and segments in hyperbolic geometry in
the peneral and complete forms. According to similar opportunities, we consider varions
relativistic motions with their kinematics and dynamics in Galilean and instantaneonsly
Galilean accelerated frames of reference (see in detail in Chs. 5A, 6A, TA and 10A).

#F #

Further, describe the trigonometric approach to representation of physical relativistic
moverments in its simplest form. Choose the right universal, e dnertial base By = {I}
with immovable Observer Ny Other right universal bases By, are linked as follows:

Eyy =rot © . E, = {rot 8}, (164)

where rot' B - I .rot @ = [t = ot B-1% . rot’ B, according to (470).

The set of admissible pseudo-Buoclidean bases are determined by the metric tensors of
{P*1) in two possible simplest forms — according to the Hermann Minkowski approach |63]
(but with their right and clear chose on the base of the Poincaré initial approach with
imaginary principal angle iy for conjugacy of Minkowski hy perboloids in Ch. 12 and further):

+1 0 0 0

1 o 0o 0

D +1 0 0 0 -1 0 0

+ Fiy — — _Ir* -

Fr=1 0 o0 41 0| U= o o o o =717k (7A-L 1D
D0 0 -1 0 0 0 +1

ln the 1-st case, our natural Euclidean space is preserved, in the 2-nd case| it transforms into
anti-Fuclidean space, which is very strange for us — see in details in the last Chapter 10A.
Lo the base E_'t and all uoiversal hazes, coordinate axes are quasi- Euclidean and pseado-Euclidean
orthonormal. hence the specific spherical-hyperbolic analogy from sect. 6.2 may be used. and this
i# important from theoretical point of view. Till realification of space-time by Minkowski. it was as
a complex quasi-Euclidean base of space-time by Poiocard (see before in detail in Ch, 10):

E'-I* . E=I*=(VI* . E) - (W% - ), (184)

where /T is the arithmetic root of type (443). The latter gives an initial variant of Heorl Poiocard
[6i3] without % A new base. according to our polar representations (4807, (481), is the result of
a unigue combination of a hyperbolic rotation (in E'1} and orthospherical one (in E"m}. or in the
reverse order, where the matrices are compatible with the reflector tensor T5(174 — T):

E =rothT -rot ©-E; = {rot 8}z - Ey. (194)
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Suppose that a opew pseado-Cartezian base i2 the result of 2 pure hyperbolic rotation
Ein = roth T'- Ey = {roth T}. (204)

The pew coordinate axes are, due to (363), completely spherically non-orthogonal as their scales in
the Euclidean metric are dilated (this holds for at least two of the axes, ooe of them is timearrow ).
These axes dilations in hyperbolic interpretation was introduced by Herman Minkowsky in [G6].
Pure hyperbolic base rotation (20A) has the physical sense of uniform rectilinear moverment
of .E'iij with its Nyp relatively of .E'Eaj with its Ny at the velocity v = ¢ tanhy. Hyperbolic
rotation is elementary, it is performed in the rotation eigen pseudoplane (P c (P31
determined here by the time-arrow ™ and the vector v = ¢ - tanh v in {(£31)
ln the simplest case of 2 % 2 dimensional matrie (324), we hawe in the pseadoplane

cosh sinh 7 - cos o

Erp = {roth T}axz - Ey = sinh~y - cosa cosh -y

, cosa =+l (214)
It is a hyperbolic rotation of the axes £ and Y at the angle « to the hisectrix of the
1st quadrant if cosa = +1 and to the bisectrix of the 2-nd quadrant if coso = —1).

Further, we begin to use the fundamental concept a "world line" as the curvefunction
1{3}, introduced in the Theory of Helativity by Hermann Minkowski in 1909 |65]. 1t is a
peometric invariant —as two isotropic cones and both Minkowski hyperboloids (Chs. 11, 12).
But all they can be expressed in relative admitted bases of the Minkowski space-time.

In first, consider the simplest relativistic physical uniform rectilinear movement of a
material point M. At the moment ¢ = 0 the point passes through the origin O of the frame
of reference By, which here is the common origin for all centralized bases {Eg). Then this
world line of M is a straight line inside the internal or "light" isotropic cone. The light cone
is the locus of all central light rays proceeding from O, A certain psendo-Cartesian base E|
where M is immobile, has its own time-arrow ot coinciding with the straight world line of M
mapped in the original base Ey. (In general, all the new coordinate axes are determined by
columns of the matrix for a new base E_"_;g This new time arrow o is completely determined
in B by the hyperbolic angle  with @ and the fixed directional cosines of the vector
tanh v € (€)M or the point M velocity v = v-e, = ¢- tanh v = const.

A world line may be, of course, arbitrary corvilinear one (as a geometric invariant ),
but its slope must be less than the slope of the light cone, i e of rays of light relatively
to the time-arrow ™. We represent world lines in the universal base By = {I} only
for its geometric visuality and comparison with other world lines, as well as all the other
psendo-Cartesian bases E are expressed also with respect to Ey! With these arpuments,
the base By is defined initially as if Cartesian one too! Soch approach was used before
in Ch. 12 for representing the two Minkowskian Hyperboloids with the same purpose. (A
universal base By = {I}is the relative notion defined by inertial immovable Observer Np)

ln trigonometric kinematics of STH, the anples v and T of motion tensor in (204) for
transformat ions of coordinates always have the sign +. The sign — for the anples is possible
only in mental motions to past with the use of antipoedal by perbolic geometey (sect. 12.1)
This is equivalent to the Principle of determinism for material phenomena These facts
distingunish to a some extent hyperbolic kinematics of STH and the laws of hy perbolic motions
in the Lobachevsky—Bolyai geometry. The same time-arrow of (and the same world straipht
lines) in the two cavities of the light cone are determined with the same matrices roth T
corresponding, from the physical point of view, to the same velocity vector and, from the
geometrical point of view, to the same motion:

roth T' = F(y,eq) = F(—7, —€a). (224)

The last expression here is valid only in antipedal by perbolic geometry, Another time-arrow
that is symmetric to original one with respect to et (and the parallel to it world straight
line) is determined with the inverse matrix.
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It has the physical sense of an additively opposite velocity vector and the corresponding
to it geometric sense:

roth™' T = F (v, —ea) = roth (-T') = F(—7,€4). (234)

In (224, (23A), the principal angle 4 is positive for directions of material points motions
along the time arrow to the Future, it is formally negative for mental motions to the Past.

Formulae (204), (21A) imply that due to hyperbolic rotations the coordinate veloeity of
physical movement v along 'Y is expressed trigonometrically from this relation:

v Ar  sinhvy-cosa
¢ c-At  coshy

=tanh«y-cos, (cosa= +1). (244)

Generally, in (P*H1), the Enclidean vector of coordinate velocity v in (E%)1 is determined by
its module |[v]] and the directional cosines cosay, j = 1,2, 3; its three Euclidean projections
onto the axes have also physical and trigonometric forms:

vy ﬂIJ

- o AL =tanhvy-cosay, 7=1,2,3, (v={v}=v e, =c-tanh ), (254)

where v > 0; —1 < cosay < +1 and cos? vy + cos? an + cos® ag = L.

For mapping of the simplest physical uniform rectilinear movement of a point M at
velocity v in the psendoplane of motion (P11, its ariginal base By, where M is immovable
with coordinates 0 and 3(1}, must be hyperbolically rotated at the anpgle v = artanh v/fe
with —eg into the base .E_'g, where M has new values of coordinates =/ and 3[2}. Such
description corresponds to the passive point of view onto modal transformation |21, p. 428

The specific spherical-hyperbolic analogy between y and @ in the universal base By are
usually either sine-tangent (331-1) or visual at graphic representations tangent-tangent (355):

dz f(det'V) = v/c = tanhy = sing = tangr in By, (v > ¢(7) > er(7))-

There is no infinitesimal distinctions between the very small angles -+, @, g, when ¢ = 0
(v < o). If we analyze in By (with respect to immovable Observer) one-step absolute motion
then spherical and hyperbolic angles are equally applicable with right sipns. Buot if we deal
with combined or non-collinear principal motions, for example, some motion with respect to
moving Observer, or with more complex multistep and integral motions, then only pseudo
Euclidean geometry with rotations and hyperbolic non-Euoclidean geometry with motions
should be applied with principal hyperbolic and secondary orthospherical anples y and 8.
By this canse, in STH, with tensor trigonometric approach, the concepts of hyperbolic
with spherical geometry may be useful. It concerns not only to motion and complementary
angles, but and to the varions types of parallelism angles, considered in sect. 64, Thus,
the spherical parallel angle of Lobachevsky {a) [40, 41] up to now is the initial fundament
for construction of the real-valued hyperbolic non-Euclidean geometry. From the point of
view of the enveloping space (P!} with interpretation on a hyperboloid 11, the angular
arpument [{a) has a peometric sense on it and in STR ooly in universal bases By and only
for one-step motions. However the analogous, but purely hyperbolic angle of parallelism o
in (36G4-1Y), Ch. 6, is consistent in any psendo-Cartesian bases with tensors {It} or {IF}:

7, ¢ sinhy =tany < tanhy =sing (¢ # £7/2) = £v) =7/2 - ¢(7),

7, £: sinhy=cot{ « tanhy =cosf, sech y=sing, (£ #0), df = —d; (264)
(a) = £(7) = m/2 — p(y) = arccos(tanh ) = 2arctan [exp(—7)),

P(a) = v(v) = Zartanh [exp(—7) — see both ngles from (360-11) in Ch. 6.

In relativistic factors: vfe =tanhy =sing =cos &, /1 — (v/c)? =sech y=sinf = cosy.
Both relativistic factors, used up to now by physists in the Past, have not any geomet ric
senses and are subjected to the operations of mathematical analysis with great difficulty.
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We use all these motion and parallel angles for spherical and hy perbolic geometries and
in STR as clear triponometric argunments of our tensor trigonometry.
w=1/R —is the covariant parallel angle in spherical type of non-Euoelid ean geomet ries,
v = AR - is the covariant parallel angle in hyperbolic type of non Euclidean peometries.
They are correct either in universal bases By, or in any Ej in the same types of geometries.

In order to get absolute (i e not depending on the 5-th Eoclid’s Postulate) geometry,
the spherical or hyperbolic nature of the parallel anple +o should not be fixed! Initially put
a # 0is the angle between Euclidean and abstract parallels in the universal base Ey. (For
example, in the hyperbolic geometry, the spherical type angle o i complementary to the
Lobachevsky parallel angle TI{a)) till the right angle 7/2.) And only after this formal fiest
step, we become to the dilemma: what nature of the parallel angle o should be chosen us?

If e = 0, it is chosen as aspherical anple, then non-Eoclidean peometry of spherical type
is potten, and its parallels are intersected on the side of anple a doue to G Saccheri [35].

If v <2 0, it is chosen as a hyperbolic angle, then non-Enclidean geometry of hyperbolic
type is gotten, and its parallels converge in oo on the side of anple o due to Lobachevsky [40].

If v = 0, this corresponds to the Eoclidean geometry, H{a) = =/2.

Moreover, if in the universal base Ej geodesic motions are realized from the center € on
a hyperspheroid along a big circle or on a hyperboloid 11 along a hyperbola (see in Ch. 12, at
Fipure 4) | then both principal angles change covariantly to the motion’s direction as follows:
tala) =p € [0---£7/2], —a(a) = € [0--- £ c0), realized on quasi- and psendoplane.
ln both plane variants, the sinple perpendicolar to a piven line at its piven zero poiot
determining the angle of parallelism II{a) at the point "a" off the perpendicular, and the
single Eoclidean parallel to a given line, passing perpendicolarly through this poine "a"
of this perpendicular in order to determine in it the anple of parallelism o are found by
application of Euclidean geometry, for example, using a compass and a ruler in the universal
base By, with the universal relation I{a) — o = «/2!

#E

Conclude this Chapter with the following very essential remark. The initial mathematical
approach of Poincaré in 1905 |63 to constructing Theory of Relativity is logically quite
perfect, contrary to the initial physica approceh of Einstein in 1905 |67] based on his two
Postulates acting in all Galileo’s inertial frames of reference: (1) the extremum and equality
of scalar speed of light "¢" and (2) the Principle of Relativity, repeated the same Postulate
of Poincaré from 1904 (without reference to it). However the Einsteinian Postulate (1) leads
mathematically to constructing an infinite set of "trigonometries”" and their quasiphysical
isomorphisms with pseado Hilderan metries of positive powers p (non-gquadratic if p £ 2):

|ds[P = |dct[P — {|dz1|P + |dza|P + |dzalP} 20, 1<p< oo,

where ¢ = max(||dz||p/dt) and ooly for the speed of light ||dz||p/dt = c,ds = 0.

However, Finstein proposed the praceful physical manner for clear definition of events
simultaneity with the use of two light rays, realizing the previows idea of Poincaré about
using light rays for definition of events simultaneity from 1900 |62] { without reference to it
where also in first formula m = E/e? was inferred and published. Such aziomatic definition
of simultaneity as if introduced implicitly the quadratic psendo-Enclidean metric with p=2
in the space-time of STH. But this Einsteinian definition is only a beantiful theorem (Ch. 4A)
of the Minkowski pseado-Euclidean geometry from 1909, when he renovated factually the
original mathematical approach of Poincaré to new space-time. In Ch. 4A we chowed that
the Finsteinian definition of events simultaneity leads strictly to discovery of the so-called
deformational transformations of coordinate in the Poincaré Minkowski space-time (L e,
non-Lorentzian ones). 1o this space-time, the concept of events simultaneity, with respect
to the given frames of reference, is defined by tensor trigonometry highly simply and clarity.
See about such deformational transformations in Che 44, but initially in Chs. 5, G, 12,



Chapter 2A

Tensor trigonometric model of
Lorentzian homogeneous principal transformations

Let a particle M moves in the space-time (P31} uniformly and rectilinearly along its straight
world line passing through the center O of Ey. Dueto (21A), its 4 coordinates in the initial
base By and in E tied with M are expressed in the simplest trigonometric form by the
passive rotation at the hyperbolic anple T, identical to original Lorentzian transformation,
found by him in 1895 |58 and named so by Poincaré in 1905 |63] as of new space-time groop:

roth (—T) r{E} r{E}
[ cosh-y 0 0 —sinhy-cosa -| iV coshy - z{" —sinh~ - cosa - et
0 10 0 P x4
0 0 1 0 20 20
—sinhy-cosa 0 0 cosh -y ) msh"r'-r:t{”'—m'uh"r-msa-::i“

Represent the hyperbolic transformation in the 4-dimensional system {8 =0,x = 0}:

1y _ . i)
I1=msh*r~zil}—sinh'y-msu~ct{1}= | tanhy - cosor - ct

sech d
1 1
zy=z4,  w3=zy, (274)
(1 _ ) i
ct = coshy - ct® —sinhy - cosa - i) = & tm:ﬂfu Ty

This is the initial Poincaré-Minkowski trigonometric form of the (in fact 2-dimensional)
Lorentz homogeneous transformations for space and time in By and E |63, 65]. The multiplier
cosax = +1 determines two directions of the sine and tangent vectors. If {24A4) are taken
into account, they may be expressed in the physical form |58, 59, 63):

1
Il —u- f(lj (1) (1) d[lj - (ﬂfﬂ] N I‘i )

HE o T BT Vi@

Take advantape of the hyperbolic rotational matrix with general canonical structure (363) in
the base By, then we obtain the general trigonometric linear transformations (pure hyper
bolic) of the four coordinates of M as the three scalar space-orthoprojections (at i = 1,2, 3)
and the time-orthoprojection

of =

Ty = msr:z;-[msh’}HS—5in]1’}'~cf':1}]+[ﬂ:£1}—casm~.5']?
ct = coshv-ct') —sinhvy - S, (284)
(5= coso -Iil} + cos ag -1:;1:' + cos oy - 1{31}]..,

and their vectorial-scalar form with an arbitrary direction of sine and tangent vectors

X = [coshy-eue!, - x" —sinhy.e,- V] + (I —euel) - x'V =
= [coshy - eqel, - X' — sinhy - e, - ct'V] + eqef, - x'Y, (294)
et = coshy.ctV) —sinhy- el . x,

— — 2 — —
eyel, =eqgel, = v =vw/[vv|=wvw/|lv|]l, I -—eye, =e.e, =vV

are the orthoprojectors in .E'izj (see in sect. 2.5) into (im v) and (im v)* in (£%).
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ln its peneral form, the vector of the directional cosines ey = {cosay} determines the
direction of the sine and tanpent vectors in E'Ea} of Ey as well as of the velocity.
Transformations equivalent to (29A) were derived by G. Herglotz |84 76, p. 27| as

ot - x _y . ¢ ™ _ (v/e) - xD

1—|[v[E/E 1—|v]2/c?

He decomposed x in {(£2) as the relativistic and non-relativistic projections onto v (the
Principle of Herglotz). They are turned into the form (29A) with v/c = tanhy.

The clear interpretation of these peneral trigonometric and physical transformations are
seen from their comparison with (27A). When the base E is hyperbolically rotated in the
M{]plﬂﬂﬂ {v,ct')), then only the time projection and the relativistic space projection

—
+ eqe,’ - x|

X = + (x —x, 1) =

eqe, X are subjected to the modal transformation. The non-relativistic space projection

eqey'xV orthogonal to ¥ is invariant under Lorentzian and Galilean transformations.

ln the projective non-Euoclidean vectorial tanpent subspace of radins R =1 there hold:

|tanh ~|| = tanh~y = ||v|| /e = y/tanh® y; + tanh® 45 + tanh® 3 (7 = 0}, and
tanh « = tanhy - e, = v/c — tanhy; = cosay - tanhv = v fe, (i =1,2,3), (304)

where 4y are the partial hyperbolic anples with their values in the Eoclidean orthoprojections
tanh ~y = cosay - tanh vy of the vector tanh « in the subbase EEE}.

The same we get for sine is sinh vy = cosay -sinh ¢ = cosh«y - tanh . But the projective
vectorial sine space is Enclidean one | becanse for it B — oo, In both these especial vectorial
spaces (of tanpgents and sines) | the Pythaporean Theorem for moduli of the projections is
inferred. (By multiplier e, they are transformed into the velocities spaces — see in Ch. 3A).

In the transformations of coordinates of a particle M moving along its world line, as a
rule, two kinds of bases are used: Eyy = rot ©-E) = {rot O} and E = roth'-Ey = {rothT'}.
The first base is one of the universal ones (16A). o STR, the initial universal base By = {I'}
is a relative notion too. However it is tied to the given immovable in it inertial Observer,
say Ny oas if in the Cartesian subbase ..':':.-'Ea}. Canonical trigonometric matrix forms are
expressed initially usually in terms of the base .5'1! The base determines a relation between
Observer Ny and other psendo-Cartesian base By = T - Ey with Observer Ng.

The following two pure variants are possible.
(1) TYy - Thee = I. Then By € {rot 8), it is another universal base, but for Nyg.

(2) Top = T4 Then Ey € {roth T'), this base is another one for inertially moving Nag.

ln variant (1), the subbase .E'f} is immovable with respect to Ny, it is the result of

orthospherical rotating .E'isj at the anple Bqg. lo variant (2), the subbase E_"Ej is moving
at the velocity v = ¢-tanh + with respect to Ny Any general homopgeneous Lorentzian
transformation of bases in (P31} may by represented as the product of the two pure types
transformation (1) and (2) due to the polar decomposition (194,

Lorentzian transformations in matrix form T can be applied actively to pseado-Cartesian
bases for expression in them of all space-time coordinate for the given particle M or other
some objects, as passive point of view. Then these coordinates are calculated with the
inverse matrix T~ Lorentzian transformations can be applied with the same matrix T to
the space-time coordinate of the given moving particle M or other some objects in the fixed
bise, as active point of view.

The Special physical-mathematical principle of relativity (sect. 12.3) takes place for
them. It consists, for example. in form-invariancee of Lorentzian transformations of pseado
Cartesian bases for a moving uniformly and rectilinearly material point on a straight world
line. Of course, it is the simplest case for relativistic—geometric transformations in (P31),
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Due to homogeneity and isotropy of the Minkowskian space-time, all Lorentzian trans
formations may be expressed in the clear trigonometric forms. However, if we deal with a
moving non-peint geometric object, then, in addition, the quite another triponometric type of
relativistic transformations may be used. It determines relativistic contraction of the object
with peometric parameters in the direction of its physical movement. Generally, in scalar and
tensor variants of a triponometry, projective characteristics of two kinds, either sine—cosine or
tangent—secant | are evaloated. Their kind depends on a problem being solved. So, in tensor
trigonometry of the space-time, the rotational as deformational elementary trigonometric
matrix-functions are wsed. Their canonical forms in the base Ey were pgiven by formuolae
(362), (363) and (364), (365), for example, in (P generally in these fourth-block forms:

roth I' = Fu(y,ea), (F=F"), defh T' = Di(y,ea), (D# D)
coshy - ege,’ +ege,’ | sinhy- e, sech v -ege,’ +ege,’ | —tanhvy -8, _
sinh - e, cosh ¥ +tanh~y - el sech (314 — I, IT)

(31A-1) represents Lorentzian transformation as a pure hyperbolic and hyperbolically
orthogonal bivalent tensor in more general 40 trigonometric form, and (31A-11) represents
the bivalent tensor of trippnomet ric deformation for expression of the Lorent zian contraction.
See more in detail in Chs. 3A 44 5A, TA. Asthe next developing of this topic, we'll represent
in Ch.'TA the homogeneous Lorentzian transformation in its general pseudo-Eoelidean form.

These matrices express corresponding symmetric and anti-symmetric tensors of specific
transformations in (P™): roth T realizes as well as principal hyperbolic rotations at the
angle v as orthosperical rotations of the unity vector ey of the directional cosines of the
tensor angle T with corresponding rotations in the current Euclidean subspace of {P7+):
but defh I realizes triponometric deformation at the angle v in the direction ey (see Ch. 4A).

Rotational hyperbolic matrix (31A - 1) and orthospherical matriz (497) from the
sect. 12.2 in these elementary forms are the two pure types of the homogeneous Lorents
transformations in both their canonical forms with respect to the universal base E;. And
all their compositions in psendo-Cartesian bases admissible with reflector tensor (1TA - 1)
form the group of continuous homogeneons Lorentz transformations. Such transformations
may be reduced to their polar forms as products of these two matrices of pure types. All
orthospherical rotations form their proper subgroup of the Lorentz group. (In STHR and in
non-EBuclidean hyperbolic geametry, these two pure types of rotations are peometric motions
and nsed only in elementary forms with g = 1, and, more clearly, as (362), (363), (497).

The term "Lorentz transformations”  was introduced by Henr Poincard in his pioneer
paper on the pew relativity theory [63] in June of 1905, These rotational homogeneous
transformations play the essential role in his previowsly suggested in 1904 Physical Principle
of Relativity as development of the classical Galilean Principle of Relativity from 1636.

ln two next Chs. 3A and 4A | we give trigonometric interpretations (sine—cosine and
tangent—secant ) of the space-time relativistic effects of STH. They take place in the internal
and external cavities of the light cone, the latter only with respect to the original base Ey.

lon Ch TA_(153A), we give the most general and developed (n+1)x(n+1) matrix {mainly,
in particular, at n = 3) canonical and polar forms of arbitrary Lorentzian pseudo-Euclidean
homogeneous transformation also in the original base By in (P And in Ch. 8A, (2024),
we addded it by corresponding forms for Special quasi- Euclidean transformations in (Q™+1)
(in particular, at n=2).



Chapter 3A

Minkowskian real kinematic dilation of time
as a consequence of the time-arrow hyperhbolic rotation

A world line in (P31 is connected at each point M with the instantaneous light cone with
its center — a world point M, where two internal cavities of the cone diverpe as these cone
of past and cone of future. Any relativistic motion s directed along own proper time arcow
from past to future. Hence, it is performed inside the lipht cone of future, where a slope of
a world line at any point satisfies inequalities 0 < |tanh+| < 1 - Figure 1A(1). In (P31,
all physical movements are represented by world lines in homogeneons coordinates |63, 65],
and more clear by Minkowski diagrams. The straight lines represent uniform rectilinear
movemnent, becanse the relativistic effects of STR mentioned in Chs, 1A and 2A need in
differentiation of 1-st order with 1-st differentials of increment s of space-time coordinates!

ln the beginning, let us ontline briefly the historical aspects in discovery of this discussed
relativistic effect. In 1887 Michelson—Morley ultra-precise physical experiment in the USA
did not reveal absolute motion of light relatively to the Earth. A crisis arose in the classical
kinematics. In 1895 Lorentz modified Maswell’s equations by introducing a contraction in
size of the electron along its moving. In addition, be introduced the so-called "local time"
for the same coordinate system associated with the moving electron |58, Factually 1985,
Lorentz during creation of the correct theory of moving electron, hypothesized the local
mutual contractions time and space intervals in the direction of moving, led further to his
relativistic well-known transformations. In 1900, in his article “La Theéorie de Lorentz et le
Principe de réaction” |62|, Henri Poincaré, with formula m = E /e, gives interpretation to
the "temps local de Lorentz" as: “(est le temps d'observatears mobiles qui réglent lears hor
loges par des signanx optiques en ignorant le monvement de tradoction dont ils sont animeés”
(1t is the time of mobile observers who regulate their clocks by optical signals ignoring the
translational movement by which they are animated.) This idea became basis for Einstein
in paper “Aur Elektrodynamik beweter Koper” of June 30, 1905 |67, without references to
previous Poincard and Lorentz well-known works, Younpg Albert Einstein accepted reality
of time slowdown in moving systems, however after the pioneer article by Poincard *Sur la
dynamigque de 1" électron.” of June 5, 1905 [63], where fundamental relativistic notions —
complex psendo-Fuclidean space-time with its Lorentz group were introduced.

The material point representing a real lenpthy object is the object inertia center (the
baryeenter), i. e., as a particle. A material point M (see Figure 1A) in {P3H1) is physically
immovable with respect to a certain frame of reference E5 and is physically moving with
respect to By, The straight world line of the particle M in (P*) with respect to By
is its time-arrow parallel to {8 (the light cone inclination does not depend on the base
chosen, as it is invariant). For the movement, the bases By and B are connected by the
hyperbolic rotation Es = roth Tya - Ey. From the point of view of Observer Ny, the particle
M is moving in {(E3) at velocity vys = e- tanhys. In a neighborhood of M, a certain
process may take place. By the clock of Observer Na, the process takes time interval A2
determined by sepment MTM” of the world line parallel to @ with taking into account the
seale in the time-arrow. It is, according to STR, the proper time Ar = A2 of the process,
as it is connted by a relatively immowable clock. Proper time in any moving object is its
absolute characteristic, or a pseudo-Buclidean metric invariant inside the cone of future.
With respect to its rest base Ey, it is identical to coordinate time A#?. With respect to Ej,
coordinate time of the process counted by Observer Ny is determined by projection of the
segment M'M” onto etV with taking into account the scale, it is equal to At |76, p. 100].
Coordinate time At of the process in moving object is its relative characteristic |67
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Figure 1A. Triponometric interpretations of the STH relativistic effects inside and ootside
the light cone in coordinates {x, ot} with angles 4, v, § and v (Ch. 6) in the Minkowski
space-time (P according to Poincaré’s and Einstein’s different interpretations.

(1). Relativistic dilation of time of & moving object with its Poincaré interpretation on the
psendo-Euclidean plane (in interior right triangle A BC); coordinate and proper velocities:

g2 =0 —a® =A% =const ~1= cosh” ¥ — sinh” Vs

b=Act') =coshy-g>g=ct® 5 Act'? = Acr = Act'V/ coshy < ActV),

a = sinh~y - g = tanh=y - b= Az = Ay,

v =AW AL — Ay /AN — . tanhy, v* = Ay/AT = ¢ -sinhy = v* > v

v<e oand vevt < oo
(2). Lorentzian contraction of a moving rod extent with its interpretation in the pseado
Euclidean exterior right triangle A'B'C"; supervelocity of two moving rods contact s:

b2 =g +a® =12 = const ~ 1 = sech®y + tanh® v = cos? () + sin? (),

g=l=sechy-bsb=1Ilg = [ =sech v -lp=cosply) Iy < lp,

a = tanh~-b=tanhvy- Iy = Act® £ 0, w = lp/At? = ¢. cothy =2 fv > e
(3). The Einsteinian approach to STH on the basis of his definition of simuoltaneity, but with
the use of triponometrically bonded cross bases (Ch. 4A).

Additionally, the accelerational and pravitational dilations of proper time by Einstein

will be considered us in Chs. 5A ang 9A with both their equivalent cosines.
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For example, with respect to By, this time is evaluated with the use of passive rotational
transformation as well as one in the hyperbolic angle Tys of E1 into Eg

Ar'Y = rath T'yz - AP =

0 sinhyyz - cos @y - AcT Al ]
B e e
Aer coshyiz - Aer At J
where Aer = Act'®, and from the matrices fourth rows we obtain:
Act't = coshyya - Aer — Acr = Act™ [ coshyya < Act't. (334)

ln STR relativistic effect (33A) is called Einsteinian dilation of time |67; 76, p. 30, 48],
The notions "proper time" and "time dilation” {see the term interpretation in sect. 12.3)
were introduced by H. Minkowski in his fundamental article |G6]. The segment Aer of the
straight world line, i. e, of the process time in M, is expressed in the coordinates of its base
Es = [, t®}. Geometrically this segment of the world line is a linear tensor element as
the time-like oriented vector in (P31, Its quadratic pseudo-Euclidean imaginary invariant
in the four-dimensional form of coordinates with respect to any psendo-Cartesian base E is

—(Aet)? = —(Act)® + (Az1)? + (Aza)? + (Ax3)® = const, (344)

where At > 0, At > 0. Since Acr = const, invariant (34A) may be reduced in the base Ej,

to its sine-cosine form-invariant trigonometric expression, which may be interpreted locally
by the tangent of the unity hyperboloid 1, identical to the pseudonormal of the conjupated
unity hyperboloid 1 from Ch. 12 {see about this correspondence in Chs. TA and 104 ):

(i) = —1 = —cosh® v + (sinh® 4 + sinh® 44 + sinh® ) = —cosh® y + sinh®y.  (354)

Here 7 (at j = 1,2,3) are the particular hyperbolic angles with their values in the
Eunclidean orthoprojections sinh} = cosay - sinhy of the space like sine vector sinh 5 in

the base By Formuola (35A) gives trigonometric quadratic invariant —1 uoder Lorentzian
transformations of an unit time-like linear element AL
lnvariant scalar proper time is expressed in any psendo-Cartesian base B as

At = At/ coshy = min{At*)). (364)

When one deals with a cwrvilinear world line, the similar rotational transformation is
instantaneous, and (32A) is applied to its are differential as a linear element:

(37A4)

Here the linear element dr™ is expressed also in coordinates of the instantaneous base
Epn = {=™) Z™} In STR the instantaneous bases, on the differential level, are ahways
inertial, but ooly from the point of view of inertial Observer, say Ny in Ey. This has place,
becanse the axes ™) and '™ are instantaneous tangent and psewdo-normal to a workd
line at a point M. Hence, the differential form similar to (36A) s

dr™) — gt/ coshy = dA™ /(ic) = min{dt™). (384)
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luteprating (38A), one obtains Ar = AMNS(ic), where AN is the psendo-BEuclidean length of
a world line segment |76, p. 110, Formulae (36A), (38A) express in the clear triponomet ric
form the relativistic effect of the Minkowski dilation of time at moving object with respect to
immowvahle Observer, namely of some time process in the object [66]. The effect may be easily
interpreted as a consequence of the hyperbolic rotation of @™ But simult aneously the same
dilation of space coordinate '™ acts in the psendoplane of this rotation for conservation
of the Minkowski space-time structurel. The effect of time dilation was fiest established by
V. Voight in 1887 |80 in his light elasticity theory and correctly by H. Lorentz in 1895 |58].
The segment of a world line AT in By, due to (32A), has else the space-like projection
a = Ay into (£ — Figure 1A It is the space trajectary of the object M. It is expressed
in terms of coordinate time as well as proper time with the two definitions of velocity:

Ay = \/ﬂﬂzil} + ﬁzz{gl} + ﬂﬂ_'r:;t;lj = tanhy Act't = v. At — sinhy Acr = v* - Ar.

The proper velocity v* is defined in addition to & ordinate veloeity v as a concomit ant
relativistic effect. It is measured in proper distance dy = d='™ by proper time dr:

v* — c-sinhy — dy/dr — v- coshy — dy/dr > v — c-tanh; } (304)

vj =¢-sinhy; =c-cosay-sinhy > vy = c-tanhyy (j=1,2,3).

The four vectors v, v*, tanhy, sinh « are collinear. The hyperbolic angles ; and 4} in
(30A) — Ch. 2A and (35A) are related as follows:
(v = c-tanh-yy = v - cosay, 'l."_; =c-si.1:|]1"r'; =v" - cosoy) — sinh')é = cosh - - tanh ;.
ln the psendoplane of hyperbolic rotation, the given problem is redoced to solving an
"interior hyperbolically right pseado-Foclidean trisngle” (see in sect. 6.4), where Aer is
similar to the hypotenuse g, and Ay, Act!?) are similar to the legs a, b.
ln products (3245, (37A), the hyperbolic rotational matrix is formally truncated, only
its last row is used, becanse the original linear element Ar® is parallel to its time arrow
@ and all its points in By have zero abscissa. The whole matrix is used if the original
element is on another time-arrow e under an additional angle 93 from the time-arrow
@ It is valid for two- and multistep motions (see in Ch. TA).
The following important theorem of STH and Minkowski Geometry is enough obvious.
Let M' and M" be two cousally connected world points in (P*Y). Then the stroight
line segment M'M" inside the light cone of future has the mazimal psewdo- Buclidean length
{proper time | among all continwous world lines {directed in future) connecting M and M™:

7

] ty
ctz — ety = ct|;] = Act }M':fddfmshﬂr{t]:[ det’ =0,
t1 th

where £ is the time of immovable Observer Ny in .E'l, ' is the time of moving Observer Ny,
in B — see at Figure 1A, But a continnous world line MM can have the minimal pseudo
Euclidean length X = 0if the points M* and M are connected by the lipht segments, and
only two of them are enough. The inequality above is also the clear triponometric illustration
to the well known relativistic "twins paradox" [85], when in its left part At i interpreted
as the Barth time and in its right part At" is counted by astronaonts. o the end of Che 5A,
we comment it on the example of the imapginary cosmic travel to the nearest star system.
Since world lines in {P*1) are invariants of the Lorentzian homogeneous transformations,
then the psendo Euclidean length of segment MYM” in By and as a world line MM in the
psendo-Cartesian By is imvariant too. This kinematic twin paradox has a place anly by the
canse, that we compare two different world ways between M7 and M" with their smaller
and higger slopes in (P¥H1), with respect to the time arrow, for example, ).



Chapter 4A

Lorentzian seeming contraction of moving object extent
as a consequence of the moving Euclidean subspace
hyperbolic deformation

The Lorentzian seeming contraction of moving object’s extent with the coefficient sech (v)
(see Figure 1A (2), (3)) is interpreted correctly on the basis of Einsteinian physical definition
of simultaneity. The latter is caused by geometric theorem in (P31 only due to its pseudo

Eunclidean metric! So, in the external cavity of the light cone in (P31} — see at Figure 1A(2),
one usually considers some set of world points belonging on the whole to a certain Fuclidean
space (£2YT) In the simplest practical variant, the set consists of two world paints as two
events with a space-like interval between them. In general variant | important for subject of
this Chapter, the set consists of points of a concrete geometric object immovable in a certain
Euclidean space {£3)Y and moving with its projective map in another certain base E, from
the point of view of Observer Ny Of course, in the base Ey all the geometric object’s points
are simultaneous, as they have always the same time coordinate on its own time-arrow e @,

From the other hand, all world points of a given geometric object belong to their world
lines in (P*+1). If the object isimmovable with respect to the base (£%)9) and it i in uniform
rectilinear movement with respect to the base Ey then the workd lines of all its points are
parallel to the time-arrow Y. Observer Ny fixes the moving object points in his own
(E3)W at a certain value of time on his own time-arrow ct® although simultaneonsly, but
with the object’s sizes distortion along the moving direction. This space-like phenomenon
is defined as an improper world fivation of the world points or of the moving object (as a
set of its world points fixed in (£3)(0).

(E3 M and 2D are hyperbolically orthogonal in (P31} if the object is physically
immovable just in (E3)® also. Then i = j and the world fization of the object is proper.
It corresponds to true sizes of the object as immovable one. And this graphical way for
constructing fivations defines simultaneity of the world points in a certain base.

The Einstein's definition of simultaneity |67] is caused by a graceful peometric theorem
in (P*1) adopted by him implicitly. In 2-, 3, 4 dimensional cases, it is expressed as follows.

Theorem 1. If a triangle ABC (see Figure 1A) is formed by a space-like segment AB
and two light segments AC and BC {i. e, isotropic zero legs) coming from the opposite
directions, then its median and height passing through the point C are identical
Corollary. If ABC is such a light trisnple in a certain pseudoplane, then its median (s
height ) and its base (a hypotenuse) are the time-arrow 0 and the space axis =),

Theorem 2. In the cone obtained with any elliptic cut of a light cone in (P, the
median passing throwgh its apex C and 2 or 3 dimensional base are hyperbolically or
thogonal to each other, hence its height and median passing throwgh the point C are identical.

The theorems with the Einsteinian as if only physical definition of simuoltaneity, motivate
the psendo-BEuclidean guadratic metric in his version of STR! Of course, simultaneity of
events as world points fixation is a relative notion. It & defined with respect to a certain
Euclidean space (£ and a certain time-arrow o @ in (P31}, Thisis illustrated clearly at
Fipgure 1A[2). Here a rod as a geomet ric object is immovable on the axis oo (e, j = 2), and
it is moving physically along the axds oy (i e, i = 1) at velocity o (tanh v = ||v||/e). The
world lines of this rod’s points are parallel to the time-arrow AW That is why, Observer Ny
fixes the rod’s points on its axis =, as their obligue projections parallel to time arrow o9,
From the mathematical point of view, this improper fixation is a cross projection onto o
parallel to 2@ — see first definition of cross projections in sect. 5.10. Here we have the
hyperbolic type deformation. Due to this, the moving rod contraction seems to Observer Ny
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In_peneral, an improper world fixation, with respect to a certain psendo-Cartesian
base By is defined as a praphically simultaneous cut of a geometric object world trajectory
parallel to (3 at a certain moment of time £ If the object is physically immovable in
(E3YD | then its world trajectory in (P31} is parallel to time-arrow Ei,tm Hence definition
of an object’s world fixation in Ej is reduced to its projecting into (€3)® parallel to EL}U]’
i. e, toa space-like projection in the cross base Eil_.; = {IM,JU}} sect. 5.10). Single
cross projecting is expressed trigonometrically as the hyperbolic deformation in the pseado
plane of rotation. The psendoplane at cross projecting has some properties of a quasi
Euclidean plane, but only in the universal base, usoally in initial E,. as then the cross
gquasi- Buclidean invariant under triponometric deformations is valid in this psendoplane —
sect. 510 and 12,20 For a geometric object, the volune of its fixation is macimal iff the
fixation is proper:

V =o' fsech v = max(v'"?) = const. (404)

If & kdimensional (& < n) geometric object is moving rectilinearly and uniformly, then

exactly four variants of its world trajectory are possible:

1) a line if & =0, the object is a particle as a2 world point;

2) a band if k=1, the object is a rod as a directed segment (a vector);

3) & Fdimensional band if k=2, the object is a trisngle or & parallelogram;

4) a d-dimensional band if & =3, the object is a tetrabedron or a parallelepiped.
We consider only simplest objects, they are represented by 4 x k- lineors, see sect. 5.1.

The set of all world fixations for a given object is, from peometrical point of view,
equivalent to the set of all space-like cuts of its world trajectory. So, relatively immowable
Observer Ny fixes a rod simultaneously as its projection into (E¥YY) parallel to @ [see
Figure 1A). A world fixation, as well as a world trajectory, is a tensor notion, their valency
is 1. World fixations of objects pointed ont above are expressed as either 4 % Lvectors, or
4 x 2 lineors, or 4 x 3lineors. If an object is immovable in {£3}9) then its proper world
fixation is defined with respect to ..'__-':.-'_.;.

In the base By, these one-, two-, and three-dimensional immovable geometric objects
reduced to a corrent world point (the baryeenter of a material body ) are expressed initially
as the following space-like 4 % E-lineors in the Minkowskian linear space-time:

ﬁrt::: Aptly LU0 At ALl a0
SEIESE F ISE § 5 e
l:l

R
0 ]

With respect to the cross base .E'j,,, we take out only Euclidean images in (%)) of the
lineors as their proper fixations, becanse they are immovable with respect to Egp

al® —a®;  APY — Al Al = Al (424)

If the coordinates of these tensors are subjected to deformational transformation defh Iy
from E_, 1 into another cross base E,J (see below), then hyperbolic (tangent secant ) one-time
paewdo- Fuelidean quasi-invariant from sect. 12.2 holds (for the one-time transformation).
This quasi-invariant is expressed as follows:

[a9) - a? = [a®D) . a2l — ja||E = I3 = const > 0, (434)

[AD]. AW = [ACD] . AT — |42 = Const, (444)

where |A] is the & % B matrix Boclidean module of the 4 » Elineor A (sect. 9.4).
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This one-step quasi-invariant is similar to Euclidean invariant doe to spherical-hyperbolic
analogy (341) with respect to the base By for Observer Ny fived the Lorentzian cont raction:

E; =vothTyE, = Eyy = defh Ty - By, defh Ty = rot ®(Tyy) = defh™'Ty,.| (454)

LExpress with the passive modal transformation the new coordinates of lineors (41A) with
initial equalities (42A) in terms of both the modal matrices:

[t
- . - .3
gl — defh Tij cad — ot i .al® — Axy

Azl
l Act®) J

s i

4 i i Axld Aglnd

AGH = defh Ty ARy =rot @y Ay = | W70 A7 e
ActiD At

, (464)

|2ty a5 2]
&:r-t;i‘ﬂ ﬂ.’:é}'ﬂ &:r{;:;ﬂ
&::f-;-i‘ﬂ Mgiz.;i! &:rgf;ﬂ .
| A e 250 |

Al —defh Ty;- AY), = rot &, - AY), = (484)

Thus we have two equivalent trigonometric definitions of a general world fixation with
one-time cross projecting, and respectively two kinds of the modal matrices in relation
(45A): hyperbolic deformational one and spherical rotational one. In the spherical rotational
variant | the angle I' should be trapsformed into the anple analog $(T) by this analogy. The
second variant is used for visual graphical interpretation of the Lorentz contraction. We
choose mainly the first variant with angle I'y; connected simply with velocity v. For example,
express by passive modal transformation (46A4) the new coordinates of the rod in terms of
original ones from (41A), (42A) with the use of canonical strocture (364) for the hyperbolic
deformational modal matrix:

’V Az{? ] ’V ﬂ._':iﬂ — cos o - cosE - lg - (1 —sech ) ]

alid) — ﬂ‘m-t;:} _ ﬂ.’:%’}' —cosaz-cose-lo- (1 —sech y) 1 _
&IE;_} Ar{? — cosaa - cose - Ip - (1 —sech )
Act'? cose - Iy - tanhy

_[ €a- [1 —cose- (1 —sech )] -l ] , {49.4)

cose -tanhy - [y

where in the rod fixation, the first three rows determine its new Cartesian coordinates in
the base By the fourth row determines its non-zero time-like projection onto AW as the
additional time-like effect (explanation in details will be lower);

Iy = ||a®]] is the Euclidean length of the rod in its rest state in the subbase ..'-_-':.-'_,;3:',

£ is the angle in Ejm between the rod and the antivelocity vector vy, = (—e, - uij}m
with the same unity vector of the directional cosines (formally these cosines are equal to

ones of Vg, but expressed in the base E'EE}]I. And there holds

{_
COS oy - ﬁz‘l‘” + cos a -ﬂ.’réﬂ + cos g - ﬂIE} =e! -a% =cosz-Ip = ||vv'-aP||. (504)
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Note one more relativistic effect: the hyperbolic angle between the velocity and antivelocity is
non-zero and equal to . 1 the velocity and the axis £ are parallel, then cosay = 1 = cose,
cosag = cosag = 0, and the pew rod coordinates are

’7 &miﬂ' ] ’7 ﬂ+&1&:h"r‘~&1{1‘ﬂ -‘

i At Ak +0 )
) = = z @ _ _
= &:rzi} ~ | Azl +0 + (Azy” =cose-lo = o). (514)
Act? 0+ tanhy - Az{

Here the non-relativistic and relativistic parts are pointed oot as the summands from the
left and from the right respectively. More generally, if in (49A) also the rod and the velocity

are formally comxial (cosg = 1) in Ejs}, then there holds

g _ | ex- sech y-lp
ar = [ tanh - Iy ] ’ (524)

The Cartesian coordinates in (514, 52A) express the relativistic effect of so-called Lorentzian
contraction of extent |58, 59; 76, p. 109], which realizes coaxially to velocity:

19 — 19 — sech 4y -Ip = /1 — (v/e)? - lp < lo. (534)

Other coordinates are normal to the wlocity, they do not change. The original and new
Jour coordinates of the rod in (49A) and special cases (51A) satisfy (43A), © e they form
quasi- Buclidean invariant | this follows from (45A). The sum of all three space coordinates
squares is the squared Euclidean length module of the rod contracted. o this most general
case, for the Lorentzian contracted oriented rod, there holds:

16D =19 — [|Ax®|| = lgy/cos? £ - sechnyy +sin’ € =

— lgy/1 — cos?e - tanh® 74y — loy/T — cos? 2 - (v/)” < lo. (544)

Apply the Herglotz Principle and evaluate its relativistic and non-relativistic summands.
The non-relativistic part (that is normal to the velocity vector) is the Fuclidean invariant:

. AxD _a, .
2 — 20 _ conc .- [eu ]=[ x ‘;‘]“E"‘“]. (554)

Subtracting (49A) and (55A) gives the relativistic part:

(t) _ | €a-cose- sech y-Ip ] B [ ﬁxf_i}‘ ] (564)
Aret = cosE - tanh - Iy B ’

Apply the Pythagorean Theorem to its Cartesian part and obtain the relativistic part
|cose - sech - Ig] for the Enclidean length of & moving rod. From (55A) and (50A) the
non-relativistic part |sing - lg| s evaluated too. This is the alpebraic way for explaining
structure of (54A), another way s graphical. The Euclidean length of & moving rod is, due
to (54A), the orthogonal sum in {(£3)® of non-relativistic projection sing -l and relativistic
projection cose -sech v -lp. The first summand is normal projection of the rod relatively to
the antivelovity vy It is invariant under hyperbolic deformation. That is why, this part of
the rod fixation is spherically orthogonal to both vectors vy in (£3)® and vy in (£3)0)
The second relativistic swmmand is obtained from parallel projection of the rod with its
cross projecting into (£2)® parallel to @ ynder condition in [52A) onto velocity Ve,
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Squared Buoclidean lenpths of relativistic fixations (52A) and (56A) for the rod, due to
(43A) and (45A), are hyperbolic quasi invariants under onestep hyperbolic deformation.
They are space-like hyperbolic quadratic one-step cross invariants as if Buclidean ones

[[9)? = ||Ax"D||2 + A2ctUD = 10D]2 L A28 — 2 — const, (57A)

[!U}]Ee: = ||ﬁx(iJj||Eﬂ + AZetldt) = [I["'ﬂ']fe; + AUt — IEBDGQE = st . (584)

The trippnometric secant-tangent form of invariant (584) is
{:it‘{:hﬂ’)‘f +:i':.‘{:|12’)&i" +:i':.‘{:hﬂ’)‘g] + tanh? v = ||sech®y|| + tanh® v = 1, (504)

. . . =3 .
where ) is the hyperbolic angle between vector —vye in the subbase Ej " and the axis Tk

in the subhbase .E'faj and sech ) = cosay -sech . This is an invariant for & unit space-like
linear element. The proper length of 4 rod (in the rest state) is a quasi-Buclidean metric
invariant in all other cross bases By, in particolar, in Egg:

JACS )

Ip= — — max (7). (60A)
\/l—ms?Btanh Ty

This follows from (54A). The Lorentzian seeming contraction as the relativistic effect has
coordinate nature, i e it does not lead to any mechanical stretch. Formally, contraction of
moving objects of type (53A) was first established by Go FitzGerald in 1889 |89] in frame
of interpretation of the Michelson-Morley experiment — see above, and later by H. Lorentsz
in 1895 |58] in frame of interpretation of the Maxwell elect romapnetic wave equation.

The set of all world fixations of a moving rod is semiopen, as it does not contain extremal
cuts of its world trajectory by the hypersurface of the light cone, see Figure 1A These
extremal cuts for a rod have zero Euclidean lenpth of the relativistic space cross projection,
ones for objects of rank greater than 1 have zero Enclidean norms of order 1 and 2 for their
relativistic space cross projection and order 3 for their space volume fixation. These cuts
correspond to objects as if moving at the velocity c.

Furthermore, this rod, in addition, has the time-like projection in the same cross base E_"i_.;,
this follows from (56A ). Projecting is performed into the time-arrow Er}m, thus it is expressed
in the base By This effect has the following relativistic explanation. Observer Ny can see
the analogous rod as immovable on the axis I?} and moving at the same velovity vy, in E..
with seeming Fuclidean length (54A0. In the peneral case, when the two identical rods meet |
their two left ends and two right ends considered separately meet, according to (56A), with
the following time lag:

Act™) — At = cos £ Iy - tanh vy # 0. (614)

It is the relativistic effect of non-synchronows meeting of two identical immovable and moving
eoazial rods paired points. Contact of the points pairs of meeting rods (if £ =0) is spreading
L7}
1

at the left to the right along the axis =3’ at supervelocity w greater than o

s =lp/AtY = ¢/ tanhyy; = ¢ - cothpyy = ¢ - coshuy = ¢ jv > e (624)

(See connections of these complementary hyperbolic angles 5 and v in (360), sect. G.4.)
During this accelerated movement the coordinate supervelocity decreases from oo to e (for
the anple ) and increases from e to oo (for the complementary angle v). However, in the
classic mechanics, the pairs of points meet simuolt aneounsly.
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Note, that the full set {w-ey) forms the hyperbolic cotanpent vector space that is the
cotangent models ontside the trigonometric cirele or ball of radios 1 (the unity Cayley’s owal)
or ¢ for supervelocity, where the motion angles 4 is on a hyperboloid 1 (see Ch. 12, 6A TA).

ln products (46A)-(48A) the hyperbolic deformational matrix & formally truncated,
only three first rows are used (compare with rotational matrices in products (32A4), (37TA)
in Ch. 3A | because the original objects (lineors) in forms (41A) are parallel to their proper
Euclidean space (£3)0)

In the common psendoplane of the hyperbolic rotation reth T'yy in the base E; and the
hy perbolic deformation defh I'yy in the cross base E';j at Figure 14 | the problem is reduced to
solving the ezterior right triangles: either psewdo- Euclidean one ABC (sect. 6.4), where [
is similar to hypotenuse AB = g and Iy, ActY are similar to legs a, b; or gquasi- Euelidean one
A'B'DY (Figure 1A(2)), where a = A'DV is similar to hypotenuse as Iy, g = A'B’ is similar
to leg I as contracted rod length, b = B'D' = Aet®); i = 1, § = 2). Then Lorentzian
contraction is expressed formally in the quasiplane by the spherical rotation ret ®(I'y) in
(45A) in the universal base By, and hyperbolic cross projections are determined due to the
Pythaporean theorem.

ln & cross base E_"i_.;, for two vectors (rods) applied in one world point M, there holds

'IE.&E;JJ [ [hﬂ]i [1J}!r||a[1aﬂ” " ..ﬂ" [ '[1._'1}].' (‘J:l (,312 = [u; ,ﬂ_]}

Here the alpebraic formula for the cosine of the angle between two vectorial fications in
(3™ is given. Apply (54A) to this expression. The result is the trigonometric formula for
the cosine of the angle between two moving vectors (rods) applied in one point M:

DCE}EIUQ} — cos£y - cosEs - tanh” 5

1< eosA'Y =
v'1—cos? £y - tanh” - /1 — cos?£3 - tanh” ¢

= 12 —

< 41, (634)

where ,3%} and ﬁi;} are the scalar angle between the vectors measured by Observers Ny
and Ny. Two the initial vectors with the antivelocity vector form a triple in (£3)0).
According to the Hadamard Inequality (see in Che 3), for their unity vectors Gram
determinant, there holds

0 < det{[esezes]’ - [e1ezes]} = sTay < 1.

And from here the triple trigonometric ineguality follows:
9 cos ey - COSryg - COS Qag < COS- kpa + COS- a3 + cos° oz < 1 + 2 cos s - COS 3 - COS cag.

ln our case, we have oy = £q, @gg = Eg, @y = Pya. These inequalities and condition
tanh? v < 1 infer (63A) as inequality too.

If the initial angle between the vectors is ,Egj =2 = DCEJBE.?} = 0, then the new
angle ,EP?"'” is either acute (cossp - cossa < ), or obtuse (cossy - cossa = 0), or zero
(cosgy - msEﬂ = 0).

If ,Bu =0, then g9 =2 and ,3( 7 — 0.

If both the vectors (and the anple between them) are orthogonal to the antivelocity
vector, then the relativistic effect of the angle changing does not take place; namely we
have: coscy = cosgg =0 — ,Bi;’ﬂ = {‘;:'.

If one of these two vectors is collinear to the antivelocity vector, then | cos B3| decreases,

and the acute angle incresses, the obtuse anple decresses (59 =0— ,Bu =)

1 —tan®~y
0 < cos B = cos %}'\/l_mz@,taﬂha?{msﬁg}. (644)
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Relativistic area of the parallelogram on two the vectors is

Sﬂ;ﬂ — Ii"d} . Egia.'n -sinﬁg’ﬂ —

s : -

= _;2” . \/s.in2 B — (cos? e + cos? 2 — 2cos B - cosey - cose2) - tanh? . (654)
sin Fi%

The diagonals of the moving parallelogram are subjected to Lorentzian contraction unless

they are orthogonal to the velocity. lon peneral, for the lenpth of the diagonals, there holds:

[LED], = [LD)3, - (19 . cosey £15 . coseg)? - tanh® 4. (66A)

The volume of a parallelepiped (as well as of other body) decreases proportionally to the
secant of the hyperbolic angle v of motion - see in (40A4). With the use of (54A), (40A) and
the Hadamard lnequality the sine norm of a moving 3-dimensional lineor angle is evaluated:

sti1j} _ Sl{jz:la 'Et‘!tih "'r'
= +/1 —cos? e - tanh®y - /1 — cos? 2 - tanh® 7y - /1 — cos? 3 - tanh? -

(£.7)
BT E] L= (0,1] (ﬂ?ﬂ]
lnequalities 0 < si;’:{} < 1 may be inferred by another way, with the use of formulae (63A)
and the Hadamard Inequality, becanse we have:

1,712 i i i 3 it 3 Al 3 Al
[siﬂg}] =1+2. msﬁig’ﬂ - msﬁia’ﬂ - msﬁéa’ﬂ — COs ,Biz’ﬂ — COs ,Bi:;ﬂ — COS ,Bé:;ﬂ.

The essential distinction in STR between the Lorentzian contraction of extent and the
Minkowskian dilation of time consists in the following. For polysteps motions, the latter may
be always expressed through multiplication of rotational matrices of all particular motions
with evaluating its summarized motive tensor angle after polar decomposition (see in Chs. 5A
and TA). However, Lorentzian contraction, for polysteps motions, is not expressed similarly
through multiplication of all particolar deformational matrices, becanse their hyperbolic
tensor angles are not summable. But it may be expressed through deformational matrix
function of the final motive tensor angle in the rotational matrixc-function obtained after
multiplication of particular rotational matrices and following polar decomposition of a result.

Moreover, due to (45A4), the geometric result of one-step Lorentzian contraction is vi
sually similar to massive object’s spherical rotation at the angle ®(T) with the following
spherical cosine projecting.  Also, from the point of view of our tensor trigonometry, the
equivalent spherical matrices defh Ty = rot $(Ty) mathematically clear interpret rela
tivistic effect as the "Terrell Penrose visual rotation of moving objects" under Lorentzian
contraction (in the base By of an immowable Observer). For peneral 4D analogy, we obtain:

{defh (£)}nt1yxn+n) {rot(=®) }ni1yx (m1y- (684)

Tpwn +(sech v— 1) -eqel, | Ftanhvy-ey

Inxn'i‘(cmﬁﬂ'—l] "ED.E':: :Fsin{p~e&
+tanhy - el sech o I

+sinyg - el cos

{_

(ea€l = €ae))
We have an important peculiarity: the Lorentzian seeming contraction is a typical artefact,
i. e, it is a really observational but seeming to Ny space-like phenomenon evaluated in a
certain universal base By (in contrast to the mutual dilation of the space coordinate toget her
with the time coordinate as a result of the Lorentz transformations — see in sect. 12.3). When

the object returns to the rest state, its peometric sizes and angles are preserved. Any internal
mechanical stretehes in an object, according only to inertial movements, are impossible!



Chapter 5A

Trigonometric models of two-steps, polysteps, and integral
collinear motions in STR and two hyperbolic geometries

Consider in details trigponometric modeling of the varions rectilinear relativistic physical
movermnents. They are described mathematically by hyperbolic rotational matrix functions
of tensor anples in their elementary form (Ch. 2A). In process of the rectilinear movement its
changing tensor anple muost preserve trigonometric compatibility. Due to Rule 2 (sect. 5.7),
compatible rotational matrices commute, in their multiplications the tensor argument angles
of motive type form an algebraic sum. Hence, in this Chapter, we use mainly the scalar form
for these motion angles and connected with them trigonometric functions and velocities.
The latters may be subjected also to operations of integration (into some distances) and
differentiation (into some accelerations), and what’s more, these operations are realized
inside of a certain psendoplane of these compatible hyperbolic type motions! Some examples
of similar relativistic physical movements for the following analysis are exposed at Figure 2A.
By this reason, the relativistic Poincaré-Einstein Law of two velocities summation |63,
[67] as well as hyperbolic tangents summation for collinear summands has the following
trigonometric interpretation as compatible rotations in the hyperbolic angles g

roth T'yg = roth ['a - roth Tag = roth (T'ya + Tag) =
(cosoy = 21,4 = 0) (694)
= CO8 13y - 713 = COS Qrpqg) - V12 + ©0S8 Oyagy - 723,

cos ary3) - tanh 713 = tanh [msct[u} - 12 + cosayag) - Taz) = ]

_ COS13) - ta.]:l]l’)‘m + cos a3 - tanh g N
a 1+ cosc - tanh s - tanh g > (TDA)

E’CECI!{]_Q:I -9 + Cﬂﬁﬂma} = tag
1+1::|:|ea:.'.—7~*.'.r12'1.r-;»3j'.:2 ! J

= M3 =

where cose = cosaqya) - cosayaa).

Hyperbolic Sommerfeld’s form of this Law was first derived by eminent physicist and
mathematician Arnold Sommerfeld with geometric inferring as if on a sphere of imaginary
rading ic |86, 76, p. 111, i. e, in fact on the Minkowskian hyperboloid 11 (see in sect. 12.1).
This is based on the rule for summation through the tangents-functions of trigonometrically
compatible hyperbolic angles. The relativistic law of summing several collinear velocities is
expressed also in the simplest by perbolic form:

m
nusa-’}'=ZDascr[t}~’y{;j, (cosa =1, =0) (T14)
=1
m
v =¢-cosa - tanh ’}'=c-tanhz cos ayyy - artanh vy fe. (T24)
=1

The term "collinear" has here and further rather conventional character, it means merely
that all these summarized particular velocities vy are directed in their common 3-dimensional
Euclidean vectorial space coaxdally with the non-directed vector ey = (cosay) = const,
(i=1,2,3). Hence, the particular velocity v, can have only one of two walues of directed
vector of directional cosines +eg, i e in contrary directions. In (69A)—(T2A), this condition
corresponds to values cosa = £1.
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An integral collinear motion as a curve world line in (P*1) is projected hyperbolically
into some Euclidean sub-space (E3)) as a rectilinear physical movement. More in details,
such motion is realized in some only one psendoplane (P11} with its specific directional
vector 8y, but physically the motion is projected hyperbolically as a straight line into any its
space axis, for example, £ = ¥ in parallel to '™, Hence, speaking strictly, "rectilinear
movemnent" is a physical term, which has rather conventional character too in (P31, (In
the Lapranpgian space-time, a collinear motion is projected always into its Euclidean subspace
as single one for all the bases in parallel to any o)

Continuous summation of collinear motion angle differentials dy = dy™ is accomp
lished with integrating either along instantaneous axis =™ as differentials dy = dv/™ /e
of its inclination to the Euclidean sub-space (£2)Y or along instantaneous tangent to a
world line as differentials dvy of its inclination to the time arrow dm Note, that these
1-st differentials dy and dv'™ as always, only are linear parts of curve increments Ay and
Av™ (and in the current point M there holds: »'™ = 0).

The space axis =1 collinear with +eg and the time arrow 2™ datermine the constant
psendoplane (P} with this two-dimensional universal base. Such base E} corresponds to
the rest state of inertial Observer Ny of STR. In the base By, we have the specific spherical
hyperbolic analogy (26A) between hyperbolic and spherical motion anples for very important
applications. Further, we shall describe two-steps, polystep and integral collinesr motions
mainly in the universal base Ej — see at Figure 2A.

ln the tensor triponometric version of STH, the principal hyperbolic angle of motion
has also relative nature as well as the time-arrow and the space. Here this anple is counted
in the base E; off &' unless another condition is accepted. So, for a straight world line,
the relative velocity between Observers Ny and Na determines the hyperbolic tangent of the
angle of motion yy from two opposite points of view — Figure 2A(1):

2 Arl Az cosh 2 AL
tanhmpmg = 222 — - - — _tanhay;. 734
MT T T A(e®) T A(ED)/coshyz | Ac®) ™ (734)

The same takes place on the level of differentials if & material object M is moving
physically rectilinearly with scceleration or deceleration along Foclidean directions +eg
with its instantaneous psendo-Cartesian base E. (from the point of view of Observer Ny
in the initial universal base Ey). For each point M of its world line, the origin of Ep is
associated with the baryeenter of the moving object M. We have

En =rothT-E; = Fi(v,ea) - Ey. (744)

The slope of & world line tanh v is determined by the coordinate velocity of movement, and
this velocity may be expressed by two ways: from points of view of Observers Ny and N

v dy dz™ / cosh —dx(™)
tanh~y — 2 — _ — — —tanh (—7). 754
T e T At D) T d(ctM)/coshy | dler) = (754)

This formula corresponds to the Minkowski dilations of the space and time intervals in the
moving system of reference Em (Ch. 3A) with the equal "relativistic factor" as cosh™!q.
(This can be explained by the fact that both these dilations are caused by the hyperbolic
projection from the coordinate system at rest By into the moving coordinate system By —
see in sect. 12.3)) Indeed, Observer Nj is in the relative (£%), Observer Ny is in relative
(€3 and both have own coordinate parameters of the space and the time for velocity (with
its equal module). (Further similar Greek notations ¥ = ', er = &™ stand for proper
coordinates.) The proper time differential der is also the differential of pseado-Fuoclidean
length of & world line are, i. e along any continnons world line (see in details in Ch. 3A).
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Figure 2A. The world lines of & material point M for simplest kinds of rectilinear
relativistic physical movements, represented in universal proper and compressed bases:

(1), (2) - uniform rectilinear relativistic movement,
(3}, (4) — uniformly accelerated rectilinear relativistic movement (hyperhbolic motion).

Note (1)) that at our Picture 2A(4), we combined and displayed |15, po 223 the Triade [
from three bonded geometric objects — the catenoid | with its generating time-like catenary,
the tractricoid 1 (as Beltrami psendosphere) with its generating Minding tractrix with the
same radius-parameter R and revolving axis omg (or ), and the adjacent torus with its
generating circle also of radins B This Triade was produced by us from the Minkowski
pro-hyperboloid 1 with penerating time-like hyperbola at Pictore 2A(3). 1ts three objects
are bonded by the same hyperbolic and spherical anples in result of using evolute-involute
metric’s transfer (Ch. 6A). The tractricoid 1 is one-step isometric to the hyperboloid 1in the
universal base By of their enveloping binary spaces. With our tensor trigonometric approach,
one may also produce and display the Triade 1 from the Minkowski pro-hyperboloid 11
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For the moving object, its curvilinear world line is identical to its proper-time-arrow
t
fdl:ct(m}} = & (), see Figure 2A(3). A pseudo-normal and a tangent to a curvilinear world
1]

line at point M form instantaneous directed axes £ and A of the base En.

Lo (73A). (70A). the relative velocity myg in E_'t of Obzerver No with respect to Ny i2 evaluated
with the use u£ its coordinate time £ and its proper distance = = . Similarly, the relative
vielocity vey in Fa of Observers Ny with respect to No s evaluated with the use of it2 decreased proper
time £ (@™ = sech 21 @t'?) and its moving coordinate distance = (de' = sech g2 d2™)
the latter is formally analogous to Einstein's dilation of time. Heoce, the notion © is, o fact, the
coordiniat e velocity,

The proper velocity of physical movement (39A4) s defined with the use of also proper coordina es,
i e, proper tine dier) in a moving Eoclidean subspace in Em and immovable proper distance
dy = dr'™ in E"i. It iz expressed by the hyperbolic sioe

dp(l} dy .
U =W=E=c-mh'}'-tanh'}'=c~muh'}'}w. (T6A)

I the following, we use are esterisk in notetion of proper charectevistics! The proper velocity of a
light ray is infinite, becanse diet) = 0. Heoce, the relativistic law of proper velocities summation
for collinear summands has the following hyperbolic sine interpretation, though hyperbolic angles
are summed as before, see in (THA):

v1a = ¢ - sinh[cos aygy - 113] = ©- sinhcos aygy - Y12 + Co8 qyoay - Yaa] =

= ¢~ [cos a2y - sinhy12 - coshy23 + cos a2y - sinh 23 - cosh 1iz], = (77A)
= vig = viz - /1 + (v3s/c)? + vha - /1 + (via/)?,

viataa > 0+ |vg] > |vig + vl

Thus, there holds: v* = v/ /T — (v/c)2 — 1/c® = 1/v® — 1/(v*)2. The latter is equivalent to
the trigonometric identity: 1 = coth®y —csch?y. 1t is an invariant of cotangent-cosecant rotational
matrix, for example, of (361) fom T, in particular, io the the right trinngle of supervelocities (so.
see in Chs. 6, 6A) The directed cosines of vectors v° and sin -y are equal to those of v and tan vy,
a2 they are obtained from the same differeotial d@x io the oumerator of cheir derivatives,

Let the frame of reference with Observer N omoves alzo rectilinearly, but opoop-uniformly, 1T hen
Nm has the instantaoeons coordinate velocity with respect to Ny as

Al B —d::{”'l.-"msh"r B — gy} W

{m} _ — — — il
! dr dt/ cosh dt 1

However, the instantaneons coordinate velocity of Nm in Fom. a5 its increment from zero value
2 Lim)

i a cortain previous current origin M ool a world line, is expressed as %T_ = dv'™) and exactly
in M it Q= zero: ui:‘} =0, The inner velocity 9™ — 0 has another sense in contrast to above ooe.
For the world trajectory passing through the poiot M. consider a peighborhood of M and iotrodoce
in it two hyperbolic angles: 4™ = 4 & a geeal motion angle in Ex. and 4™ is a additional
irgfirifesireal motion angle in the hese Em determined by the inner ecccleration or deceleration of
meovernend in the neighborhood of M. For differentials of the two coordinate velocities with respect
to By and Eq io the neighborhood of M. their trigonometric forms are expressed as:

dz—m — _I'-'l'-L _ - _ 2 'I
‘ (dtd{”}) =4 (d(cr,“?}) = dtanhy =sech®y dy = dy/cosh®y,

; (ﬁ%) =d (%{Ig) = dtanhy™ = dy(™ = dy, (784

where ™™ — 0 is counted in the base Em from the current point M. but the angle 5 is counted

in the base Ey from the origin @ along the same world line. The angle 4 s counted also from the
axes 0 and oW of Ey oup to 2™ and &F of E,, applied to the poiot M.



CHAPTER 5A. COLLINEAR MOTIONS IN STR AND HYPERBOLIC GEOMETRY 195

For a curve world line segment, the infinitesimal angle 4™ is counted in the current
point M from the time-arrow o (as a tangent) or from the axis 2™ (as a psendo-normal)
in these two opposite directions to the lipht cone between them. In a neighborhood of the
point M, there holds 4™ — 0 as vﬁ?} = 0. (For a straight world line segment, angles d-y
and 4™ are zero.) For a collinear motion in its psendoplane, dy is expressed in the same
instantaneons base Eg as dy™ = dvy. At M the inner 3 acceleration in Ep is

d2lm gylm) d(tanh ™) ditanh dv) d-y . (m)
T & ST & ST g S g o= (104)

From here, for collinear motions, we obtain the fundamental trigonometric formulae:

d*x™ = dy . d(ct) = dv'™ . dr = g™dr?, dv'™ = c dy = ¢™dr, d'™ =0.| (804)

in (PH1): @2x™ = @220 . e, = dvy-d(cr) - €q, dx™ =0, e, =+ const, d(cr) £ 0.

dier) = dXis 1-st differential of the psendo-Euclidean length of & world line segment ; dvy is
space-like or time like. It is counted from M along the current £ or tangent. Formulae
(B0A) connect three differential parameters of curvilinear collinear motion. So, we obtain
the inner velocity and acceleration as v™ = e. 4™ 5 0 and g™ = dv'™) Jdr = ¢ dvy/dT.
We use the trigonometric opportunities in the Minkowskian space-time (P*1) for clear
descriptions of relativistic motions, in particular here collinear ones, with their kinematics
and dynamics in inertial and uninertial (accelerated or decelerated) frames of reference, but
from the point of view of inertial (Galilean) universal frame of reference Ej. Thus in STR
the base Em may be considered in By as instant aneously inertial [76]. At a moment of the
time T, an inner 3-force F oacted on M, with caused by it the inner 3-acceleration g™ and
the inner 3-velocity dot™ {i. e, as collinear 3-vectors in (3™ are directed in Ey along
the =™ axis. Hence in By these three instantaneous characteristics are ahoays collinear
with common directive vector 8. According to the 2.nd Newton's Law of mechanics and
relation (T9A) with the relativistic dilated time T and, in addition, with the instantaneoons

radius of the psendo-curvature R = 1/K (pure hyperbolic here) alng a world line, we get:

Fit)-e, d’z'™ .e, d = — =
(1) = (».-iue =—3 & =“2.i|::r} -eq =c1, dy=Kd(er) = g=c/R. (814)

|F| = mq-|g| is the same for Observers in all inertial bases, (1f Fis an active foree, then [P
is the number showed at the scale of a dynamometer in .E',F,f}]l The rest own mass mg 7 0 of
a material point (object) M does not depend on the given frame of reference. The absolute
value of inner aeceleration determined by (T9A) and (81A) is an invariant (strongly at
constant temperature myg = const). In By it does not depend on - (o velocity of movement )
contrary to corresponding relative characteristics. Due to this, exactly g(r) is considered
in STR as the inner 3-acceleration in own Cartesian sub base Ewy) (here as collinear one,
but peoerally as non-collinear — see in (145A), Ch. TA). If g is collinear to velocity v, then
the world line stays in the same own psendoplane (the motion s coplanar). The constant
collinear to v inner acceleration g determines rectilinear uniformly accelerated or decelerated
physical movement. Such absolute motion is described in a certain pseudoplane along a time
like hyperbola with the constant radius of pseudo-curvature B = dA/dy = 1/K, where dy #
0, d{er) = dX = R dy is the hyperbolic are with its radius-vector of psendo-normal radiated
out of the hyperbola center O along vector g For colllinear motion with instantaneous
parameters, including hyperbolic velocity 5, (T9A) gives the inner acceleration as follows

d2g(m) 3 dp(™m) . dy o — cﬂd’f
= —c=eRp=co

9= "4 I I

— K = c:Qfﬁ — const = d*x™ =R (dv)>.
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In general, there are else two types of parallel inner aceelerations for collinear motions.
The proper 3 acceleration in E = (x, o), with taking into account (T6A) and (80A), is

d*y  dv* dsinh ~ dry = =
&2 ar T ooy gy = coshy-gn) > 9()- (=24

(r) =

Al

It is greater than inner 3-acceleration in (T9A), as the differentials &2z™) is decreased
proper differential d%x due to relativistic dilation as result of rotation of the axis ™
Contrary, the coordinate acceleration in By due to (TEA) is very less than inner one:

dv dy dtanh

g (1) — _ —e
gHET) = Fm = @~ C @ m

d ' d
= E~M:IIQT~F;L = 4:-:~:'c.'{:h:;-')f-Em"I = c-%fﬂmhaw =

= gD (W) =Fr(t) )/ cosh®y = GOV < @)V <gFFOM])). (834)

=1
The formula for tangential 3-acceleration §( :Il:t] is known in STRH in physical form, but
not in this simplest clear trigonometric form (1), The parameters et™ and er are used as

arguments of various functions. Both are synchronous in the universal base By if they are
fived with clocks of Ny and N simoltaneonsly. Simuoltaneity is defined in differential and
integral forms derived from projecting in parallel to proper time into (€3 (see in Ch. 4A):

etll]
d(er) = d{et™!)/ coshy < d{et™™), er= f d{ct™)/ coshy < a''); (844)
1]
d(ct™") = coshy d(er) > dier), ' = f coshy d(er) > et (854)
1]

They are obtained with cut parallel to the axis V) = y. Here e is, according to [84A),
the psendo-Fuclidean lenpth of & world line connted from the base By origin.

If motion i integral and, as before, v oand g in the Eoclidean 3D -subspace are collinear,
then the angle 4, v and v* vary continnously wth ey = (cos o) = const. ln particular, for
hyperbolic motion, uniformly accelerated or decelerated (as the 1-st type of such motion)
there holds g = const. This first simplest kind of relativistic accelerated movement was fiest
analyzed by H. Minkowski |76, p. 111, M. Born |83] and A, Sommerfeld |86]. Second kind see
in Ch. 10A. We give here and in Ch. 10A oor anthor’s variants with the tensor trigonometric
approach. Thus, according to (T9A) and (85A), we have for it a lot of important relations.

— 1_ } (7= E:Qfﬁ = const ). (864)

dsinhy =F dt/e = R dsinhy =d(ct), to =0,

= F=c ﬁ={:umﬂ . 274
sinhy =gt/c = Et=H-5in]1*y{?t=c-sin]1"r'}:} G=c/ o G

From (H6A) and (87A), we get the anslogous relations with synchronized time parameters.

g Aty d@™)  d=tt) ]
d(er) =R dy = = = )
cosly 1,.-"'1+ G /e J1+ [dm;ﬁr (BBA)
er=R -T=(c2lf§}-*r=(czﬁ}-aminh ﬁ-t“’jc]:ﬁ-aminh I:Cl{l}fﬁ]. J
d(ct = R - cosh~y dy = coshy d(er) = cosh(F - 7/¢) d(er), )
_ (804)
ctil) = | - ginh~y = (E@-ﬁnh*r: ffzﬁ}'si“h(g'ch}' ]
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With these relations for the hyperbolic motion and for the equivalent physical movement
the coordinate and proper velocities are functions in coordinate and proper time expressed
also synchronically:

v=u(t) =¢-tanh~y = L - <g-T<g-t4
1+ [F-401) /e
(904)

v* = v*(r) = c-sinhy = c-sinh(F - 7/c) = v (tV) =F- 0 > 7. 7.

These inequalities may be interpreted trigonometrically as: tanhy < < sinhy < coshy.
Let’s find out how also two types of distances ¥ in B and y in By are integrated up in

hyperbolic motion? According to (75A), coordinate velocities in them are equal v1a = v,

but | with respect to the inertial base Ey, their times ot in (86A) and o7 in (8TA) are different.
The 2-nd distance as a function in time 7 15 counted with the clock of Ny as follows:

T 1
= ftr{cr} dr = ﬁftanh*y{f} dv(r) = Lr(y) = Lr(7) = R-Incosh~y(r).  (91A4)
0 o

We established, that such a way is expressed by the Huggens tractriz. 1t is penerating
curve for construction of the tractricoid 11 by its revolving around time axis in the uninertial
Special guasi- Buclidean space — see in Ch. 6A with the Minding tractriz — penerating line
for the tractricoid L. Both tractrices have equal length from anpular arpument « or (), but
their uninertial Special quasi-Euclidean spaces, Euclidean sub-spaces and slopes are different!
They have not invariants of motion in their spaces, but only one-step quasi-invariants.

The proper distance as functions in time 9 = ¢ or T by the clocks of Ny or Ny are:

T T

= v{t}.ﬁ=ﬁ.l 14 dfﬁQ—lE v*(t) dr = R- [cosh(er /R —1)].  (924)
v o T =

with (86A) and (8TA). We established, that in the 1-st case it is direct equation of the kine

matic time-like hyperbola. In the 2-nd case, it is direct equation of the catenary, i e such
a way is expressed by the time-like catenary. 1t is generating curve for construction of the
catenoid 1 by its revolving around time axis in the uninertial Special quasi-BEoclidean space —
see below. Both catenaries also have not invariants, but ooly one-step quasi-invariants. Note
in (01A) and (92A) the common approximation at the beginning of these ways if v = O
{z*(7) & x(T)} = Rv*/2 = gv?/2, where g = Ffmg = ¢2/R is inner acceleration (S1A).
This time-like hyperbola has the cosine-sine poly-steps invariant in the constant inertial
psendoplane (P11 it follows clarity from its parametric equations in ~ as below:

= (x+RB)? —(ct™M)? = 7. (cosh® y — sinh® ) = . (934)

It relates also to the hyperbolic motion as the uniform relativistic motion on a pseudoplane
with its sine cosine time-like invariant sinh® v—|coshy|? = i? = —1in any base E = {z, d }.

It has constant psendo-curvature K g = 1/R and hyperbolic angular proper velovity as:
W, = dy/dr = ¢/R = K = §/c (rad/ sec).

It expresses the velocity of hyperbolic rotation of tangent i with psendonormal p radiated
from the center O (Figure 2A(3)) for hyperbolic type of collinear motions. The second kind
of the simplest uniformly accelerated relativistic motion as the psendoscrewed motion will
be considered in last Ch. 10A, becanse it is executed with rotated principal angle of motion.
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ln relation (86A), we have the parametric hyperbola with the anple srpument 4 as a
parameter of peometric and relativistic motions. So, it is the anpolar arpument in tensor
trigonomet ric representations of the two hyperbolic geometries (Ch. 12) and STH (Ch. 1A).
Such time-like ans space-like hyperbolae are generatrices of the hyperboloids 1 and 11 of

Minkowxki. With (86A), (8TA), we obtain varions forms for the coefficient of similarity R

T — hX - = X +]1R — E"t _ T i = const. (944)
coshy — coshy  smnh+y T g

The kinematic hyperbola is intermediate between the Newtonian kinematic parabola in #(1
and an sotropic straight line of the light ray poing out of the point O, see Figure 2A(3):

AV _ R < y=x(tV) < F- ()22 (sinhvy — 1 < coshy — 1 < (sinh?7)/2).

* * *

Contrary to pseudo-Boclidean approach, function y(er) in (93A), (94A), measured by a
clock of Np, produces Euclideanly the time-like catenary with the same radins parameter B

. . .
x(r) = ufﬂ'(f}d‘r - c!sinh’y{f}dr - Rufsinhry dy =

— R [cosh(ct/R) — 1] = R (coshy — 1) = R - [secp(v) — 1] = (954 — I

with very important Consequence from hyperbolic motion |coshy =14y /R =1+ gy/c* |!

Fuor instance, if in it we exchange inertial acceleration g into gravitational intensity gp of
astronomical mass M, then this produces equivalent gravitational cosine coshypy = cosh g,
with identical influences on time from inertia and gravitation — see more in Ch. 94 where
only with these cosines we'll explain the Mercury peribelion relativistic shift in frame of STR.

Iln Ch. 6 we established, that in the quasi-Cartesian and pseado Cartesian so-called
wniversal bases of their binary spaces, between rotations and deformations there are angular
and metric connections with general tensor correspondences (334), (335) in the gquart circle
(341) due to the covariant and countervariant specific spherical-hy perbolic analogies (331).

We extend this concept onto onestep isomorphic transformation (P = (@) in
relation (95A-1) — see visually on Figure 24 (3—4) by rectification with orthoponalization of
initial repular curves, for example, line & into straight axis & (or 73) instead of previous o
(or g1). From the physical point of view, in (P!} we have velocity v = dy/dt = tanhy - ¢
and, with respect to proper time, it is v* = dy/dr = sinhy - ¢ = tan p(v) - ¢ with tanpgent
slope in the Enclidean quasiplane (@) (@3}, In (P!} and (@'*?), these universal
original and new bases are: By = {x, et} and Eg = {x, et} = Ej1.9). From the mat hematical
point of view, we did transformation of initial polystep invariant of motion in {P*1) in the
one-step quasi-invariant in (@*1)? (see earlier the same in Chs. 5, 6 and 4A):

[d(er)]? = [d(et(1)]* — [dx(]* = [d(et)]? = {d(er[e(MNY* + {dx[e(n)]}*.

ln particular, this gives one-to-one correspondence between tanpent-secant hyperbolic differ
entials of the time-like pro-hyperbola and sine-cosine spherical differentials of the time-like
catenary, confirmed again relations (8TA), now on a tensor level and with angles  and @():

dx = Rsinhy dy, 1 [ (dx)* + (der)® = (det)® = R cosh®y dy® =

der = Rdy, =) = dCh(7) = dChlp(1)] = R*sec’ p(7) dlp(7)]* — (954 — IT)
X = R(coshy—1), —+ Cr(y) = ct = Rsinhy = Crlp(y)] = Rtanp(y)].

ot = Ry, Under 45 =0, o =0 —from O at Figure 2A(4].
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All this is interpreted as passage into Special quasi- EBuclidean binary space or wninertial
space-time with time-like catenaries and catenoid 1 Such binary space is direct spherically
orthogonal sum of the Euclidean subspace (31 and the new rectified time-arrow o

(@ = (£3 WV BE, where (£3)(V) = CONST, & = Const. (954 — IIT)
Space-times {Q:;G"'l}t and (P*1) have the same reflector tensor {IT} and orthospherical
rotations rot 8. As if Euclidean lenpth of world line ot. as the new time axis oF in .E'C,
corresponds to proper time; Euclidean length of world line Er}{:urrespunds to coordinate time.
With analogous to (95A-11) procedure, from these space-like pro-hyperbola and Minkowski
pro-hyperboloid 11, we obtain these space-like catenaries and Catenoid 11 in space {Q?:.‘H)H.
With (95A-11), by anslogy (331-1), in addition to the hyperbolic invariant of kinematic
pro-hyperbola (93A), we obtain in {Qé"'l)i the one-step hyperbolic secant-tanpent quasi
invariant of the kinematic catenary for its points off initial Oy with the same parameter B
(due to its true hyperbolic nature on the pro-hyperbola), and its one-step cosine-sine quasi
invariant as the spherical analogue, transferred to a cirele tanpent to it at Oy (Figure 2A(4)):

2

o 2
xE |+ [taerh'r ,CT] = R® = R?. (sech®y + tanh®q) =

= R*. (tanh® v + sech®v) = R* - [cos® p(v) + sin® p(7)].

(e = Ry, # +m/2) (96A)

The equation is an invariant to orthospherical rotations in (£2) C {QE.‘H}i with the same
reflector tensor. Along the time like catenary, it is one-step tangent secant guasi-invariant
of the time-like pro-hyperbola in (P, In {Qb"'l)i c {Q%'H)i it is onestep sine-cosine
quasi-invariant with (), expressed by equation of the circle tangent to the catenary in
point Of, as situated on a torus around and tangent to the catenoid 1 - Figore 2A(4). At it
angle v is expressed by @ with (360-11).] Along the civele spherical angle () & summarized!
Analogy (331) breaks at ¢ = £7/2 in Crp. Acute angles « and v are bonded by (360-1Y).

By rotation of time-like catenary around g, = & = Ry we get one sheet "horn shaped”
catenoid | (of Euler); and by rotation of the space-like catenary around yo = R coshy we pet
two sheets "symmetric cups shaped" catenoid 11 as the minimal suprfoces formed also by the
line of sag. Below we give hyperbolic and spherical equations of spatial time-like and space
like catenaries by seemming rotation at the right angle IL/2 with exchange of their space and
time coordinates as Eioy = {y,et} = {z1,1} & Eioy = {Rvy, Recoshv} = {z2,32} with
construction of catenoids | and 11 Hence, the valoes of both catenaries radios and lenpth
are the same for both catencids. After curve's rotation at I1/2, the Meusnier angle changes

in complementary, but in both guasi- Euclidean enveloping spaces {QQG‘H}t and {Q‘?‘:‘H)H,
Euclidean metric and orthogonal differentiation are preserved with @ and £ Now we can
obtain for catenoids | and 11 their equations even in (n + 1)pdimensional guasi- Cartesian
bases Eo and caleulate 1-st metric forms with two variant of parameterization in v and .

For the catenoid 1 in {QE.'H}I (at Meusnier angle @ between normal to catenary and rq),
we get subsequently its metric form in its vector-sealar (vs) form from zero on the Eguator:

x“}=x.eu=R-cua]rr-auER-chp-eu, }==_ (974 —T)

Y=o = :I:R-TE:I:R-T[:UJ}.

dx”) = d(x - ea) = Rd{coshy - ea) = R{sinhy dv - e + coshy da - ey, }==‘
dyry = der = R dvy.

iy = dix - ea) = Hd(secp - @a) = Risecw - tany dip - @a + secp do - ey, }ﬂ
dycny = der = R dy(y) = Rsecyp dip.
dli () = [~ Ro(dv)]"dv" + [Rn(7)] da® = R*(cosh® y dv* + cosh” v da) = R*{[dC;)(v)]* +cosh® y do®} =

= dli () = [ Ro(de)]*de” +[Bn(g)] da® = B (sec” ¢ dp® +sec’ @ da®) = R*{[dC(r)(¢)]* +5ec® p da”}.
Then By = —Rg(dy) = —Rsec? p, By = Anly)/cosyp = +Rzect w, 1/ Kg =R H = —R? sect W
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For the catenoid 11 in {QE—}H}H {at Meusnier angle £ between normal to catenary and ra),

we get subsequently its metric form in its vector-sealar (vs) form from zero on the Pole:

xipy=R-7-ea = R-7(p)-eq = B-Incot[(w/2 — ) /2] - eq, }ﬂ
i = f-coshy = R-secyp.

dx{_”}=Rdﬁ;’f-9u}=ﬂ{d’f-ﬂg+’fd&-ep}, -
dy”n = R -zinh-y dvy.
dx(rry = R dhy() - ea] = R d{Incot[(n/2 — ¢)/2] - ea} = Rlsecp di¢ - ea + Incot((m/2 — )/2] dax - eu], } -
dy{”} = Rdseciy = R -secy - tanyg dp.
di3(7) = R (cosh®y dy’ +7 da’) = R{[dCun ()" +* da’} =
= dlj(v) = R*{sec’ p d® + In® cot|(n/2 — ©)/2] da®} = R*{[dC(; 1y (w)]* + In” cot[(m/2 — ¢)/2] da®}.
Then By = Rp(dp) = Rsect o, B = Rn(yp)/cosE = Ry(w)/sing, 1/Kg=RiHx= Rgaecgutanrp-’r{gu}.

In next Cho 6A we’ll obtain naturally, with our tensor trigonometric approach and the
same angles-analopues - and @ (with countervariant specific spherical-hyperbolic analogy),
two kinds of tractrices with tractricoids 1 and 1 as the following derivative objects from
both two hyperbolae and by perboloids 1 and 11 with the common coefficient of similarity B

(97A — IT)

At the focal point yp of the time-like catenary, the focal hyperbolic angle of inclination for
these catenary and hyperbola (see at Figure 2A (3) and (4)) are yp = w = arsinh 1 == 0.881
and pr(yr) = 74 They are defined by the same covariant sine-tanpent analogy, where w =
arsinh 1 is the Especial hyperbolic angle introduced in sect. 6.4, as the hyperbolic analog of
the Especial spherical number /4. The proper distance for the catenary ¥y = R-{coshy—1)
tends to parabola fler) = gr2/2 = Ry*/2 (at T = oo) due to (coshy — 1) = 42/2. The
time-like catenary lies under the kinematic parabola in 7 and the focal tanpent to catenary
(with inclination w/4), but it lies above the tangent circle (up to ¥ = R) in {Qé+1}¢:

gr?/2<x, et —kR =x, x =xr(r) <R—/(R)> - (e7)? if er <|R|.

These inequalities are interpreted as follows: v2/2 < coshy—1<1—/1—72 (v <1).

In pseudo- and quasi-Cartesian bases Ey, both world lines of hyperbolic motion lie at
different sides of two kinematic parabolae, see at Figure 2A(3), (4). If the anple of motion -
is equal to vy = w (and @lyr) = «/4), then the coordinate velocity v achieves value
vp = c-tanh w = ¢/v2 (for the hyperbola), and the proper velocity v* achieves value
vp = c-sinh w = ¢ (for the catenary). Furthermore, v* > eif v > w and @) > 7/4. But
proper velocity of light is infinite. The maximum proper velocity of matter is v* — ool (1t is
a welocity of astronants by their clocks — see to the end of this Chapter)) The coordinates
of time-like catenary point at its focus yp in these bases are expressed in terms of the
hyperbolic characteristic radins R = &2/g:

xr = (V2 —1)R~041R; ety =R, crp =wR =~ 0881R, (but cr = R at v = 1);
ER=cp—xr = k=w+1—v2= 0467, as 7= w and @(w) = 7/4 at F.

Let us pay attention to the fact that in oor Triad 1 all the objects discussed above have
common spherical and hyperbolic angles. To visually display them, we use an adjacent toros,
on whose generating small circles these angles are displayed with specific analogy (331) and
quasi-invariants (96A), (105A) in Ey off the radivs-perpendicular directed to the tanpent
(and pormal) MM® at Picture 2A(4). The Principle of Correspondence by Niels Bohr in
our STH-tensor trippnometric interpretation (and further GTR!) means that the kinematic
hyperbola, catenary, and two classic parabolae (of ¢ and of 7)) have the same tanpent cirele of
radius R at their zero point Oy, see at Figure 2A(3), (4). This is equivalent to the fact that
these curves have at point Oy the same derivatives of the 1-st (zero) and 2-nd orders, these
time-like hyperbola and catenary with two approcimating them parabolae have the common
radius of curvature R in the own coordinates of By with the approximating relations:

| (g-72)/2 < x = (/g) - {cosh [g-T(t)/c] — 1} < (g-£2)/2| = (g-2)/2, if v/c 0.
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# # #

Trigonometric approach can be used for clear and simplest introducing of main dynamical

relativistic characteristics too. So, for rectilinear progressive physical movement of mass M|

we define scalar, wvector and tensor trigonometric expressions of these characteristies as

Newtonian ones both in the original base E| and in the current base E,, with the proper

time (36A). The moving material body is reduced to its baryeenter as a material point M.
Then, with the use of the 2-nd Newtonian Law, we obtain in the relativistic space-time:

(m} (m} [m)
F=Ff("'}:mg(’f}=mﬂ'dt;r = d[nmd: ] = dFdT :muc-—g{;] = maoe - ﬂ=
— mge - coshy dy _ d(moc-sinhy)  d[(coshy -mao) - (tanhy-c)]
B ditt) dtil) - ETTRN] =
_d(mov”)  dimu) dp™ B dp'™® B -
=T@m = @m - dr —oam = ) (4)

Formulae of the first row hold only in an ipstantaneons pseado-Cartesian base where
mg = const is the own mass. Hence, this form of the 2-nd Newtonian Law is covariant!

N . . R
{ An active inner force |F| is the oumber showed as if at the scale of a dynamometer in E.E-;j]l
Capacity of this inoer force, due to the Newtonian mechanics, is presented in the base By as

o coshy dy tanhry = d{coshy -mpc®)  dime®)  dE

N=F-v=me" —m—- FTIEY = T@m g (B)

First buth these STR equations were obtained in physical forms by Henri Poincaré |63, 64/
These expressions allow to introduce instant aneons dynamical characteristics in By and Ey:
the swn 4-momentum Py = Pyl = mge, the total scalar momentum P = me = cosh - F and
the real 3-momentum p = mv = mpv* = sinh - mgep = sinh - Fyp. Here e is 4 velocity by
Poincaré, i and p are the principal tangent and psendonormal to a world line. The time-like
proportional total parameters ( P = me,m, E = me?) are cosine orthoprojections onto the

time-arrow et the space-like real momentum is a sine orthoprojection into the Euclidean
subspace (£2YM) from a world line. Contrary to non-invariant total momentum, Pp = mgcis
invariant given by the 40 psewdo- Euclidean Pythagorean Theorem of three momenta in the
internal right triangle for the dynamics of M with hypotenuse Py, legs P and p in {P3H1):

Py=PFy-i=P.iy+p-j = (iR =(iP)2+p® = {P2=P2_p’}  (98A-1I)

= here under metric tensor {IF} with invarant 1 = mshﬂ ~ —sinh® 7 (see in Chs.TA, 10A).
The own energy on a world line is By = Ppe = mge®. An increment of the non-invariant
total energy E = Pe = me? is expressed by exact trigonometric formula with approximation:

[k& = (coshy — 1) = AP/Py — AE/Eq — (E — Eq)/Eo — A/Eo |~ tanh®y/2.  (994)

These cosine formulae are very important for enerpetics interpretations in Chs. TA, 94 10A.
From here the Poincaré-Einstein formula for non-invariant mass-enerpy follows |62, |68]:

E = Pc=mc® =/ E2 + (pc)? = Ep + mo(v*)?/2 = Ey + mov?/2. ()

With such mechanical way, it was inferred by G Lewis in 1908 [88]. The former approximate
values in this formuola for m, P and E are upper bounds for the characteristics, second ones
are lower bounds. This follows from inequalities: 1+ sinh®(7/2) > coshy > 1+ tanh?(~/2).

Note essentially, that the wse of homogeneouws dynamic characteristics given above

iPo, P,p) in the Theory of Helativity instead of heterogeneouws ones with (mg, Eg, m, E')
has the obvious advantage that they are all redwced to a common physical dimension as the
original invariant characteristic with its cosine and sine projections here along a world line.
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Last expression is the eosine energetic Hamilton function of v as E = \,.l"EE + (pec)? =
v Ed + (Eg - ||sinh 7||)2 = coshy - Ey = Eg + A. But both pseudo-Euclidean proportional
invariants in (P31} are Py = mge = +/P? — (p)? ~ Eg=moc? = +/E? — (pe)2.

Besides, we express triponometrically the phase velocity of the de Broplie wave as the
supervelocity s = E/p = cothy - ¢ = € fv and its real velocity as v = dE/dp = tanh~y - c.

And total momentum (98A-1) as the principal dynamical characteristic in STR can be
represented on an invariant world line in the space-time (P31} as also invariant along it
4 % 1-momentum Py (parallel to dvelocity by Poincard € = e-1g) of a particle or a body M
with its scalar cosine and 3-vector sine orthoprojections:

Pu=pu.iﬁ=m.c=pu.[5"’iﬁ'ﬁfﬁ]=[§]=[EI;C]. (984 —I1)
It is preserved under F =0 & Py = Const. The scalar value Fy = mpe = Epfe is pseudo
Euclidean invariant for the particle or body M. As vectorial differential characteristic, it
has the 1-st order of differentiation along a world line and tanpent to it. In Cho 10A we'll
consider tensor trigonometrically all characteristics of absolute motion of M along its world
line in (P31}, with respect to the base Ey, up to the superior 4-th order.

These hyperbolic forms of the dynamical characteristics are obtained from Laws of the
Newtonian mechanics, but with introduction of the relativistic time in Eg, for moving objects
parallel to direction of motion in £y {(as above). The hyperbolic angles of motion are bivalent
4x4 tensors T and dT in Ey. The former is a main argument of the measureless trigonometric
tensor of motion acting in space-time (P! and hyperbalic geometry — see about it also
in Chs. 6. 1t is & psendobiorthogonal tensor. In the original base Ey, its definition and
canonical forms due to (324), (348) and (362), (363) are following:

{roth (£I')}a41)x(34+1) = cosh' £ sinh [ = F(v,e,)

coshy-€q - €' + €4 -8, | +tsinhy-e,

+sinhy-ef, cosh y
{_
(rothT): rothl . IT.rothT = IT  (e.ef, = €qel) (1004)
_ 1343 + (coshy — 1) -eqe], | Xsinhvy-e, _ I3xa+ (coshy —1)-eqel, | +sinhy e,
+sinhy - 6], cosh ~y +smhy - el cosh -y

It is splitted projectively in 3 x 3tensor orthoprojection into (E¥) scalar cosine ortho
-y

projection onto et and two mut ually transposed sine vector oblique projections. Logically,
that in the limit case v — 0, we have roth T' — Tj.q. _

Suppose that a material object M is moving progressively with respect to Ey in {P31)
at instantaneons velocity v = v-e, = ¢-tanh v = e tanh~y - 8, or proper welocity
V* =v*-ey = c-sinh v = c-sinhy- e, in the subspace (E3YN). On an arbitrary world line
in the base By we obtain the most peoeral kinematical parameter as a tensor of an absolute
4 % dvelocity To = c-rath T As its right column, we get the vector of 4-velocity € = el
by Poincard with the pseudo-Euclidean module e RHecall (sect. 6.4), that at = w we have
v* = ¢, v = ¢/v/2. In its turn, also on the basis of physical-mathematical isomorphism
(sect. 12.3), the physical dynamical tensors of momentum and energy are proportional to
our tensor of motion (100A) as their measureless trigonometric prototype, namely with using
constant coefficients ¢ and mg. Mainly, these following instantaneous dynamical tensors of
momentum—energy Tp and of energy—momentum Tg are defined in the original base Ey as

Tep = By-rothT =mpe-rothT =mg-Te, Tg = Poc-rothT = Ey-rothT = mge” -roth T.
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If we let, that ¢ = const, then Tg ~ Tp). Of course, all three tensors are compatible
with the metric reflector tensor of the Minkowskian space-time (P31}, Moreover, they are
psendo-Buclidean orthogonal and preserve their symmetric form under orthospherical trans
formation of Ey, i. e, in {E1y,). Asymmetrical tensors, obtained after two-step or multistep
non-collinear motions may be represented in their polar form (19A) - see in sect. 11.3
and further in Ch. TA. For example, consider the tensor of momenta Tp easily and clarity
obtained from dimensionless tensor (100A). lts canonical tensor form is preserved under
F=0+ Tp=CONST. Then in the base By, it has this physical form:

T = P'éu'EuJ‘F-PD'Eu'Eu? P | _ ﬂw‘éu'eu"l‘muc'eu'eu? mv (1014)
F r Efe mv’ me

The (3 + 1) x (3 + 1)tensor is splitted projectively in the 3 x 3-tensor orthoprojection
{[cosh ~ - €n - €' + € - Eui'] - By} into (€3] the scalar cosine projection P = Py - coshy

onto the time arrow et (accordinly E = Ep - coshy = mge? - cosh+y), and two mutually
transposed 3 x 1o and 1 x 3vector sine projections p = Fy-sinhy-e, = mpv* = mv and p*.
In all admissible psendo-Cartesian bases, the values Py = mpc and Ep = mge® for a massive
material point are the psendo-Buoclidean sealar invariants, but Py = mpe (98A-11) as a right
column Py in (101A) is a geometric invariants in space-time (P31 similar to a world line.

In its turn, the Lorentzian contraction of moving objects extent in the direction of this
movernent, fxed by Observer in the universal base By has coordinate nature. It i described
in 3-dimensional variant by the measureless (341) x (34 1)-tensor of hyperbolic deformation
(Ch. 4A). Due to Lorentzian seeming decreasing of moving body volume, its coordinate
density seems to increase. But there is no pressing foree acting on the body in the direction
of movement. Inner physical foree is absolute characteristic in (81A), its value is determined
only in own instantaneous inertial base E, with the proportional inner acceleration F/mg.

In pur tensor trigonometric interpretation of STH, all the relativistic transformations of
physical vabees may be determined more clavity and briefly with the use of these measureless
trigonometric tensors and further operations of mathematical analysis over them. We used
the signature of the Minkowski space-time (P31} with {I¥}in (93A), (100A), (101A), etc.
This is explained historically by the fact, that Heori Poincard, discovering in 1905 the new
relativistic space-time, introduced the imaginary hyperbolic angle s its anple of motion, and
later Minkowski in 1908 |66, 65| realificated it by using his unity metric tensor {I£}. It is in
the case, a signature of this metric tensor corresponds to the original imaginary time-arrow
with d-velocity by Poincaré € and to the real-valued Buclidean subspace. Unfortunately,
Einstein later presented this to the exact opposite, for example, in [69]. The same sipnature
with {I*} will be used by us in the hypothetical so-called Looking Glass of the Theory of
Relativity — beyvond the horizon of events as if in another adjacent othersided world in the
entire geometric and physical space-time (P3H1) by Minkowski. See this in detail in Ch. 10A.

# # #

Let use (TOA) (81A), (86A) for deducing the relativistic Ziolkovsky formula, in particular,
for the photon rocket of Eupgen Sinper [112] moving due to reactive force of the light .

F=mul:1']l-gi:1']=u-$ = u-%=g{ﬂd’r=cdﬁ{f};‘-

= mg(T) = mgexp|—(c/u) - v(r)] = mpexp{—(c/u) - arsinh [v*(v)/c|},
where mg and m are the initial and current mass of the rocket in the base B, and wis the

fuel outflow velocity, y(r) = arsinh [v*(7)/g]. We deal with the hyperbolic motion! For a
hypothetical photon rocket (as theoretically ideal variant), there holds u = ¢, and

mg(7) = mg exp[—y(7)] = mp exp{—arsinh [v*(7)/c]} = mg exp{—artanh [v(t)/c]}.
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Compare the values of the own mass in terms of the coordinate and proper velocities of the
photon rocket obtained by the Ziolkovsky formula and its relativistic variant above:

mg exp(—v* /c) < mpexp[—arsinh (v*/c)] = mgexp|—artanh (v/c)] < mgexp(—v/c),
and this is equivalent to the trigonometric inequalities sinhy > v > tanh .

Let that the hypothetical photon rodket flies to the star Proxima (i e nearest) Centanri
and returns to the Barth, Then the ideal parameters (by taken time) of the fight are:

e the fuel outflow velocity u = e for a photon rocket (as the theoretical masximuom),

e constant acceleration g = 10 m..f':n*.{:ﬂ as on the Earth — along hyperbola and catenary,

e the one way distance L = 2y = 40.3 - 10%m == 4.25 light years.

Consider trigonometric computations for the reverse hyperbolic motion of the rocket —
see at Figure 3A. This excample illustrates clearly the twins paradoz. For this flight, of course,
as a hypothetical travel, with (86A), (8TA), (%A and a consequence from (95A-1), we have:

x = L/2 = R-(cosh ymgr—1), coshy =14gz/e® =14x/R — (coshy—1) ~z, (R =c2/g);

T = 4(c/g)¥mar, tth = 4(c/g) sinh Ymaxr, t{l}h’ = sinh Ymar/Ymar;
Umar =c‘tmhrfmr: ”::m:: =c'5in]1"|"’mﬂ:ﬂ
mg(T)/mg = exp[4(—c/u)ymaz], at u=c: mo(r)/mo = exp[—4y(7)], (v =cT/R).

Computations give the following results mapping below at Figore 3A:
¥ =2015-10% m, (L=2y=403-10"%m), R=9.10%m, tp = 305 days;
cosh ymar 7 3.239, sinhqmar &= 3.081, tanh ymar &= 0951, mee &= 1.844

under acting the hyperbolic trippnometric inequality cosh-y > sinh > « > tanh;

Umgr &= 0.951c and wf,. == 3.06lc with the corresponding difference in both times

1 = 370 - 10% sec & 11.Tvears, 75 2.21 . 10%sec 2 7,01 yvears < 2L = 8, 50light vears!

Various cosmic STH-evaluations were first analyzed by P Langevin in |85 Our STH
evaluation is the very clear trigonometric interpretation of the twins paradoz in ideal regime
of the cosmic flight with the Earth acceleration: we obtain for the 1-st twin-astronaot
proper time T = 7 years and for the 2-nd twin on the Earth ¢ = 11.7 years at time
relation #1 /r & 1.67. Coordinate time £ on the Earth of light spreading there and back
with velocity ¢ (2L == 850 light yvears) is greater than proper time of the twin astronaot!
Relative decreasing own mass due to only expenditure of fuel, due to our relativistic formuola,
is mg(T)/mg = exp(—4dymar) /= 1/1600!1! {In Ch. 9A by (200A), we'll show the equivalency
of this kinematic time decresse with the time decrease from influence of only accelerations!)

A photon rocket with terrestrial aceeleration reaches the proper velocity ¢ for period less
than one vear, and further the velocity incresses up to 3e, but at the end of the trip the own
mass of the rocket becomes insignificantly small {(mg/1600). Hence such cosmic flights even
to nearest stars with return of astronants onto the Earth by STH Laws are impossible for
contemporary people (no for robots) as well as the empty project of voyages based on GTR
through "wormholes-tunnels" in the Universe as a pseudo-scientific PR-populism, etc.!

However, the paradodeal inequality 78 7,01 years < 2L a2 8 50 light years (gotten duoe
to the specific initial parameters of the flight) shows, that astronauts during such reverse
cosmic flipht as if outstrip the light!!! Indeed, a radio-sipnal sent by the astronaonts at the
moment of their departure from the Farth to the Star Proxima Centaori theoretically after
its reflection of the Star must return to the Earth in 20 = 4y = 8 50 light vears. But the
astronants return onto the Barth in 7 & 7 years < 2L by their same clock! This unnsnal
paradox of STH, may be interpreted as follows.
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year to Prosama Centauri (nearest star) years
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g = 10meec” == const
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Figure 3A. Heverse hyperbolic motion of a body (as the photon rocket) in coordinat es:
psendo-Cartesian (st the left on hyperbola) and quasi- Cartesian (at the right on catenary)
under acting reactive force cansing constant inner acceleration.

In the instantaneous space (€3 connected with the rocket and in the space (E3)1)
light spreads at usual coordinate velocity ¢ = d=™ fdr = dy/d(ct'"). However, from the
point of view of the astronants by their clock in the rocket| relative of them velocity of
light in {(£3Y) is dy /dr = d='V fd(ct'™) = cosh~y - ¢ > v* = sinh+y - ¢, i. e., the astronauts
do not :mtﬂf the light in (E3MN (It is cansed by the reason, that the space (£3)0™)

{

and time o™ with respect to ones in the base Ey are rotated at the hyperbolic angle
4 = arsinh (v*fc) = artanh (v/c) with dilation of time and space in the rocket (Ch. 3A).
Consequently, the radio signal returns to people of the Earth in ¢4 = 2L = 8.50 vears, they
will meet the astronants on the Earth in #9 & 11.7 years. This paradox is interpreted also
by tensor trigponometry. In peneral, similar kinematic effects of STR, with real difference of
time in different frames of reference, are possible only under action of two great Principles
of Nature. They are the Postulate of Relativity by Poincard |63] and the Mach Principle |55
(sect. 12.3 and Ch. 9A). See presentation from a point of view of acceleration in (209A).
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Isomorphic mapping of psendo-Euclidean space of index 1
into Special quasi-Euclidean space with Beltrami pseudosphere

Space itself, withont matter moving or field, has no any physical sense. It with its geometry
are abstract math models, used for maximal adequate and convenient description, according
to H. Poincaré |61], of laws of matter motions in coordinate forms. So, in Ch. 5A, with this
approach and in the universal base By of {PQ‘H} for the hyperboloid 1, we introduced the
uninertial ?’pﬂ il gquasi-Buclidean space QC"'I (96A) with own Especial quasi Cartesian
cross base Eg = {x, &} for presentations of hyperbolic motions by the time like catenary d.
Its Enclidean subspace (E2)Y) is the same and constant. In the latter, orthospherical ro
tations rot © are preserved, but around &, The hyperbolic world line as the proper time
arrow of is transformed with Lambertian () in E1 into new rectified time axis oF, as it is
permanently orthogonalized, with respect to (E9%Y = CO NST — see at Figure 2A(1)-(4).
Coordinates of points on catenary world line in cross base E, o= {x, 7} fix proper time et
and proper distance y in E,. Synchronism of events for Ny and Ny, is parallelism to (£%)(1,

Time-like space {QE?H}I is synthesized from the internal (light) conic cavities with only
a time-like hyperbolic part of hyperboloid 1, without a space-like ellipsoidal part in the
external cavity) by an exchange E" and oF at (N = CONST. Space like space {QQ"'I}H
is synthesized from the external conic cavity with the entire hyperboloid 11in (P2 for it
by an exchange (E2YM and (E22) at o = const. So, one may implement mentally such
operations at Figures 4 and 2A(4)! Both spaces have own groups of rot @ in {(£2)) and
(E1® but only one-step own admissible rot ®(T') with own Euclidean guasi-invariants.

In 1-st variant, one-sheet hyperboloid Las a locus of parallel time-like hyperbolae +t ()
in By = {x, Err]- is transformed in a centered cylinder expressed in cross base Eg = {x, &tk
its generatrix lines are rectified hyperbolae as the new time azes . A circular set of
e expressed in By is transformed with the direction outside the central axis in
a catenoid 1 as a locus in {Q%‘H)i of time-like catenaries :I:Er}l:{p] {=eein Ch. BA) expressed
in Eq = {x,} (at t & er). The external cavities of the light cone with space-like content
are concentrated inside the new centralized proper time azis o with annihilation. A catenoid
| is a minimal hypersurface in the space {Q2+1}t. It has eylindrical topology (as & one sheet
hyperboloid 1) and it is obtained with revolving a time-like catenary et (@) around the
new time axis of at O, see Fipures 2A(4). The Euclidean length of the world line Ei,}l:{p]
is & coordinate time of doe to (95A-11). The proper time er is measured by Buclidean way
along axis of. Transformation (P2 — {QQG"' ¥, with transformation of hyperbolae in
catenaries, po with replacing psendo-Foclidean measure for time by Eoclidean one in the
real-valued Special wninertiol time-like guosi- Buclidean spoce-time QC"'I}I of the kinematic
curves as a locus of time-like arrows :I:Ei,t () with any slopes. The catencid 1 is a resolt of
dilating the hyperboloid 1 time axes with local & = dr/dt = sech

In 2-nd variant, a two-sheet hyperboloid 11 as a twain locos of space-like hyperbolae
A7) in By = {y,ct} is transformed in a twain circular set of rectified hyperbolae A
expressed in the cross base Eg = {zg,&’} and radiated from their two centers Cyp (Figure 4)
as the new space azes Xin the new Euclidean subspace (E3)3). A twain circular set of axes y
expressed in Ey is transformed with the direction to the time axis ELE in & two-sheet catenoid 11
as a twain locus in {QEH}H of space-like catenaries £y (p) in Eg = {A, Err]- (at ¥ « A
The internal cavity of the lipht cone with the hyperboloid 1 are concentrated inside the new
Euclidean subspace (2} with annihilation. A catenoid 11 is a two-sheet sag hy persurface
in the Special quasi-Euclidean space {QH’I}H, in addition to previons one. lts two sheets
have also affine topology (as two sheets of a hyperboloid 11) and it is obtained with revolving
two space-like catenaries () aronnd the preserved time axis 3 The catenoid 11 is a result
of dilating the hyperboloid 11 space axes with local k = dA/dy = sech .



CHAPTER 6A. ISOMORPHIC MAPPING OF PSEUDOD-EUCLIDEN SPACE 207

Further catenoids L and 1 can be transformed also somorphically into tractricoids L and 11
by compressed transformation of their spaces with bases in new Special quasiEouclidean
spaces with their new Fspecial universal quasi-Cartesian bases. We'll do it by oor very
simple and descriptive geometric manner — on the example Catenoid 1| — Tractricoid 1 (as
the Heltrami psewdosphere) — see at Figure 2A(4).

Namely, the involute of a catenary Cp = et{er) (at o7 = Ry in Ch. 5A) is the Minding
tractriz L |43]. As we saw in Cho 5A . the Euclidean length of a catenary till M is equal to
ot = Rsinhy = tan (), see (95A-11); this lenpth is the same for the tangent to catenary
at M (it is rectified of). J.h':.' tangent MM’ is normal to the tractrix and it is its radios
of curvature By = Rtang. 1t is a vector-dist ance o between both curves, translating
its current lenpth onto the tractriv a8 dfp = Rtang dp (both curves are perpendicolar
each other at points M and M7). At evolute-involute Euclidean metric’s transfer, its space
and time slopes are exchanged | Revolving double catenary around the new time axis org
produces the catenoid 1 Hevolving it with double Minding tractric produces the tractricoid 1
as the Heltrami psewdosphere, compressed inside the catenoid 1 lo result we obtain, that
{QE-H}I C {Qé"'l +. Its generating double tractriz is a continuwous curve, but with a middle
cusp point. It is expressed correctly only in compressed {Q,T"'l}t and in own Especial quasi
Cartesian base Ep = {xr.cTp} with Euclidean axis £ = yg in interval —B=+R and the
reper axis y = erp}. Such Minding tractrix (in addition to Huygens one) and psendosphere
were discovered by Ferdinand Minding in 1838 [43], the latter as a real valued surface of the
constant negative GGaussian curvature.

This psendosphere was applied by Eugenio Beltrami for first, though very partial inter
pretation of the Lobachevsky plane [44] — in the region of only hyperbolic peodesics motions
as dy and dig(y), doe to our tensor trigponometry. However the tensor-vector-scalar (tos)
forms of their 1-st metric forms are different (at n > 1,9 = 1) without possibility of their
even local isomorphism, as for space and time like spatial corves too. These tvs-forms are
identical for the Minkowski hyperboloid 1 and the tractricoid 1, but as one step, in their
enveloping binary spaces (L e, at n > 1) — see below. Both in {'}'3“"'1 and {Q,T"'I}I with
single peodesic hyperbola and Minding tractrix |:||1:i n purely circular extremals, with equal
and constant negative Gaussian curvature and identical eylindrical topology at any point
on them, they are isomorphic, but due to the Minding Theorem for real-valued 2D surfaces
[15, p. 240|. In this Chapter we'll prove strictly their global sometrey, but only as one-stepl

The central cirenlar zone — an eguator of the hyperboloid 1 and of the double pseudosphere
{where v = 0 & @) = 0 at the points Cf at Figure 4) corresponds to the infinitely far
conventional border of the whole projective hyperplane with upper and lower parts in the flat
cotangent model of the hyperboloid 1 {Ch. 12). Figures cannot pass through this equator of
the psendosphere under regular motions, but they pass it as bended under 1807 ¢ hen metric
and topology are preserved. Fipures on the hyperboloid 1 pass freely through this equator
without the broken (as also through the border in its cylindrical tangent projective model).

Let’s explain how the Minding tractrix two coordinates are expressed in sequential bases
under its generation from time-like pro-hy |Jt"l'|J{]|H. and next catenary. In result, the tractrix
is interpreted in its Especial base By = {xr, 8} and with respect to initial B = {x,ct}of
pro-hyperbola and Eg = {x, 2} of next time like catenary. The time axis &g, asymptotic
for the peneratrix tractrix of the Beltrami psendosphere, is the axis of its proper revolution.
The space axes for these tractrix, catenary and hyperbola have the common vector of the
directional cosines ey, the bases Ep and Ep have the common center 04 as zero point
of these connected catenary Cgler) = o and tractrix ﬂ(ﬂ']’ﬂ}. The point Oy s a cusp
for the double tractric, therefore it belongs to the curve. It is the mapping of a zero
point Cy of the pro-hyperbola & in B of space-time (P31}, See all at Figures 4 and
2A(4). Under STRH er > 0 and, in upper and lower parts of the tractriz, we have velocities
v=0and v <0 dy>0—g=const >0; and at the point Oy: vy =0, yg=0,cr =crgp=10.
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Taking into account (86A), (8TA), (94A), in {Ql"'l}t, the tractrix radius of curvature is
ct = R -sinhvy (e = Ry) and its compressed two coordinates are bonded with such ones of
the time-like pro-hyperbola and the next time-like catenary in By and B as follows:

xr=smp(y)ct —xy =tanhy- o —x =sech y-x =k -x <x, (1024)
cTr = T —cosig(y)et = er —sech y- et = (1 — tanh~/v)er = ka - o7 < o7

Thus, v =0—= yg =0, et =0, and further the coefficients of compression monotonically
change from 1 to 0 (k) and from 0 to 1 (ks) as the point M is here moving from Oy to O,
They influence on coordinates mapping ¥ — ygr, o7 = et and transform the previous two
curves into the reversed continwous tractriz Lplerg) perpendicular in the current points
M and M (Figure 2A(4)) to the time-like catenary ¥y glerg)! Due to (86A) and (8TA) for
hyperbolic motion, equations {102A) may be also represented in the pure trigonomet ric form
(with coefficient of similarity B) as the defining function from only the angle 4 (0 << || < oc).

Let'’s reduce of the tractrx relations {102A) into its hyperbolic type equations in the base

Er = {xg,cri} of Special quasi- Euclidean plane {Q}"’ ¥ in parametric form from - or er

xg=R-x=R(1—sech ) = R(1 —sech 55),
et =Ry = Ry — tanh7) = R(% — tanh ) >

0. };‘-|dﬁR=Htan]1frd'r| (1034)

Corollary 1. Condition B =1 come to the unity tractriz as unigue trigonometric object.
All such tractrices y glerg) from {1034) are homothetic to each other with the coefficient R
off unity one as well as homothetic curves: cireles, eguilateral hyperbolae, catenaries ete.

& parametric equations of the wnity douwble tractriz in parameters 4, @, £ with (360-11) are

+zr=1—r=sechy=cosp =sm(r/2 —g)=anf (0<]z|=<1),
+y = — tanhy = y(p) —sinp = y(£) — cos{ = Incot({/2) — cos; (1034 - 1)
(with inequality v > tanh; 0 < |e(y)] < 7/2, 7/2 = |£(v)] = 0).

e direct equation of the unity double tractriz in the spatial coordinate z is
4y = 2y(|z|) = amsech(z) — 1 — 22, (1034 —11)

ln addition, zp = R-z =71 — the local radivs of revolution for the Beltrami psewdosphere.
Compare parametric equations of the Mioding tractris with ones of spherical cyeloid:

zr=R-z=r=Rcosy, _ . _ _
+yp = +R-y = R(g — sin ), } dlr = 2R -sin(i/2) dip, Lr= R-L{p) = 4R[1 — cos(y/2)].
Corollary 2. A frectriz is hygperbolic anelog of o sphericel cyeloid with one eyele. Al cyeloids
Yrlzg) ere homothetic with cosfficient B, if R =1 the cyeloid is wnigue irigonometric olject

From space-like catenary by evolute-involute transpher we get the Huygens tractrix in I[Q;'H}H

By rotation of the Minding tractrix around its yg we get the one sheet "horn shaped” tractricoid 1
By rotation of the Huygeos tractriz around its g we get the "fyving saucer shaped” tractricoid 11
They are connected also by rotation at ITf2 (see Ch, 5A) We express them by angles (@) and v(£).
bonded by (360-1Y). Ch. 6. With specific analogy (331), (334). we translate them to spherical forms.
Now we can give more geonerally and together the parametric by perbolic eguations of the Minding
tractrix and the historically first Huygens tractris with exchange of their space and time coordinates
in (@3 and (@3} for the simplest construction of tractricoids 1 and 11 with parameter R:

r=R-d=R-[1—sech y(v)]-eq = B-[1 - tanhv(£)] - ea, } (1034 — IIT)

= R-h=R-[y(v) — tanhy(v)] = R - [Incoth v(£)/2 — sech v(£)].

R-[y(v) — tanhy(v)] - @2 = R - [Incothv(£)/2 — sech v(£)] - €a,

=_ R-[1 —sech y(v)] = R-[1 — tanh vw(£)]. } (1034 —IY)
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All tractricoids | and tractricoids 11 with mutually inverse generating tractrices (as both
catenoids with penerating catenaries) are homot hetic with the coefficient of similarity R (to
unity ones) in own enveloping Special quasi- Eoclidean spaces {Q%:"I}I and {Q%'H}H. Buoth
branches of complete Minding and Huygens tractrices are meeting at their cusp points, but
daring researchers may use s and wshape tractrices as regular curves withoot such points.

Feature: [n process of orthogonal transfer of the parametric evolute into its parametric
involute, the principal angle-argument for the first curve is interchanged in complementary
one for the second curve (velocities along evolute into supervelocities along involute ).

The exchange ¥ g ++ L gives logically dCg/detp = e - tanhy = sing(y) = v/e due to (103A).
but pow along the Huvgens tractrix. This is similar to the exchange of + o7 at producing time-
like catenary in Cho 5A. Then the Huvgens tractrix is involute of a space-like catenary! It is a
geoneratrix for the tractricoid 11 with topology of the hyperboloid 1L 1t is mapping in the last 4th
Special enveloping guasi-Euclidean space I[Q?.‘H}H [ I[Qg-"'l}ﬁ. The tractricoid 11 s gotten by
revolving the Huygens tractrix around own shortened ordinate time axis 4+ g ininterval — B+ R
The axiz ha= a pointed cusp top and i@ directed to center O uoder asyvmptotic Enclidean plane,

Further we must take into account, that initiel engle 3 with compleseentary v oand theiv spherical
arvalogs charged abowe owse nature indo condmry, by o reasornof the evolute-inolole etvic’s trans for!
So. now v is the motion angle with respect to the time-arrow, and 7y is complementary to it. Both
spherical-hyperbolic analogies in (331) are conserved between 4 and @ 7y and £ in E"'T = {Xmﬂ?ﬁ}
heginning from eero point Oy (L e at xp =0, cre =0: 7 =0, @ly) =0, v(y) = e, £(7) = 7/2).
Er is universal again for the seree 8 specific forctions 70@). @) 7€) (7). v(E). £(v). vig). wiv)
with formulae of simplest differential relations of types (332-111): dp = sech y dy, dy = secy dp.

We have for kinematic Mindiog tactrix real and specific conoections in tensor forms (Ch 6):

7otk [T, ) - roth [T, T] (1034 — Y)

— ——  —
coth[y,v] - eaea’ + eaec’ | sch [v,v] - ea cosh[v, 7] - exea’ + exea’ | sinh[v, 7] - ec

csch [y, v] - el cothfy, v] sinh[w,v] - el eosh[u, 7]
37 [, - def [Z, %] (1034 — YT)
—_— —_—
_ | ose[p.f]-eaea’ +ecen’ | tob [, £] - ea sec[f, @] - eaea’ + Baee’ | tanff, ] - ea
=| T i = tarlE, o] o], =

That is why, the Minding tractriz gives kioncmatics of hyperbolic motion, but with the angle v a.!'ld
distance with the angle 7. bonded as one-to-one by relations (360) and with spherical ones in Er
of (@3"E Evaluate the kinematics along Minding tractrix (103A). in comparison with one for
pro-hyperbola and catenary in Ch 3A, uonder new hyperbolic invariant here in {Q;'H}t:

dfe 1" dxr|* 034 — ¥
(detg)® = (dLg)* — (dxr)’ & 1= .j,:;—i] - [_dm:z =coth®y —esch®y = (1 1)
s =9XB _ o ehy=c-cot (v = £ —¢-sinh v= ¢ - tan £(v) )
dre — Y = YT = 3= !

&Y=
5= % =c-coth y=ec-oscp(y) = % =c¢-ocosh v=c-sec £(v).

Az seen from the first expression, here we use as il analogy with STH time invariaot. However,
in the point of bifurcation at 7 = v = w(w/4) (see in sect. G.4), the space and time slopes of the
kinematic tractriz are exchanged. We have the right triangle of supervelocities 8% and s (in term of
the angle ) in other vector space — oo the Mionkowski hyperboloid §of radins e Lo addition, this
gives there the Ideatity for usual velocities: 1/e® = 1/o® —1/(v*)? (see it preliminary in Ch. 5A). So.
s = g-csch 4 decreases from oo up to (L I it is expressed through the angle v, then 8% = ¢-sinh v
increases from (0 up to oo a2 proper velocity in STH.

The Minding tractrix, in process of uniformly accelerated motion along it due to its description
in E"T = {XR,C?};}. asyvmptotically tends to axis o754, At Figure 2A04) xp is the focus of catenary
and tractrix. then eTpry +Xgir) = kR = 7 — Xp. a8 here catenary and tractrix have @(w) = 7/4

gee at Figure 2A04). At the tractrix focus xrF. related to yp = w = arsioh 1 = 0L881, we have:

z2p = V2/2 2 0707, hgy =w — V2/22 0174, Lp =In2/2; (ds/dh)r =1, wh =
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Io addition. at Figure 2{4) we have the values: & = dp —hr = 1—sech yp+yr—tanhyr == 0.467.
And from (106A). (T05A) and (87A). the useful limit formulae may be easily inferred:
lim, . xp = lim, . .(c7r —erg) = R, lim,, .. (L —crg) = R(1 —In2), where o7 > Ly > cTg.
Using connections of hyperbolic motion parameters in (86A), (8TA), (D1A). (103A) we get for
Minding and Huyhens tractrices the 1-st differential arc and the length off 2ero point O, expressed
in own Ezpecial gquaszi-Cartesian haszes Er with orthogonal preseotation oo tractices own gquasiplanes:

(dLr)* = (detr)® + (dxr)” = (Rtanhy dy)* — Rr(dy) = Rtanhy — Rr(dy) = Rtanp(y) =

dfp = Rtanhvy dy = Rtany dp = dry = v dr = tanhy der = sing der,
Lp=R-L=R-lncoshy=R-lInsecyp=1" < o7 = By < ot = R -sinhy.

Here By i= rading of the tractrix carvature, —Rr = By i2 radies of first prioncipal corvature of che

tractricoid I Aty — 0. it is £g — Ry?2/2 = gr2/2 g = F/mo = /R is inner acceleration (81A).

From (103A). with two specific analogies (331), in addition to iovariant of time-like pro-

hyperbola (93A) and guasi-invariant of catenary (36A), we obtain in {Q,}"'i:li the quasi-invariant of

the Minding tractrix with its curvature Kr = —1/ct = —(R ginhy) ™! = —csch y/R = —cot /R in

the Ezpecial quazi- Cartesian haze Fr = {xn,c?ﬁ} along the curve also from zero points Cr and O

in by perbolic and troe spherical variants, accordingly with respect to xr as @) and oTh as E(v):

(R-— xgjg + (Ry — crg}g =RE=RZ. (ﬁﬁ'h31+mnh1ﬂ =R?. [Tanhg'u +ﬁﬁ'h31.r:| =

= R . [cos® wv) + sin? 7)) = B2 - [sin? £{v) + cos® £(v)], (lxp| < Rop = +7/2). (1054)

241
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(104.4)

The eguation = an invariant to orthospherical rotations in {EE} c{ ! with the same reflector
tensor. Along the tractris, it is one-step fengend-secand guasi-inoerient of the tive-like pro-hyperbole
in (P, In (QFF C (@)Y it is one-step sine-cosine guasi-invariant with @(y). expressed by
equation of the same tangent circle as to catenary (96A) in point Of, as situated on a torus arooand
and tangent to the catenoid | and oormal to the Tractricoid |- Figure 2A04). Along this circle
the same spherical angle @(7y) by analogy (331, but of this tractrix, & summarized! Analogy (331)
breaks at @ = £7/2 in Crr. Both hyperbolic angles are bonded along this tractrix, due to (360-1Y).

By rotations of Minding and Huygens tractrices around axes y we get the tractricoid 1 and 1L
Iu their enveloping binary spaces (@3} and (@3}, we have also the Eudidean metric and
orthogonal differentiation in universal bases Br with angles (y) and £(v) = 7/2— (7). Therefore,
we can give the hyperbolic and spherical egquations of the Minding tractrices and the historically
first Huygens tractrices with cxchange of their space-tivee coordinetes visually by scerming rotation
af the right angle IT1/2, with common direction of 11 = &% and y2 = Z# (as in Ch. 5A for catenaries
and catenoids). for our simplest presentations of tractricoids with their 1-st metric forms in two
variants of parameterization in -y and @ under bonds of angles in (360), with 3D base Er of (@3t
(Due to these pguations, the values of both geodesic tractrices radios and length are the same on
the tractricoids | and 11} Thos, for the tractricoid 1 we get 1-st metric form in ws presentations:

Rozgpy=R-zgy-ea =R-sechy-ea = R-cosg - ea, } (1064)

R-yy=erg = R-(y—tanhy) = R- [lncot(m/2 — )/2] —sing].
—Rdx;py = Rday = Rdlzp, - eq] = Rdlsech v-eg) = R- (—sech v - tanhy dy - eg +sech v da-gy),

Rdy{n =detp) = R d{y — tanh~) = R - tanh?®~y dy. } =

—Rdxgpy =Rday = Rdlziy-ea) = Rd(cosp-ea] = R- (—sinp dig- ea + cos g do - ey, } -

R dypy =dlern) = R d|{v(¢) —sing] = B- (secye dp —cosy dp) = R- sin® i - sec i dig.

dii(y) = [-Rr(dy)*dy" + [Rn(y)["da” = R*(tanh® y dy” +sech®y da’) = R {[dL e (v)]" +sech®y da®} =

= di} (v) = [~ Rr (dg)]*d” +HRn(y)] da® = R*{tan” o dy” +cos”  da®) = R}{[dL (1) (w)] +oos® o da®}
We got above real spherical radius of the tractrix in (@5')? as alko radius of the tractricoid I first
principal curvatute iy = —Rr(dy) = —Rtany = —Rsinhy, with respect to a parallel pare of dy.
Radinz of the second principal curvature of the surface i3 calealved with the Meosoier Theorem
from radivs An(g) = Reosp of rotation do under cosine slope £ to vy at Meosoier angle £ = 7/2—p.
Then Haly) = Bn(yp)/cosf = Reotp = R csch 7 = Rsinhv, with respect to a nocmal part of dig.
With (106A). we reveal two principal rotations at point M oo the tractricoid Lin (@5 as follows

Ry(y) dp = —Rtanp dg = Ry(y) dy = —Rtanhy dy = —Rsinh dp, (1064 — I)

1 1 1 1
Ra(y) dp= + Reotyp dip = +R csch oy dp= + Rsinhv dip = Reosy do. (1064 —IT)
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Then the Ganszian and middle corvatures of the tractricoid 1 as the Beltrami pseadosphere are
Kg=—-1/R: K = F1/2R (- cot p+tan ) = F1/2R " (—sinh v+sinhy) [K(7/4) = K(w) = 0].

For the nl} Beltrami pseudosphere in the cyvlindrical coordinates with {eTg, z1g, ... 2ag}. in
vector spatial equation (103A-I11), the secant part splits into orthoprojections onto 1 Eucidean
axes of nD Cartesian subbase of Br in {Q“'H}t proportionally to directional cosines.  We use,
beginoing from Ch. 5A, here and further such simplest presentations of the metric forms with eg.

The best trigonometric descriptivity of the spherical presentation with the angle @ is seen at
calculation of nmsual finite volume and area for the tractricoid L

V =2 [F [mr2(g)] [sin g - RAL(g)] = 20 R [ [cas? o] [sin o - tan o dig] =

].
— 2 R? [;f sin? peos g dp = 2 R® ;7 sin? o] d(sin ) = 20 R® [ d[(sin® o/3)] = 2P, } (107A)
8 =2 [F [2mr ()] [RAL(g)] = AnR? [if cosio - tanp dp = —4nR? [0 d(cos ) = 4w R2. J

Although the results from (106A) for the tractricoid 1 were koown else from the classic works
by Ferdinand Minding [43], however our tensor trigonometric approach gives as well seen the most
simplest and descriptive maonoer of their validation, aseful, for example. in the edoucation process .

Single geodesic Minding tractriz with 5 purely circalar extremals exist ef ecech point of the
nl) Beltwumi psewdosphere, as it has oo Poles, similar siogle time-like hyperbola ol cech point
on the Miokowski nl) hyperholoid | without Poles. Both objects have ideotical and constant
Gaussian curvature Kg = —ll.l'Rg. cylindrical topology and the common tes-structure of their 1-st
metric forms. Between these objects, there s somorphic relation in direction of their ordinate
axes ¥ using equal values of 7 and o at the Figure 2A(3, 4). Then, according to the Minding
Theorem |43, they must be isometric, but only as ooe-step and only in the universal base for their
enveloping spaces, namely, from the side of the tractricoid 1 lodeed, all its same metric properties
woere established above oo the basis of ooly one-step specific spherical by perholic analogy (331).
On the hyperboloid L oparallel and oormal parts of dy have constant radii of principal curvatures
Ry = —R and By = +F with ByRa = —R? = const. On the tractricoid L they are oot constant,
but they change so. that their product is rested also constant Ry Rz = —R? = const at each poimt
of hypersurface. At principal motions on the tractricoid | and the byperboloid 1 aloong the geodesic
Minding tractriz and the geodesic hyperbola from equivalent zero poiots, the angle v changes from
eero till infinity. Generally, at priocipal motions oo both objects from arbitrary, but eguivalent
points M. we have ideotical valoes of their Ganssian curvature.  In I[Q?.'H}I. a parallel part of

rotation as dip has the parallel principal curvature K1 = —(Rtang) ™", a simultaneous normal part
of rotation as dig gives the normal principal curvature K2 = +(Reot @)™ In (PP, a parallel part
of rotation as dy has the parallel corvature Ky = —R7Y g simultanecus normal part of rotation as

dy gives the noemal curvature Ka = +R7Y All they are united in the constant Gaussian curvature
Kg = —R7? for the tractricoid 1 in (@37} and for the hyperboloid I in (P**') with constant
parallel and normal principal curvatares Ky = —R Y and Kz = +R™Y lu their universal base, the
Gaunzsian curvature is idemtical in Euclidean and pgeado-Eoclidean metrics, even in fos preseotations
(Ch. 10A). In the beginning of principal motions on these two ohjects, we chose arbitrary equivalent
zero points on these objects, which are bonded ooe-to-one at equal 4 and o, Therefore, we proved:
these geometric olbjects ame enbively one-step dsometric in their commnon universel base!

In Chs. 5A. 6A we revealed geometric meaning of tangent-secant gquasi-invariant of progenitor
time-like by perhola translated duriog trapsformation from I['P"+l} in Special {Q"+l} into catemary
and tractriz at Figure 2A03, 4). o two Special spaces, the quasi-invariant geonerates a circle tangent
at zero poiot Oy to catenary (M6A) apd oormal at zero and cusp point @y to tractrix (105A).
We added the Eonveloping Torus bonded at eguator the Triad of Hyperboloid I Catenoid 1 and
Tractricoid | after revolving three generating curves around axis o7 with the similarity coefficient R
for additive summation of the principal spherical angle @{7) at contrary specific analogies in (331A).

% % #

From the Pole O of a top part of two-sheets tractricoid 11, as its zero, but singular cusp poiot, in
geoneral, 1 geodesic Huygens tractrices issue. This Pole canoot change own place due to also one-step
admissible motions along Huygens tractrices on it similar Minding ooes, This differs limited motioons
on tractricoid 1 from oon-limited oones oo by perboloid 1L At evolute-involute transpher of space-like
catenary into time-like Huygens tractrix in its gquasi-BEuclidean space, we get that on tractricoid 11,
wiy) is the motion apgle and also the Meusnier angle between normal to this tractrix and radios .
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For the tractricoid 11 we get its 1-st metric form with also more informative vs presentation:
R-mgn = R-(y—tanhy)-ex = R- [Incot(7/2 — ¢)/2 —sin ¢ - ea,
=
R-wgny = R-sech v = R-cosip.
R dzg;p) = Rd(y —tanhv) - eq = R- [tanh?y dy - ey + (v — tanhy) da - e, ], -
R dy;ppy = R dsech v = —R-sech -y - tanhy dy.

Rdz(11) = Rdly(¢) - ea] = Rd[ln cot(x/2 — ¢)/2 - ea] = Rlsec ¢ dy - €a + [Incot(x/2 — ) /2] da - ev], } -
= Rdeosip = —R - siny dip.

(1084)

di3(y) = R[tank® y dy® + (y — tanh7)? da’] = R? {[dCun (v)]” + (v — tanhy)* da”} =
= di3 () = B*{tan® ¢ dp® +|Incot{m/2—p) /2—sin ¢|* da®} = R {[dLry ()] +[In cot{m/2—p)/2—sin ¢]* da®}.
= = =
Heturn to discussing above perfect surfaces (from the set of such with constant Gaussian curvature).
lndeed, inits turn, Minkowski hyperboloids ©and 11 bave own progenitor as the hy persp heroid of
radiug B in (@) (see in Figure 4 and Ch. 8A4) with scalar or vector presentations in two forms,
bonded through complementary angles of motions @ and £ = 7/2 — @ (as the Meosnier angle too):

xg=H-d=HR-sing;-e, =R-cos&; -e,,

yp=R-h=R-cosp; = B-sin&; }{undt-"r I% at p = +ir = hyperbaloid 1) = (1094 — IT)
= k= “ = - -

XR
R

— 142
d(lr/R)[;, = de? = cos® pp digZ+sin? oy dil = dp? +sin? p; daf = (E)} (dr.o)E = d£2 = dE? 4eos? £ dod.

R.-d=R-cospi-exz =R -siné-eaq, F . _ i . _
R-h——R-singi— —R-costi. }(um‘lPrI at @ = —iy = hyperboloid 1) = (1084 —T)

— 12
d(lr/R)}y, = dip? = sin? oy dp?+cos? oy do? = de? +eos? oy daf = [E}:+ (dw) . d£2 = de? +sin & dad.

Geometvically, we con choose arey variand (1004 1) or (T09A-11) ws separie one @ own {QE'H:I.’
These two purdy enguloer meetric forms, with own summary motions digp and digg. are compatible in
(@Y and given in normal presentations as the two Absolute Buclidean Pythagorean Theorems
see strictly to the end of Ch, 10A. And its spherical geometry s similar up to the scale coeflicient R
to the tensor trigonometry of I[Qa"'i}. ad all these must be namely for any perfect by persarfaoes!
In the base Ei. the angle of motion  is counted from the frame axis T as angular change along
some meridian between two Poles. lo the left options, we apply the common priocipal angle of
mntion @ counted off the by perspheroid North Pole, as ones do wsually for by perboloids 11 and 1
see such in (132A4) and (133A) in Ch, 7A. Any orthospherical differential angles doeare connted along
some parallels from the certain choosing zero meridian. However in indepeondent option (109A-1),
one may, as is more customary, accept as the principal angle of motion the complementary angle £,
which is counted from the Euclidean by perplane, beginning off the Equator at zero value, as contrary
angular change along some meridian, See reore e fensor-vector-sealar (Tos) formes in Che 104

Binary spaces (P¥H1), (Q*1). (QEFH)E (@FTH)™ (@3 (@3MH*™ with reflector tensor T
have the common subgroup of orthospherical rotations {rot 8). In contrast to (@*1") with its
hyperspheroid and complete rotations group, in I[Q;'H}t with itz Beltrami pseudosphere. the anited
set of {rot @(I)} and {rot 8) is not a group, becanse ooly its normal oethes pherical part is angular
component. Along tractrices we have only non-angular differential dC (). not relating to rotations!

And it is on this group idea, we divided in |16] a full set of by persurfaces of the constant Ganssian
curvature ioto subsets of perfect and imperfect surfaces with their enveloping spaces, namely.
with angular complete 1-st metric forms or pot angular ones. The perfect bypersurfaces have own
complete groups of motions on integral and differential levels, cansed by the fact that such geometric
objects have ooe determined them radins B besides constant Gaussian curvature, Then, with our
simplest tensor-differential trigonometric approach, we gave io |16] three T-st purely enguler seetric
Jormns Tor well-known three surfaces of constant curvature as perfect ooes and ooly for them their
Absolute Pythegorean theorems, where their orthogonal or pseado-orthogonal angular differentials
are summarized in the complete angular differential! So. the tractricoid [is not a perfect surface and
has only ooe-step integral and differential quasi-invariants under its constant Gaossian curvature.
The Einsteinian curved GTR space-time i imperfect, without motion group and even withouot some
sugroups. Poincard complex space-time {Q3+1:|¢ and Minkowski space time {'P3+1}.-_- are perfect with
the Lorentzian homogeneous group. Lobachevsky - Bolyval byperplane and Minkowski by perboloids
are perfect hvpersurfaces and. with the hyvperboloids 1L they are polysteps =ometric. For perfect
surfaces, complete angular differentials are polysteps invariants of their motions groups.



Chapter TA

Trigonometric models of two-steps, polysteps, and integral
non-collinear motions in STR and two hyperbolic geometries

We continue studying two-steps and polysteps principal motions (rotations) {roth T') — see
in Chs. 11 and 5A . They are analyzed with wide using tensor trigonometry in two directions:
1) The rotations in (P31} = (E2YE 3 = CONST (motions in hyperbolic subspaces), which
correspond to the physical flat and spatial movements in STR with their vectors of the
directional cosines; and on the embedding into it Minkowskian hyperboloid I (top sheet) at
n=3or in the equivalent to 11 the Lobachevsky—Bolyai hyperbolic space — see in Ch. 12
2) The rotations in (PP = (E" B 3 = CONST, and motions in the embedding into it
nD Minkowskian hyperboloid 11 as equivalent to nD) Lobachevsky—Bolyai hyperbolic space.
We'll pay attention more in detail to Minkowskian hyperboloid in final part of last Ch. 1041
Such operations are admitted in (PP = (E™ B Y = CONST with right bases here:
1) rotations of the two types, as principal hyperbolic reth T and orthospherical rot ©;
2) parallel translations preserving the space structure with the reflector-tensor £

Hyperbolic and orthospherical rotations have their real canonical forms in B = {I}.
That is why, in polar and summing formulae they are given initially in Ejy, but really they
may be translated from By into the bases of action By, due to the Bule of multisteps
transformations (Che 11). Hyperbolic tensor of motion reth T (100A), on the basis of its
pro-tensors (324) and (362), is defined due to conditions (348): rothT-I%.rothl’ = I*. The
orthospherical tensor has in (P31 and (@3*H) canonical form (497). Their structures in
{P™1Y or space-time (P31 = (£2H Er}} correspond to the metric reflector tensor (100A):

{rothT'}yq4 = Flv,ea) = cosh'+=nh T {rot B}y.a It
cosh i Gu -es’ +ea -e.;’ sinh7y; - 8a {rot B}a.s | D Iavca | O
e cosh o Tt To —t (1104}

(6a€h = €ach).
ln STH, {rot B}y.g may canse induced orthospherical rotations in result summing two or
more of the principal rotation reth T as a "Lorentzian boost" (in non-Eoclidean peometries
this canses angular shifting in figpures). o differential form this canses the indouced Thomas
precession in time |93 {rof 8} may be independent also inside the Eoclidean subspace
(named sometimes by Wigner rotation [94]). See all these in detail in this Chapter.

The motion tensor roth I' with ey in By and in another universal base By = rof 8- E1
with @ = rot Bg.3 - €y has canonical form (362) — see in Ch. 6. The time arrows 20 are
used wsually as the frame axes for connting the hyperbolic angle ~. At fiest, we consider
two-steps hyperbolic rotations realized as if in {P2H) = CONST - see above, in order to
infer the general law of summing two-steps motions (rotations) or velocities in tensor, vector
and scalar forms. The new psendo-Cartesian base can be represented in By = {I} by two
wiys: with ordering (485) of matrices and in the polar forms (491):

Ea =roth I'jg - roth Tz rE_‘1 = (roth 'y - roth Tag - Tﬂth_lrm}ﬂg -roth T'yg - E1 =

=roth T'ya-rot ©13- Ey = (roth T13 - rot ©y3-roth 'Tya)z -roth Tya- By = (1114)

£ - £ - -
=rot B43-roth T3 -E) = (rot By3-roth T3 'rﬂft’913]ﬁr,n -rot By3-E) =Ti3- By = {T1a}.

For subsequent correct derivations, we attach especial import ance to a sequence of operations
in any multisteps transformations. This issue has already been covered in detail in Che 11,
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First pairs of matrices in each three rows of (111A) are given initially in the base By = {I}
in their canonical forms. The second matrix from these pairs is being trapslated in each rows
in the given base of its real action Eg. This relates to the two-steps rotation in the first row
and to both polar decompositions of the summary matrix Tig in the second and third rows
with right and contrary ordering of hyperbolic and orthospherical rotations, due to general
formulae (485)—(488) and (491) from Ch. 11. So, in the fiest variant of polar decomposition,
rot B3 has the center of its application in the final point of the rotation roth Tya.

Corollary. Generally, two steps non-collinear hyperbolic rotations roth T in (P™) or on
the hyperboloid 11 can be represented as hyperbolic and induced orthospherical rotations.
Hyperbolic rotations roth Ty are executed in (PP relatively of the frame axis o)
Orthospherical rotations are executed in (E3YO) for an object o7 a base around the axis &x.

In accordance with (352), the bases (Ep) = (rot ©-Ey) are universal too (in STR, they
are called the rest bases). Doe to (111A), there holds

roth f13= ot (—913} - roth F13 - rot 913 = Tﬂfelg -roth I'13 - 7ot 913. (112:4]

Fur f"lg, the vector of directional cosines in (363) is shifted with respect to that of T'yg to
backwards at ©13. Moreover, in (P31}, for hyperbolic non-collinear two-steps rotations,
the arising angle of secondary orthospherical shift is realized in its sipn contrary to the sipn
of angle £ between the rotations, i e, f13 < 0 at £ > 0 duoe to the Signs Rule from sect 12.2:

e, = {rot (—813)}axa e (under rule s >0 —= 8413 <0!) = cosfyz = 'E:zr €. (1134)

ln sccordance with (474), (475) and by (111A) and (325), there holds

roth 'z = VTT! = \.ﬂ"r'i'ﬂth Tyg-rath (2Ta3) - roth T'a = \.-'"rrﬂth (2T 3). (1144)

£
rot ©1a = roth 'z - roth [za - roth Tai= roth Cay - roth Tyz - roth Tes = roth” Ty - Tha. (1154)

Formula (115A) represents rot B3 as the angular defect 843 of the closed cyele of rotations
roth ['y; in the hyperbolic triangle 123 with addition of (114A). It is executed from the first
point 1 to the final point 3 in the bases of particular rotations along of the trianple leps!
If rotations reth I'y; are collinear, then the triangle degenerates into the segment 3.

Further, we shall often use the operation of permuotation of particular motions with
change of their order into contrary one (for some more simple calenlations). ln the oripinal
universal base By = {I}, permutation in (111A4) of two motions (velocities) leads to a new
psendo-Cartesian base B = {Tia} = {Tia}":

E§=Tﬂfhrm-rﬂthrm~é1 =T'1'3r.E-"1=

& - -
= roth 'z -rof (—843) - Ey =rot (—B643) - roth T3 - Ey. (1164)

Thus there are two points of view at matrix (112A): as in (111A) and as in (116A)!
ln addition to (114A) and (115A), if matrices in By are ordered inversely, then

£ £
roth Tia= VT'T = \/roth Tas - roth (2Ty2) - roth Tas = {/ roth (2 Ty3). (1174)

rot {—913} = roth fis -roth [‘3-3' roth [‘-31 = roth [‘n'rﬂfh [‘-31' roth [‘13 =T{3~rath_ll"13. EIIEA}
It represents rot (—8) for inverse closed cyele [115A) of roth T'yy with addition of (11TA).
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In STR, in general, in binary basis spaces (P31 (@) and even on their perfect
hyperspaces, the orthospherical anples and motions are used very videly as independent
and secondary. They act always within some Fuclidean subspaces. Therefore they have
Fuclidean nature. Their notations can be different, but usually they are 8, 8, d8 or de, d3,
and so one! So, the orthospherical rotation may be both the vsual independent Eoclidean
rotational of vectors, for example, of the unity ones eq in (€%) and the induced rotational
anpgular shift — spherical or hyperbolic of the non-Eoclidean or relativistic nature as in the
Thomas precession |93].

First the induced shift 8 in STR was discussed by E. Borel in 1913 |90] and L. Silberstein
in 1914 [92|, as a consequence of principal Lorentzian transformations non-commutativity.
ln 1913, L. Fippl and P, Daniell — theorists from Gottingen have inferred physical formuola
for it as a possible induced precession d8/dt 91, In 1926 L. Thomas gave relativistic STH.
interpretation 93] of the experimental coefficient 1/2 to the additional electron spin due to
such an indoced precession. This event was first convineing and obviows confirmations of
STR with its group type transformations, becanse the experimental coefficient 1/2 had no
other interpretation! In 1928 the Thomas precession have got peneral interpretation in the
STR-invariant Quantum wave equation of Paol Dirac [101] in the Minkowski space-time.

The angles Ty and f13 differ only by their vectors of directional cosines. Due to (491)
or (112A), the sealar summary hyperbolic angle does not depend on ordering of summands
(direct or inverse). The case when the directional cosines of motions are either equal or
additively opposite to each other, corresponds to collinear motions.

Let ey = {cosag, k = 1,2,3} be the vector of directional cosines for Tya, sinh s,
tanh g, and vyo in the Cartesian subbase .E'F}; eg = {cosf,, £ =1,2,3} be the vector
of directional cosines for Tog, sinh g4, tanh yag, and wag in the Cartesian subbase .E';g}.
Define as the conditional characteristic, the orthospherical angle £ between directions ey
and eg as if they are in the same subspace (€3) by the following formal value of its cosine:

cos ! COS 0y
cose= | cosfz | - | cosas | = ege, = eyes, D<|g| < (1194]).
cos s COS 03

2y + cos’ ag + cos® ay = cos® By + cos” fa + cos? B3 = 1. If the partial cosines

are pairly equal, then cose = 1. If they are pairly additively opposite, then cose = —1.
Thus, in these cases, Vig and Vog are conventionally collinear, with the same or opposite

Here cos

directions. If cose = 0, then vya and vog are conventionally orthogonal. o general, they
form the conventional anple £ (as Vo and vag is in different Euclidean spaces).

We suppose the invariant B =1 in tensor trigonometric approach to STH and geometries.

Further, evaluate the final hyperbolic matrix roth I'iz with the use of (114A), in that
number, the eigen angle 43 in the original base By and directionsl cosines cosop, k=1,2, 3,
of roth T'iz in the Cartesian subbase EEE:'. For rotations (motions) in the inverse order, the

i
sealar angle of summary rotation (motion) roth g is the same g according to (1124,

< £
The directional cosines of roth Tz are cos o, E=1,2,3. By (113A), we obtain

Z r
cos Ty COS Ty
i r
cosfiz = | cosagg | - | COSO2 | = eé -8, = cosflz = e - e, (1204},
l Fd J COS 03
©os 03

where sinflyg < 0, if £ > 0L See RHule for the sign of #13 in sect 12.2 of Part L
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For transformations in the direct and inverse variants of two-steps motions in anguolar
Lambert measure (v = AJ/R), both they are connected by substitutions of partial angles as:

Tz & “Yos, ap + Pk,  (but y3 = const). (1214)

Note right away, that the very wonderful in STH and non-Eoclidean peoetries is next:
at summing motions (rotations) we can combine formally their directional unity vectors eg
in (£3) and e in (3™, as if in (E2)D = (eq, @)™ or as if in (£2)™ = (eq,e5)™!

ln (111A), block-to-block multiplication of matrices with structure (363) is unwieldy.
Though in last Ch. 10A | we'll realize it by simplest universal manner! Below we nse for two
steps motions quite simple way, At fiest, let us evaluate the matrix prodoct in (114A4) as

B = {roth T'ya -roth (2Taa)} = {by}.

For tensor trigonometric analysis of two-steps hy perbolic motions or two-steps relativistic
velocities in STH. it is enough to use 3x 3 modal matrices from (111A). But for generality we
use 4 x4 {or (n+1) x (n+1)) matrices! Ouoly fourth row of B is used in next comput ations.
The matrices roth I' must be used in any of canonical forms (362), (363). Then we obtain:

byy = [sinh-yiz - cosh(2y23) - cose + coshyyz - sinh(2y2a)] - cos B1+
+sinhyy3 - (cos oy —cose - cos 54),

byz = [sinh-yiz - cosh(2y2a) - cose + coshyyz - sinh(2y21)] - cos B2+
+sinh 7,3 - (cos gy — cose - cos ),

bya = [sinh-yiz - cosh(2y2a) - cose + cosh iz - sinh(2y21)] - cos Ba+
+ sinhy12 - (cos o — cose - cos B3),

baa = sinh yyz - sinh{2yz3) - cos £ + coshyiz - cosh{2yza).

At the bepinning, we evaluate the disponal corner element sgq of the symmetric matrix
S = roth® T'13 = roth (203) multiplying the 4-th row of B and the 4-th column of roth Ty

544 = cosh(2v13) = cos(2iy3) = cos® 'i-"p'l;;—s;i]:L2 iy = cosh® "r'13+5i1:l]12 Tz = 2 cosh? 73—1=
= cosh(2+3) - cosh(24a3) + cose - sinh(2vyya) - sinh(2as) — 9sin? £ - sinh’ T2 - sinh> oz =
= 2(cosh 713 - cosh 23 + cose - sinh 13 - sinh y93)% — 1.

We get 1-st commutative sealor cosine formula for summing two rotations in (P™1) or two
hyperbolic motions on hyperboloid-11 and in Lobachevsky—Bolyai non Euclidean geometry:

cosh 713 = cosh yya - cosh a3 + cos £ - sinh 19 - sinh a3 = (1224 — 1)
= co8i7yyg - CO8 123 — COSE - SIN #7190 - SN ijag = (1224 —11)
cosh 13 = cosh s - cosh yag — cos Aja3 - sinh g - sinh ey = (1224 — 111

We nse in (122A-1) and in the subsequent formulae for summation of two-steps hyperbolic
and spherical (Ch. 8A) motions or identical rotations the so-called external orthospherical
angle £ between segments 12 and 23, similar as was adopted for relativistic summing two
velocities by Einstein in 1905 |67]. Although in non-Euclidean peometries for the triangle 123,
the geometers use the internal anple Ajog between segments 12 and 23, beginning from the
Luler spherical geometry. They are complement ary and bonded as e =7 — A - de = —dA
with differences of signs in (122-1), (122-11) and (122 111). However in the Fuler flat scalar
trigonometry, for rotational summation of two anples, in fact the external anple between
them is used. Therefore, such an external angle is universal one! We illustrate at Figure 44
the internal anple as 123 at top 2 and the external angle as 2'23 at top 2 withoot distortions.
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The acute or obtuse or right or zero anple £ between hyperbolic segments 12 and 23,
due to (119A) and to property of their directive unity vectors, has a pure orthospherical
nature as well as the angle 8 in (120A4) and all angles at the tops of geometric igures on the
non-Euclidean "perfect surfaces" (i e, with constant radius parameter R), for example, on
the hyperspheroid and Minkowskian hyperboloids 11 and 1 As the geometric property, £ is
the external angle for two Euclidean orthoprojections of the hyperbolic curvilinear segments
12 and 23 in the base Ey = {1} How the sum of the external angles of a hyperbolic triangle
is distorted — see below in analysis of the Lambert angular defect. For relativistic motions
in (P31, there holds 445 > 0, as in STR the same angle between velocities corresponds to
the inequality Act = 0 (motions to future). 1t relates to upper parts of both hyperboloids.

For the motions angles as sepments v = A/R on hyperboloid-11 and Lobachevsky—Bolyai
non-Buclidesn plane, their lengths by Lambert measure follow to the Hule of a parallelogram

lv12 — o3| < 13 < 112 + 03, (£ € [057)), (1234)

similar to one in Fuclidean geometry. For angles of motion or their trigonometric projections
in Euclidean subspaces, their directional cosines range is [—1;+1]. Due to unequalities 5 > 0
and (123A) distance in hyperbolic geometry by the measure =y is a4 norm too.

Due to (122A) and following scalar formulse, ooly scalar walues of summary w3 or
g does not depend on summands ordering, Besides, due to (111A), the complete low of
summation for two or more modal transformations of bases (as here geometric motions) or
immediately for segments or velocities summation must include the indoced orthospherical
rotation rot Bz And namely the tensor trigonometric approach give us such complete low.
We'll consider the mentioned immediate summation of sepments to the end of Ch. 10A.

The scalar valoe of sine is evaluated from (122411 and 1) exactly and simply, incloding
two commut ative variants, as the mirror Pythagorean swms provide that qs 3 yag:
cos® i3 = cos” Y12 -cos® #yzz —2 cos £-008 i1z 008 Fy2s -sindyiz -si:lh*33+mszs~sinz Y12 -sin” iz =
cosh®y;3 = cosh® 4,5-cosh® y23+2 cos £-cosh yy5-cosh 23-sinh y;2 sinh y23+cos® e-sinh® 4, 5-sinh® 23 =
sin” #y1a = 1 — cos” iy1a = sinh” 113 = cosh®yia — 1 = sinh® yia = (via/c)’ =
= sinh® 12+ sinh® 723+ (14 cos® £) -sinh® 12 -sinh® 7y23 + 2 cos £- cosh 112 -sinh 112 -cosh 23 -sinh 23 =
= (coshyag - sinhyy3 + cose - cosh g - sinhyas)? + (sine - sinhyey)? =
= (cosh ;3 - sinh Y23 + cose - cosh g3 - sinhy2)% + (sine - sinhy,3)* = sinh® ;5. {1244)

The scalar value of tangent is evaluated triponomet rically with the combine nse of (1224)
and (124A) also commutatively, as the mirror Pythagorean sums provide that 412 £ e

tanh® 7,3 = (v13/c)* = {1254)

_ | tanhviz + cose - tanhyaa ? sine - sech iz - tanhyas ? .
|1+ cose - tanh g - tanh gy 1+ cose - tanhyyg - tanhyag |

_ [ tanh 21 + cose - tanhyiz ]3 [ sine -sech a3 - tanh iz ]3
T |1+ cose - tanh i3 - tanh 2 1+ cose - tanh q3 - tanh y2a
Middle in {124A) and first in (125A) variants are most preferred in following applications.
From (125A), with tanhy = v/e and after it reducing, the Poincaré—Finstein relativistic
Law of two non-collinear velocities summation follows |63, 67; 76, p. 34]. Below it is given in
the clear tangent form, but without matrix with angle of orthospherical shift (see further):

-,,.-'rtal:ﬂ'l3 ~12 + tanh®gq + 2 cose - tanhyq3 - tanhyag — =sin® = - tanh® yy3 - tanh® yag

tanh =
a 1+ cose - tanh 3 - tanh g

(1264)
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Sealar reverse secant commutative variant of two non-collinesr segments summation is expressed from
[122A) in terms of relabivisfic facfors |76, p. 35), which we give here and below in pure trigonometric form:

by - sechyog
sechyyg = /1 — tanhZyy = ~ : 1274
s T3 1+ cose - tanh ~yq7 - tanh ~ygq ( )

Let's pay attention to the fact that all expressions above for two-steps summing motions or velocities
with paired trigonometric functions were gotten by us through multiplication of tensors of 1-st and 2-nd
mations in [1LLA}, and the hyperbolic part with these functions was revealed by polar decompaosition of this
product. Its residue is the induced here especial spherical shift, which we'll represented later.

Ifeose = 1. formulae (122A), (1244, (125A) give the additive rules (69A)-(72A). Generally, in (1244
and [125A), we see two (sine and tangent ] Big Pythagerean Theorems, they will be interpreted later on the
space-like hyperbolaid L with the Lobachevsky Haolyai geometry. Hut ifeoss = 0. then for two conventionally
arthogonal hyperbalic segments we get two (sine and cosing] Small Pythagerean Theorems:

cosh g = coshyyg - coshyag & sech 3 = sech g - sech ygq. (1284 -1T)
sinh®v13 = (coshyza - sinhv12)? + sinh® y2a = (cosh 112 - sinh v23)? + sinh® y12. (1294 — 1)
tanh? 713 = (sech ~yaa - t.!i.n]:t’]ﬂ[z]2 + tanh? ra = (sech yaz - t.eu'-l:t*jr};s]2 + t.emhgfnz. (1304 —I)

In 30 Euclidean space. not mare than theee vectors can be arthogonal. Perform sequentially two operations
af thres conventionslly orthogonal segments summing, we obtain three-steps scalar commutative foromlas:

cosh 74 = coshyyg - cosh g - coshyay & sechygg =sech g - sech a3 -sech ygq. (1284 —IT)

sinh?® T4 = ain]\zfnz + sinh? 23 + sinh?® TId+
+=inh® T2 - sinhgfma + sinh?® F12 - Eiﬂhg’]"a.l + ainhzfma . Einhz’]"a.l + sinh? F12 - sinh® 23 - sinh® Ya4 =
= (eosh a4 - coshyza -siJ:LI:L*]nfm:I2 + (cosh yaa -ail:Ll'l’]-:ga}2 +si.11|131fa.| =
= (coshyyg - cosh yag - ail:Ll'l’]ﬂ;;.g]'l2 + (coshyyg - sin]:t’j,ﬂg,;]3 + sinh? yyq. (1294 — IT)

tanh? 14 = tanh? vy3 + tanh®yoq + tanh® yaq—

—[:‘t.&l'lhz’]"ig - tanh? g5 + tanh?® ;3 - tanh? g4 + tanh® oy - tan]'lzm}l + tanh® yyg - tanh® vaq - tanh? yg4 =
= (sech a4 - sech yza -t.!i.l:l.]:t*]ﬂ[z]2 + (sech yas -ta.nh’]-'ga}z + tanh® ya4 (1304 — IT)
These formulas for functions of the summary angle in {'F"“"’i} may be always presented in the quadric form
as a sum of e quadrates by n! identical variants. (We give only one last example in (L29A) and in (130A)
in the direct arder of the motions from six variants.] I in these summation formulas st lesst one of the
particular angles is infinite (74; = oo, tanh; = 1 or v = ¢}, then the final angle is infinite too. This result

corresponds to the Einstein's Velocity Postulate (15A), but only as the consequence of STH in {'Pa"'l}.
As peneralization of multiplicative cosine variants (128A) for a lot of the conventionally orthogonal
hyperbalic segments gy in the n-dimensional Lobachevsky Holyai space or on the n-dimensional Minkowski
hyperbaloid 11 in {'F"“"'i}: this simplest multiplicatively commutative scalar cosine formula is realized in the

base B = {I} & follows:

t t
coshy = Hmah’]r{m, ¥ = MR = arcosh (H msh’]r{kj) i Eqy = w2 (1314 -1)
k=1 k=1

Sealar summary oy doess not depend on ordering of conventionally orthogonal partial angles, with the
reelativistic law of ¢ < n orthogonal velocities summation. I all these ¢ segments are infinitesimal, then
the Infinilesimal polysteps Fythagorean Theorem holds, even for non-conventionally orthogonal infinitesimal
hyperbalic segments on the hyperboloid 10

2 =T{§kl (Teey = Agg/R—= 0), (i = £/2 for n space axes 200),k=1,2, ., n. (1314 — IT)

Let in (L3LA-1] differential angles dy and dygg) instead each angle itsell. Take into account decompaosition
coshy — 14 *]vzl.lr2+---. Healize it as substitution in (131A). Now, let us use the unusual representation
coshdy = 1+ {d’ﬂzjﬂ for differentials of the 1-st order. Then, we get the following commutative formulae
for independent orthogonal hyperbolic differential (k < n) and proportional inner accelerations (k< 3)

dy = dyi + ..+ dyi = g=cldy/dr) = 1|||'9¥ + o Egh; (mij =+£/2), k=12, ..n (1314 - IIT)
with the non-relafivisiic law of inner accelerations Gy Summat ion an the hyperboloid 1 of accelerations
[see it also in the beginning of Ch, 9A), These two Pythagorean theorems in STH for such proportional
angular 1-st differentials and inner accelerations (all applied in E_!M at its zero point M} are walid also from

sine quadrics [ 1249A-1 and 1}, transforming them into quadrics for dyg and inner accelerations Dk
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Let us turn to the Miokowski byperboloids 11 and - 2ee initially aboot them o Ch, 12 with
their projections for visualization ooto common pseadoplane at Figure 4. They are main geometric
ohjects with radivs-parameter B (but of radii iR and £R) in the psendo-Euclidean space {P?) by
Minkowski or as his space-time (Ch. 12). For them, radivs-parameter B is also their coefficient of
similarity to the frigonometric yperboloids 1 and Tar B = 1, because both by perboloids are perfect
curvilinear 30 hypersurfoces in (PP (or 2D in (P*Y)) with the admissible polysteps motions on
them from the continuous Lorentz group, equivalent to the group of rotations in enveloping {PAH,

MNow we discuss their geometric peculiarities and metric forms gotten in vector preseotations
by descriptive method wzed us for catenoids and tractricoids in previows two Chapters, as hoth
hyperboloids are conoected also by visual rotation at angle IT/2 in projections onto the pseadoplane
lo the STH with trigonometric byperboloids, due to the Poincard brilliant idea |63], we may use his
complex 2pace-time {Qa"'i:l,, with Buclidean metric tensor {T}, imaginary tivee-arrow and angles iy
in tensor roth iTY™ = Fiy,ea) (100A). In metric forms® signs, we trust to ones in (@71},

The hyperboloid 11 of two coupled sheets having with the metric tensor {+1} of (@*)a two
antipodal Lobachevsky Bolyal geometries with radins R (Ch. 12) is seeming as syremeiric cups
see else in (1484 ). lts time-like principal psendonormal, space-like tangent and sine binormal are:

B(Ir) =TIy = smﬂ;:‘l,r:n ] =—[pnla =i =i ign=+inle=pm =0 bun= [ EE’ ] .
From Pole point Crr on 11 in (@™, at Figure 4. we have space-like geodesic meridians He = Ry;
with dHr = Rdy; (under doe = 0), radii of curvature iR and of revolution Bna = r = iRsiniy;.
The 1-st angular metric form of 11 with the Buclidean Absolute Pythagorean theoremn reduces mised
maotion with doy oo Il as a perfect surface to hyperboloidal angular arc along hypotenuse Rdyg:

:{”J f;ﬁf}iﬂeﬂ;:’f"mﬁl B } [here From its top Pale  see in detail in (2254 2254), Ch. 104]
(Irn = = : :
dxgpry = (T -ea) = iR disiniy; - es) = iR - (cosiy; divy - ea +sindy; dog - ey, } -
:Eyt”-:. =diet) = iR dcuaif]rj = R-S:-Ini’]"j Eh’j.
[dhrn]? = (iR div+[Rna(iv;)| dat = (iR?) div] +(iR?) sin? iyj dof = R2dy] = ||dxg |12+ ldy 1% =
[dA\rny/ FI? = dvy = (siniyj dby; )i +l(cos ivj dg ) +(isin iy dot)*|x = cos® iyj dy] +sin® iy (dv] —dad) =
2

—, 2 L
dv} = [i divp]® = cosh® p dp”® — sinh® v dyp” = dy] + sinh” v; daf = ':‘h’"}p + (dfrp) = 0. (1324)
E

Hyperbolic space-like meridian arc Rdy; along tangent igpy with mutual ;5 is accompanied by
orthogonal arc Rsinhqy; doc- e at binormal by, cavsed by our motion tensoe rot il = Fiyg,eq).
At arbitrary point M of 11, instead infinitesimal angles gy as in (131A- 1), we can by (131A-1) with
exactoess up to 2-nd order introduce nindependent space-like differentials dyggy as Buclidean ortho-
projections of the total differential dy applied io Enr at its wero point M. All they are situated on
the tangent n-dimensional Buclidean hyperspoce Efy with slope in external cavity of Botropic cone.

I STH. Il i= the hyperboloid of vwlocities at B = ¢ and their acoelerations g at K = gfcz
ltg psendonormal ie- porpy is f-velocily by Poincaré [63. 64] of absolute matter motion in the 40
space-time (@1, lts tangent and sine projections into (E¥ are velocities v and v* (Ch. 5A).

The hyperboloid 1 of one sheet with the oD by perholic-elliptical non-Euclidean geometry of
radivg FR (Ch, 12) is seeming as bowrgless — see olse o (146A). 1t s gotten by differentiating 11
under @z = const or by rotationg I at 172 in their projections on a pseadoplane as in Chs A, GA
for progenitoes. Its time-like tangent, space-like principal pseadonormal and cosine binormal are:

B =Ty = mj;—?;,;n ] =+lpunle =ign =p. in=-lignle =pun =i, by = [ E,f ] .

O itz upper balf in the basze Ene at M. in result of its cutting by the rotated around OM centered
peeudoplane in the angular interval of viswel declination rom |[T/2)] along of till zero parallel to {£%),
We have in these cuts of I time-like hyperbola and hyperboloidel geodesics in |w/2] = @ > [7/4].
horolines at @, = |7/4|. space-like circular and ellipsoidel ectrermels in |7/4] > @, = 0 This
by perboloid ©is alzo a hyperboloid of 2upervelocities at Brg = eand their acoelerations § at B = ngj
in the so-called Looking Glass of Theory of Relativity - see in Che T0AL It iz caused by the fact, that
the mathematical roles of &velocities and 4-accelerations on I and | are contrary, becanse their
preudonormals and tangents are connected by one act of differentiation in diy;. as we see above,
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From Equator point Cr oo 1in (@™ at Figure 4 (at q0 =0, a0 = a). under @ = |7/2]. we
have one tiree-like pure hyperbolic geodesic meridian Hyg = —Riy; with di g = —Rdivy;. radii of
curvature —R and of revolution Any = v = +Reoshéy. The 1-st angular metric form of 1 with the
peeudo- Buclidenn Absolute Pythagorean theorere redoces mixed motion with dos oo | as 4 perfect
surface to angular ones (hyperboloidal or boroline or ellipsoidal arc) along by potenose Rdiyg:

X[y} = T([y - B =+R-mﬂi"}’j s By,

wery = et = —R- sinivj. } [here from its Equator  see in detail in (2354 2584, Ch. 104]

dery = d(Z(r) - Ba) = + R d{cosiyj - a) = + R - (—siniy; divj - 8a + cosiy; daz -eu), =
dyipy = d(et) = —R dsiniyj = —R - cosiyj divg.
[dAn]? = (—R)*div] + [Rna(ig)| de’ = RPdiv] + R cos® iyj dog = Rdivg = |l ||° + |ldynll* =
[d3 7/ RI? = —dy] = (cosivy; divy)F+(siniv; divj)?+(cos ivj dag)?|x = sin® iy (—dvi)+eos® iyj (—dv] +dad) =
2
B 2 L
—dvy = —cosh® g dvg” +sinh® g dyg” = —dv; + cosh® 7 dog = — {d%q]lp + (&n] <0, (1334 — H)
E

P
. — 2 i
+dyj = —sinh® vg dyg” + cosh® g dyg” = —dv] + cosh® ; daj =—1‘ET'!:]'p+ (‘h"‘)g >0. (1334-5)

The hyperbolic time-like meridian are B diyy along tangent ign with primary 7y is accompanied by
the Euclidean are Reoshqyy doc- ey at binoemal by, cansed by motion tensor rot i0; = Fliyj, ea).

Thus, (133A-H) is integrated in hyperboloidal curves, (133A-5) is integrated io dlipsoidel curoes,
That is. if [d}.tnfﬂ]z < 0. summary digpy /R = the hyperboloidal geodesic time-like motion on 1
if [ﬂ{;}fﬂ]g = 0 summary dipy /R is the ellipsoidal extremal space-libe motion on L But at
dhin /R =0 we have the straight geodesic gorolines in the Botropic cone dividing from two sides
its interonal and exteroal cavities. All hyperbolic and by perboloidal geodesics fill the internal cone, all
circular and ellipzoidal extremals fill the external cone. Lo any point M of L chese two types of curves
are intersected. All these three curves oo L are relating to its byperholic-elliptical non-Euclidean
geometry of radii FR as on such a perfect by persurface. What s more, io any point of L there are
only one pure hyperbolic geodesic and (p-1) pure circular extremals, similar to the geodesic Minding
tractrixz and circular extremal: on the tractricoid | from Ch, 6A. It i= the la=e leads to cvliondrical
topology of the by perboloid 1, limiting the freedom of figures motions on it by its space-like circular
extremals of the length 2r R, Thus, combination of these straight gorolines and circular extremals
wis realized by the great engineer Viadimir Shukboy in 191% in the Moscow's Shukhoy radio tower
and further in other his objects with new elegant and economical one sheet hy perboloid architecture.

We cane choose any veriand from two (1004 1) and (T09A-11) s separie one in own I[QE"'i}.-_-.’

From final real-valued hyperbolic presentations of metric forms (132A) and (133A) on Minkowski
byperboloids 11 and 1 by their translation into real-valoed {'Pa"'l}. we can =2ee that it was possible to
use immediately the enveloping Minkowski pseudo-Eudidean binary space {'P3+l} with its metric
reflector tensor {2£I} (17A-1), i e, conserving the classical real-valued Euclidean 3D subspace (£%).
Hence, such I['Pa"'l} i# also a common enveloping bioary space for both Minkowski hyperboloids.
We revealed this result on the bazi of Poincard ideas that the time arcow 3 a2 g frame axi= EI
and all hyperbolic angles are imaginary by nature. Einstein later presented {'Pa"'i} to the oxact
opposite — with contrary metric tensor {FI} (1TA-I1) and anti-Euclidean subspace (187}, We'll see
similar consistence and non-consistence in choosing metric tensor in our tensor trigonometric theory
of arbitrary world lines together in {(@* ") and (P*™) in last Ch. 10A with its concomitant
byperboloids 11 and [ in the same space-time.

Let evaluate with tensor trigonometry the directional cosines of final rotation rothl'a = V5 iu
{114A). and those of the vectors sinbry;. tanhys. and vig in the Cartesian subbase Ei® taking
advantage of their equality foe matrices roth Uyg and roth (205). (We use the arithmetic, as also
trigonometric here, square root /S, because in it the angle Tia is bisected, see this in sect. 6.31)
Compute the 3 remained noo-diagonal (4, k)-th elements of the 4-th row of the matrix § = {si}
Thus we need to multiply the 4th row of B = {bij} and the kth column of roth Tz, k=1,2,3:

Sk = 84 = sinh({2yy3) - cos oy, = 2eosh 1y - sinhyyy - cos oy =
= 2 coshyyg - [(sinh vz - coshyag + cos £ - sinh yag - coshyyz) - cos oy, + sinhyag - (cosfy — cose - cos o).
This allows us to infer all vectoriel trigonometric formuolae for two-steps motions in the hyperbolic
noo- Euclidean geometry or two-steps hyperbolic rotations (10A) in {'Pa"'l}. The vectorial formulae
with directional cosines also propagate into by perbolic motions summation on the by perboloid 1L
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They depend. but ooly as vectors and not as scalaes (1), on ordering of two summands 12 and yaa.
So, vector sines in contrary variants of ordering two motions, expressed in Cartesinn subbase, are:

»

(1) sinbyia =sinhya- e, =viafe= (via/c) e =
= (coshyag - sinh Y12 + cos £ - cosh 7y - sinhya) - @, +sine - sinhyg; - @, =
= [cosh a3 - sinhyyz + cose - (coshyyz — 1) - sinhyaa| - @, + sinhyz; - @;

£ £

. £ - - -
(2) sinbrysa = sinhyia - B = viafe = (viafc) - as = b (135A4)
= (coshys - sinh Y23 + cos £ - coshyzg - sinhyy) - @5 + sine - sinh 5 - e, =
= [mﬂ_.h"ru - sinhyz3 + cose - (coshye — 1) -sinhyg] - € +si.n]1"r'13 -
(3) sinhqyyg - cosoy, = (coshyeg - sinh 2 + cose - coshygg - sinh ygg) - cos o+
+ sinhyaa - (cos Bk — cose -cosox), k=1,2,3; e; = {cosaw} (for direct order). )

From here, under conditions qqs = v and o3 = dvy, we obtain the same metric form (1324)
of the Minkowski hyperbolid 11 but in its vector form — see more in (235A-238A4), Ch. 10A.
For the next | it is useful to express the vector e, of orthogonal increment of motion:

& 7

cos [, — cose - cos 8 — COSE - 8y T

e, = - = _ = {136A4)
b { sin g }k=1_3_a sins |I'HegEL-E.g"

The vector e, (and e, for inversely ordered summary motions at ey £ eg — see further)
is used in biorthoponal decompositions of principal motion increment into tangential and
normal parts, for physical velocities (see at Figure 4A) inner accelerations, curvatures, ete..

They are executed through biorthogonal represent ation of the 2-nd vector in the sum:

€3 = cOSE-8, +SINE- 8, €,-8,=0, €,.eg=snc (£ [0;7]). (1374).
Our approach is seen descriptively in the tanpent presentations at Figure 44 wvar. 1 and 2.

Thus, from vectorial formuolae (135A) and scalar formula (122A) similar vector relations for
tangents in ordering s, ye3 (and viee versa for qog, g1 — see in (135A4)) are inferred as:

sinh g
tanhyia = tanhy13 - 8 = via/e = (ma/fe) -8e = ———— = 1384
o= (nafe) - ag = op 18 (1384)

tanh 12 4+ cose - tanhyaa sing - sech 12 - tanh yza

= l-I-EDEEtaII]'I"]"iz-taﬂ]'Im-EE‘ l+mastanh*r1g-tan]1m-
_ tanhy1z + cose - (1 —sech y12) - tanhyzs P sech yi17 - tanh yaa )
1 4 coses tanh 12 - tanh~y2a 1 4+ cos s tanh 12 - tanh 23
Sine and tangent formulae, insquared and vectorial variants (124A), (1304 ) and (125A), (1384,
have in E"'fa} such interpretation. The second segment ye3 on a hyperboloid 1 iz decomposed into
a pair of segments such that their projections into (E¥) are directed along ea and e, We get

= L
these big and small hyperbolic right triangles on a hyperboloid 11 pia = (yiz+ T2a) B T2z and
= 4
yza =7Vz23 B Taa. — with such spherically orthogonal sums and corresponding to them sine or tangent
right trianngles in (£33 (Segruents 5 are §-direensional, their space projections are 3-dimensional )
Let us perform byperbolic sine projecting gz and 7y (in its spherically orthogonal decomposition)
into (E3Y parallel to A The result is two orthogonalized projections of yza and i3 nto (£3)00;

= 1 = L
sinh <yzz =sinh y2a+ sinh 23 — sinh7yia = (sinh 12+ sinh yza) + sinh y2s.

We have in B in squared variant the Big Pythagorean T heorem corresponding to (124A), and
the Small Pythagorean Theorem for second segment corresponding to orthogonal case (12047

sinh® y1a = sinh®(12+ yz3) + sinh® 433 , sinh®yz3 = sinh® y23 +sinh® 732 .

In these formulae, sinh 13 = cose-sinhyia . sinh "‘r'Jz_a =sinh '}'11-3 = sin£-sinh y1a. Their cosines, are,
due to (122A). the scalar projections into _az parallel to {Es:l. The analogical proportional relations
act in tangeot variaot, accordiog to (120A) and (138A) — see it below aod further at Figure 4.
Therefore, we can strictly formulate both Pythagorean theorems.
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% % %

The Big Pythagorean Theorem. Sume of oo segrecrids or meotions is presended in borthogonael
Jorsn, comrnutetive in Bocideas geometry and rose-comamtetive in all non- Buclidean geometrics.
It acts in the quasi- and pseado-Eaclidean spaces with index g = 1 how in sioe vectorial decompo-
sitions (130A) as result of summing two rotations, and also oo the perfect by persurfaces in them,
including hyperspheroid and byperboloid 11 as a result of summing two motions from the start
point in E'E"} with correction of the 2-nd segment in E_'gnl. i. e, in their pon-Euclidean geometries.

Tangent formuolae (120A) and (138A) are interpreted by aoalogous way, but with the wse of
tangent cross projecting. The angle 2z & decomposed as before and theo all these parallel and
normal components are subjected to cross projecting (see in Cho 4A) into (EMY parallel to i)
It should be taken ioto account by correction with additional coeficient sechyiz (ooly by formal
analogy with Lorentzian contraction).  Their fengent surpredion, with these analogous Big and
Small Pythagorean Theorems (12040 and (138A), are identical to fangend rmodel at Figure 44 as in
the Klein homogeneous coordinates. Big and Small theorems are relative and act in Ef™ and ES™.

Furthermore, this inportant property of the summations into sinh 3. tanh 13 unites to
a certain extent the Eoclidean geometry with noop-Eoclidean hyperbolic and sphericad geometries!
Distinction is the following. In Eucidean geometry the vectors a1z = @12 -@o and Az = asa -eg are
summarized commutatively, Lo o their divect and ioverse orders with che 2ame resalt @13 = a13-8..
Two variants of the biorthogonal non- Euclidean summation (direct and inverse) are noncommuatative
fromm the different sigon of the angle of orthespherical rotation (Fha) alter the summing process,

The Big Pythagorean Theorem is valid for two variants of orthoprojections. In both the
cases, modules of hypotenuses are equal, but the summary vectors ag3 are distinet by the
orthospherical rotation as in (12045, Thus, formulae (124A4) (135A) and (125A), (138A),
can be presented in two biort hogonal forms with decompositions either of 12 with respect
to e or of a3 with respect to eg.

Next summand non-collinear to previows is in other Eoclidean subspace. Namely this
theorem, in particular, allowed Poincaré as in three projections and Finstein as eotirely
to infer the relativistic Law of summing two non-collinear velocities in vector and scalar
forms under conditions {cosay = 1,cosay = cosag = 0} = coss = cos F). Thanks to this
geometric theorem, orthoprojections of velocities vy and va along the axes o), s, T3 were
summarized as if Euclidean orthogonal each others in the final physical formula |63, |67].

Further in vector formula (138A), put tanh-s - cosay = +v/e = 107, cosa; = £1.
Then coss = teos Fy, see (119A), and tanh~py = ¢fe = 1, that is why tanh-ys = 1 too.
Here v a2 30 ki /sec is the orbital velocity of the Earth moving around the Sun. Hence,

[tanh 12 + cos 81 - (1 — sech 712)] - € + sech 112 - €5

tanh =8y = B
13 7 1+ cos 5y - tanh 12
1 :l:ta.nh’}'m + GGS-JB:[ cosay
_ ] sech 12 - cos fa = | cosoa |, (tanhvyg =1),
1 :l:DCE,Bl -tE.]lh"')"]_ﬂ sech Y13 .m@lﬂ:; COE T3

where S8y, Ba, Bz and oy, 09,05 are the true and seemed anples, under which the Star is
observed. From this, the complete list of relativistic formulae for aberration follows:

COS Fa sech yp2 - cos Ga COS Oy sech vy - cos G
tan B!, — - x o - i Ba_
cosgy  +tanh s + cos G cosgy  *tanhyys + cos 5
B :m{:hﬂ*}'m — sin? By - tanh” Y12 gt

cos % = (ef) - &5 =

= — § + .
1— cos? -ta.n]:tz"ru . Ha 5 (a5 how 12 = ya3)

If the Star is observed in the simplest variant under 8 = @2, then for masximal 8™:

cos 8™ = sech®yya — tanh® 712 = cos2p(712), sind™ = 2tanh 713 - sechyia = sin 2p(7y1a).
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If B3 = m/2 then cosfz = sinf. o this special case, we obtain trigonomeivic veriend of
Einstein's formula for the orthogooally observed aberration |33, p. 36-39):

sin B - sech y1z

tan flg = ——————— 1=
Bia cos A1 + tanhyiz
sin B, — sin #1 - sech 12 Bly = cos 1 £ tanh 2
2= 1:|:ms,31~ta.nh"r'13’ 1= lztmsﬁl-t.a.nh"rm ’

For the orthogonally observed aberration, we bave the simplest Eaosteinden verient at
G’tzﬂigzﬂiz‘rf?—ﬂ'zi cosgz = sin gy = sin 3 o3 = fa =m/f2

Then either 8] < F1 (if the sign + is chosen), or B8] > By (if the sign — is chosen); and the angles
By and A are permuted i the signs + and F are permoted. Al these formulae immediately follow
from indicated above general formula for tanhya = eq.

For ). Bradley formula (1727), A. Einstein introduced relativistic time-correcting factor
sech e (here it s in secant form (127A)) and uwsed Lorentzian transformation instead of
Galilean ones [67]. This small correction makes the formula of aberration identical in two
inertial frames of reference associated either with the Earth, or with the Star: ey and eg
are permuoted i sipns + and F are permuted. The maximal angular radivs of aberration is
achieved if By = 7/2, and it is By = 8™/2 = 10~4 rad. Note, that the angle of orthospherical
rotation 83 will be caleulated below. Some Soviet academic anthors did not distingnish in
aberration the angles 8% for 413 + o3 and &3 for 112 + 123, 123 + 112 7! See for 833 further.

E I

According to (135A) and (136A), the vectors e; and e are linear combinations of e,
and eg. Hence all the four unit vectors are in the same Enclidean plane (2} = (eq,ep).
Similar arguments for inverse ordering of motions give similar results, but the first directed
vector is eg and the second one is eg. The new vector of orthogonal inerement (for the
inverse order of the full motion) is expressed similar (136A), (13TA) by permutation:

. (1394)

sln &

o COS c¥ — COS £ - cos [T €y —COSE - €3
L = - =
v sin £

€y = cosE-€g +sine- ey, es e, =0, el -e. =sing, e, e, = —cose.  (1404)
o £ . £ £ ) . =(3)
The vectors tanh 4y, sinh 4ya, and vig are directed in the subbase EJ™ along e, and
[

their modules do not chanpe. The vectors €5, .. e, and e, are linear combinations of ey
o e

and eg, henve they lie in the same plane (£2) = (eq,eg). The rotations (113A4) and (1124)
act in the common triponometric plane of the matrix rot B4z, hence this plane is identical
to {(£2) too. The Euclidean plane includes formally all these six introduced and considered
unity vectors of dingonal cosines: ey, eg, e, e, e, e.

(In general cases, for internal and external multiplications of unity vectors there holds:
S T
e .e, = a eq-gh = Bin -0 -0 = Bia -89 -a - .l
18, =costa, €1 -8 =cCosba-81- -6 =s0C Fia-81 -8 -6z - 6.

They may be also useful. The last formuolae are the special cases of (196) in Ch. 5.

The matrix rot G5 can be caleulated not only from muoltiplicative formuola (115A). In
(P, it may be directly caleulated in canonical form (497) due to (499). Indeed, the
normal unity axis en of this orthospherical rotation is found in terms of vector product for
unity vectors of first 12 (@) and second ez (@g) motions in (135A), with (13TA) as:

ﬁ;[ﬁ‘}=aé®eg=—aiuﬂ-a_§,whvrva_h!=eu®&; }#ﬁ’{f?}=— |:5i]13

—3
ﬁ(z}:an Heg=+sinc-eaq ® ey = +sine - oy gIin £ .rN{E]‘:I (1414)
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The orthospherical rotation or shift F8 is realized in the base Eip = roth T - E, (see
(111A). In general, in (P31}, it has a current normal axis 8% in (£3)%) and acts in the
plane (2R ynder hyperbolic inclination 413 to {(E2)Y) = (e,, e }(1} and with signs due
to (113A), (119A). These values of Ta(#) and cosfy3 give us the rm-m'lx rot B3 in canonical
form (497) if n = 3. Due to (499), (113A), (120A), we get additional variants for shifting 8y5:

DCE'HIE = E-'rﬂ, B Eé = tr rof 8!2 —-1= {ﬁ[rﬂt 9133:3 - 1]!27 | 5\]’]1913' = |ﬁ?{ela}l' {142‘4]

Speaking strictly, angular shift @ must supplement the hyperbaolic laws of summing motions
(velocities) (135A)-(138A). So, this shift is the canse of non-commutativity of these laws.

Due to the sign’s Rule (see in (113A) from sect. 12.2) in hyperbolic geometry and STH,

|sgn s = —sgn = !F if £ =0, then #13 < 0, and if £ < 0, then #13 > 0, L e, the leg 13
is shifted orthospherically so to the anple Agsg = 7 — £ always that to decrease the sum of
angles in the hyperbolic triangle (see more further).

The vectors e,,8,,8y as well as the vectors emeﬁ,ﬁr} form the right triple due to
o
(113A), this corresponds to connting scalar anples as counter-clockwise ones in the right

handed bases, and the oriented vector ey determines the right screw of rotations. The triple
e, e, Ta(#) is universal for analysis of polysteps motions.
o

. LL .. .
All the six vectors ey, €5, €y, €5, 8y, €y are formally inside an angle of magnitude
in the plane (£2) = (eq,e5). From (136A), (1394), taking into account [122A4), we obtain
their following trigonometric properties:

r ! r 0
€, €5 =€g- e, = cosE, eu-e,,=eﬂ~eﬁ=l],
E’ﬁ*ﬂp=E:1-Eﬁ=+5iﬂE=+Siﬂ{ﬂ'—E}, E;,.~EE§=—IJJEE=+GGSI:N—E].

The value of cos bz is computed with the use of (120A), and in addition vectorial variant
of (135A) and its reverse analog! With respect to the original base By we have

A+cose-B+coste.-C +cose. D
cosfyz — e e, = — m“;im = s, (1434)

A = (cosh y12 - cosh 123 — 1)(cosh 12 + cosh ya3) > 0,
B = sinh 713 - sinh a3 - (cosh 12 - cosh 123 + coshy12 + coshyag — 1) > 0,
C = sinh® 713 - cosh ya3 - (coshyas — 1) + sinh® a3 - 112 - (coshyp — 1) > 0,
D = sinh 12 - sinh a3 - (coshy12 — 1) - (coshyaz — 1) = 0.
If cose = +1, then A+ B 4+ C + D = sinh® 713 = sinh?(712 + y23) with 813 = 0.
If cose = —1, then A — B 4+ C — D = sinh® 113 = sinh?(y12 — y3) with 813 = 0.

Theoretically extremal relativistic shift #1353 = Fa/2 takes place i conventionally orthoponal
velocities are equal to the speed of light ¢! Moreover, function (143A) in cose has 3 extrema:
maximal value cosflis = 1 if coss = £1, minimal value cosfyg = A/ sin’ 713 if cose = 0.
The latter corresponds to conventionally orthogonal two-step motions with quadratic
sealar sine and tanpgent formuolae (1294 - 1) and (130A - 1), Below we consider in details the
sine variant. At first, transform scalar sine quadratic formula (1294 - 1) into the form:

sinh? 713 = (coshy12 - cosh493)% — 1 = (cosh 12 - cosh a3 + 1)(cosh 12 - cosh ya3 — 1).
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The absolute value of cosfyg s minimal iff |fy3] is maximal, this is equivalent to conven

tional orthogonality of e, and eg. For the sum of two hyperbolic motions, provided that
£=+mw/2 (sing = £1), from (143A) and (135A), (138A) we obtain:

sinh ;5 - sinh 4
cosh 2 -coshyag + 17

A cosh yyq + cosh ygq

= =0 = =smbg=—
sinh® 53  coshyia - coshyes +1 s

cosfyz =

So, if oz — 0, then f43 — 0. This is the reason for appearing induwced precession in time.

_ __cginh yyg-sinh ygs _ _ tanh ja-tanh yss,
tan 813 cosh 713 +cosh 2 serhyig+sechygs !
tanh 1z - € = tanh -3 - €4 + tanh 493 -sech 712 - €5, (coses =10)

tanh ;3 - €. = tanh 33 - €5 4 tanh y12 - sech o3 - €4,
o

The hyperbolic sine formula above was obtained by Arnold Sommerfeld in 1931 |95]
as result of summing two orthogonal velocities in STH as if on a hypothetic then sphere
of imaginary radivs with its anpular arpunment @ = iy, This gave namely pure scalar
trigonometric interpretation of coefficient 1/2 in the Thomas precession |93 under condition
that 74 — 0 (v; — 0) in this sine formula.

Three particular formulae above for the anple of orthospherical shift 8 in cosine, sine and
tangent variants supplement the pure hyperbolic formulae for summing two conventionally
orthogonal motions (velocities) in cosine (128A) sine (129A) and tangent (130A) variants
with maximal orthospherical shifting — for complet eness of the results of orthogonal motions
summation! In peneral, this anple is concomitant for the non-collinear two- and polysteps
principal motions in pseado-Euclidean, guasi-FEaclidean and pon-Euclidean geometries. 1t
has own real mesning, in that npomber, for applications in physics and quantum mechanics.

If one of the velocities s +e, for example, it is tanh g = +1. then cosfyz = sechyya,
sinfy3 = Ftanhvya, e; = ttanhys - €4 + sech s -eg, (les| =1} Eé = *es.

Sueh a case corresponds to the orthogonal variant of aberration with the psewdo- Buclidean
right triangle of aberration here clarity on the hyperboloid 11 of radins "ie" — see above.

First leg is the angle a9 generated due to motion of the Farth relatively to the as if
"immovable" Star. Second leg ez under the right angle £ (in its Eouclidean orthoprojection)
is penerated doue to motion of the light ray from the Star to the Earth. The hypotenose
is sum 3 directed along ey Vector ey inverses direction each half & vear, that is why
coscyy = 1 and cose = teos Py The angular Lambertian defect of this geodesic right
triangle 125 of aherration (see above) as #13 is determined now with the use of permutation
of these two legs by the formuola {1424 ):

L _ (1 —sech y19). sin”

fin =" .o, =
costLs 7 "F 1 + cos 3 - tanh vy

We finished consideration, with our tensor trigonometric approach, mainly of the finite
motions on the Minkowski hyperboloids 11 isometric to motions on the Lobachevsky—Bolyai
hyperbolic plane (Ch. 12) with identical to them finite rotations in the Minkowski space.
We'll continne this by direct way in tensor forms in Che 10A but (1) for both hyperbolids.

If to put s =7, Tag = dvy, then for their non-collinear summation, with exactness up
to first differentials, from the same formula (143A), we get 1-st differential of the angolar
shift df in scalar sine-tangent forms (sing = sin A) — see it further also in 3-vector forms:

sinh v dy (coshy —1) dy

mdﬂ=d€=—m£~m=—smE-T——mnE-tM{wf2} d"‘r‘.
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Cosine formula (143A) can be applicable for other important evaluations. As before, in
infinitesimal considerations we take advwantage of the useful formula for the cosine of first
angular differential (with exactness up to second power of the anpular differential).

coshdy =1+ (dv)?/2|and | cosdf = 1 — (d8)?/2|in hyperbolic and spherical forms.

In (135A(1)), with direct and inverse order, put in {€3): 112 = 3 and a3 = dyp as the
1-st 3-vector hyperbolic differential with eg also tangent to hyperboloid 11 With the use of
the sine formula above, we obtain the differential ort hospherical shift d#.i. e as in (141A),
but at sinf — df. Further, using (141A) with the Sign's Hule from sect. 12.2 (Part 1) as

|sgn dfl = —sgn E| (at n < 3) and hyperbolic triponometry, we add to scalar cosine produoct

(142A) the vectorial sine product in (£3) © (P31 = (£3 B 7 and reveal the induced
orthospherical shift df of ey, negative to £, but also around 3-rd space-like normal axis

én = €, ® &, complementary till (£%) (in that number, with two relativistic factors):

s _— sinhy - 8g EI]:I]'I"]"
ry(f) = —df - ey =E§®E€r =tanh (v/2) @dy = ﬁ@:ﬁ'-eﬂ =— dy - rN[:E}
inh tanh
=duE-%d‘r-ﬁ=aqu-H—Tlrh ay _tanhi -ging dy- EN _tanh d’jr EN (1444 —T)

Here the angle v or T is expressed in the original base Ey. In STR, it is the universal base
with relatively immovable Observer Ny in the space-time (P31); the differential dvy - eg is
expressed in the base Ep = roth T'- By, In df tangent variant, we see again the correcting
coefficient 12 of the normal Thomas precession |93) gotten before from experimental data.
For two hyperbolic ares in (144A) at point M| the third unity normal axis en exists only at
n = 3 as ortho complementary in (%) to the vectors €y and €. In own moving bases, they

haave the cosine hyperbolic slope. See following developments of {144A) in (171A)-{173A).
I

The especial case is non-conventionally orthogonal summation of motions when anpgles as

1-st differentials are infinitesimal. Let in (1444 ) as in (131A-11) infinitesimal valoes of angles.
On the hyperboloid 11 with Kg = —1/R? in (P21}, for the hyperbolic right triangle 123

on it with 3 angles Ap = 7 — g at its 3 tops, at s —+ 0,903 = 0 and 593 = 7/2, we obtain:

iz -¥23 @12 - 433
13 = 4/ Ma+Bs; —fa= 5 = amm —Kg - S123 = —d123 =+ 0.

Here, with angles v and Syog, we get infinitesimal formulae of the plane Eoclidean peometry.
This confirms the infinitesimally Euwelidean metric on the top Minkowskian hyperboloid 11
Forit, we may bond the shift and angular Lambert defect: 813 = 8193 = 2m— (g1 +5a+23) < 0.
On it in (P31 fram (144A) for triangle 123 formed by dyy and dysz with angles A and £
(sine = sin A), we infer differential formula for the vector-element of its area (see |21, p. 526]):

. d - (d dA (dA ds
_dByzE = sime. ’)‘12]2{ 123) 52 _ nel 12;}22 2) o _ 123—}__ch5123§

The Signs' Bule acts here in hyperbolic case: if £ > 0, then 843 < 0; if £ < 0, then 813 > 0
We get the interdependent differentials: dffyz and of the vector-area of the triangle Syag! Due
to Lambert hyperbolic result [36] or, in general, to the Ganss—Bonnet Theorem |21, p. 533],
the area of peodesic triangle 123 (on a perfect surface of negative constant Ganssian curvature
Kg = —1/R?) and the angular defect of the triangle déjaa = 27 — (51 + £2 + £3) are bonded
as dfyz = déjag = —dSiaa/R* = Kg dS1az < 0 (8 = 0,5 = 0). We get differential-int egral
ldentity of the orthospherical shift and the Lambert angular defect in peodesic hyperbolic
trianples on the hyperboloid 11 and on the Lobachevsky—Bolyai plane at Kg = const < O

ds s
%—Kc dSias = 613 = G193 = ——5 = K - Spoz. (1444 —IT)

df1z = ddjaz = — 72
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These formulae mean: the angle Sz of orthospherical shifting and Lambert's angular
defect §qag in a hyperbolic triangle are egual | The assertion is troe also for other figures as
convex polygons (formed from triangles). This is inferred through their decomposition into
triangles. (If such triangle is on a hyperspheroid in (@™}, the similar formula for ortho
spherical shifting # contains the sipn £ see generally in (173A) and further in Ch. 8A )
Note, that the orthospherical shifting is more general notion, than the sngular deviation for
geodesic two-dimensional fipures, and it acts also in tensor variants. Orthospherical tensor
angle of rotation B3, due to matrix formula (115A), is identical to tensor anpular defect
of a geodesic triangle (or other convex polygons) on the hyperboloid 11 Anpolar deviations
take place due to dependence of parallel displacement on surfaces with curvature on its way.

Conclusion. Orthospherical induced shifting © gives the clear mathematical explanation to

Lambertian angular defect of figures in hyperbolic geometry and Thomas precession in STH!
# Ok #

In Ch. 5A, through trigonometric relation (T9A) in the instantaneous Cartesian subbase ES
in the Euclidean sub-space {E2Y we introduced the inner 3-aceeleration g, directed along the
instantaneous axis ™) (An inner acceleration is always with zero time-projection in ESY) And
at collinear two-steps or integral motions, g = gq & collinear with velocity v, But at non-collinear
integral motions with the current velocity v, and the current inoer acceleration g = gg in the
instantaneous Cartesian =ub-base E'{a}. we can decompose this current inoer acceleration with the
hyperbolic dlfﬁ‘n‘llth«ll causing it into the parallel and ooemal parts by the Pytha ﬁun‘,«ln Theorem
using (137A) in EE of (E™ with respect to the direction of velocity eq in E1 as follows:

—_— 1
dys -8 = cose dyg -@a +8inE dyg - e = dyg -G+ dys - B =

. — 1
= gs =08 €5 = COSE-Jf -Ba +8INE-J5 -6y =05 ot 5 - € = (1454)

> @ = () + () o= @+ ()"

It is the Local Absolute Eudidean Pythegorean theorem foe spherically orthogonal decomposition
in the Cartesian subbase E& of the brutto differential dy - eg and the inner 3-acceleration gs - ea.
with respect to the directional vector eq of the hyperbolic angle of motion . The parallel part
accelerates motion along the curve, the normal part rotates the divection of motion with its corve.

¥ 2 %

Helativistic formulae of the Doppler effect for the cscillations frequency of light |76, p. 39].
from the hyperbolic tensor trigonometric point of view, have simple ioterpretation. It s oecessary
in the classical formulae to change spherical tangent tanpgr = v/e for hyperbolic one tanhy = v/fe
as was did with tangent relation for velocity in STH, and to introduce the relativistic secant factor
(127A) for the proper time either of moving source of a light or moving Observer of a light source.
In STH ooly a relative velocity © has importance! With the tangent-tangent analogy, we obtain:

e =A™ = ™ (1 — cosa - tanh ) = Y = 1 - sech oy /(1 — cosa - tanh ),

where #2 is the eecillations of light frequency from the source, 2 s frequency felt by Observer N1
a is the angle between a light ray and a velocity vector, sech 7y is the relativistic factor, Y and
T are the equivalent time iotervals in both these systems. There are four 2pecific varianes:

A, Longitudinel mecting effect: o =0, cosa = +1. i e. the source becomes nearer. Then the
"blue shift" of light frequency s observed.

B. Longitudiniel opposite offect o = m, cosa = -1, & e, the source becomes farer. Then the
"red shift” of light requency is observed.

C. Transversal offect: o = £w/2,cosa = 0. Then Observer Ny fixes the "red shift" too, but it
i less than in case B doue to Eipsteinian time dilation io the moviog source.

0. The Doppler offect is absend if cosa = (1 — sech )/ tanh({£7y) = tanh{3y) /2.

We get the extremal Doppler effects foe light and other radiation at tanhy = 1, cosa = 1.
And the Hubble Law can be expressed in the aocestral form through the relative change of the
photons Fegquency as —Apfi = tanhy = vfe = Hlfe = Ht — see more in Ch. 9A
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#E
Consider both triponometric hyperboloids with the unity radius-parameter H.
The hyperboloid 11 (see Figure 4) has B = +i. Radius may be 4 velocity © =c- 1.

Hepresent the 4 x 1radius-vector of the unity hyperboloid 11 as its principal pseudonormal
i=ryn = Ppun and the principal tangent iy to hyperboloid 1 and to a world line in By

sinh T2 - By

0 .
cosh 1 ] = roth I'ya - |: 1 ] =roth I'ja- iy, (1464)

i=run=pun =la= [

where ¢ = 0if Act > 0, roth T'ia = Fiya,eq) due to (363). lts time- like invariant is

i}, -T* i1k = sinh’yyg-sinh 1z —cosh? 4y = sinh® 41, -el e —cosh® 41 = —1. (1474 — 1)

iy - e = —sin'iy - sin iy — cos® iy = sin® iy - ee, — cos® iqyy = —1. (147A —IT)
Here for unity hyperboloid-11 as the Lambert’s sphere of the imajinary radins 4 with both
these pseudo-Euclidesan and anti-Euclidean sine-cosine identical imariants, we denote:
sinh ~yx is the 3 x Lvector projection of g into (E3H parallel to 3(1},
cosh g is the scalar projection of iy into g parallel to (€31 In addition,
tanh iy is the cross 3 x Lvector projection of i into (E3)Y parallel to Er?'[k:',
é{l} parallel to (£3)(),

Consider two-steps geodesic motions iy, lag = Ij3 of an element on hyperboloid 11 along
two hyperbolae in bases By and Ea, with its polar clear description {see before in (111A4)):

sech g is the cross scalar projection of i into

i1z i1
. sinh 71z -@a | _ . S |
frothl's ) 5, [ e ] = {roth s} - {roth T'a} [ ; ] - (148.4)
iy iy

= {roth T2~ (roth I'n) 5, -roth™! [iz} g - roth Tia- [ ” 1

D]:rﬂth[‘1grrﬂthl—'m~|:u]:

iaa iy iy iyg

_ _ | sinh y23-e5 | _ 0| _ 0| | sinh 1a-es
= {rathl"u-}El [ } Y23 ] = roth ['a-rot B43- |: 1 = rath I'a- 1 — Cﬂsh"‘r‘is
Four final matrices are in canonical form in Ey. This means clear solution of the task:
To find geodesic passed through points 2 and 5. We'll consider such two-steps summation on
hyperboloid 11 in general tensor-vector-scalar (tvs) presentation to the end of big Ch. 104,

The trajectory of hyperbolic peodesic motion ijs — iz is in the cut of the hyperboloid 11
by the eipen pseadoplane of matrix {roth T'ia - (roth Fgg]l_é . rath_ll"m-}_é including

1 2

these two points with the hyperbola. Intersection of this psendoplane with the projective
hyperplane is a straight line segment in ((E™)), it corresponds to this geodesic trajectory.
A hyperbolic triangle on a hyperboloid 11 with iR is realized as a cyele of 3 geodesic motions:

{roth I'1a} By =2, {roth T'az} F, M2 = U3, {roth I'a; } F M3 =1

By (148A), for a point element 1y, rotation G4z annihilates. The triangle cycle returns
a nonpeint ehject in the start, but the object is turned in the base Ey at angle 893 The point
of application of the nonpoint object moves as Wy — Wy — Wy — Wy along three by perbolic
geodesic lines. Summation of two-step non-collinear hyperbolic motions, according to polar
decomposition (111A) ) is represented as the motion along geodesic line g in direction e,
with the induced ort hospherical rotation rof Gz, but only for & nonpoint element .
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The hyperboloid 1 (see Figure 4) hos B = +1.

Bepresent the 4 x 1 radins-vector of the unity hyperboloid 1 and its principal psendonormal
P =Ty = Py also tangent iy to hyperboloid 11 and psendonormal to a world line in By

e . _ | cosh ma-eq | _ € | _
P=Ty =P =Piz= [ sinh 712 ] =roth ['ya [ 0 ] = roth I'ia - Pyja), (1494)
where 7 = 0if Act > 0, roth T'ia = Fya,eg). (Here Iyo and pys on U and 1 are conjupate
— see at Figure 4 for u and v under radins parameter B) 1ts space-like invariant is

P -I % p1x = cosh’yyx-cosh i —sinh® 7y, = cosh® vyl e, —sinh® vy = +1. (1504 — 1)
ar
Plk - Pik = COS'i1x - COS iy1p + sin” iyyp = cos” ik - €48, + sin” iy = +1. (1504 — IT)

Here for the hyperboloid-1 as the sphere of the real-valued radins £1, we denote:
cosh g is the 3 x 1vector projection of pye into (£ parallel to 3[131

sinh yyp is the scalar projection of pyg into 7w parallel to (E3 In addition,
coth ;. is the cross 3 x 1vector projection of prg into (%) parallel to EEU‘},
cosech g is the cross scalar projection of pyg into {8 parallel to (£3)%)

With regard to the hyperboloid 1 there is a dilemma with two possible variants of the
tensor hyperbolic anple for points on it with the constant module of radivs-vector p(v):

1) or, as its arpument leave the hyperbolic angle T' so that for both hyperboloids their
principal angles 4 are symmetric with respect to the isotropic cone (see as at Figure 4).

2) or, as its argument one choose the complementary angle T (see as at Figure 4). But
then the cosine-sine matrix of hyperbolic rotation must be replaced by the corresponding
cotangent-cosecant rotation matrix with the complementary principal angle .

Both these variants are valid, but we choose below the fiest variant with the principal
angle « for two-steps motions on the hyperboloid 1 Their matrices are bonded as follows:

roth T’ = roth T
coshy - €qe," + €se,’ | sinh7y- e, cothv -ese,’ +exes’ | vsch v-ey (1514)
sinh 7y - @], cozh «y csch v - ef coth v ’

For the hyperboloid 1, we begin two-steps transformations starting immediately from the
2ond stape, when matrices are already expressed in the basis By, as it was shown in (148A):

P23 Piir)
cosh oz - ex (=1
{'I'ﬂﬂl Plz}ﬁ-l " Si.'l'.lg"r‘gs = {'I'ﬂﬂ'l. P'I.Z}E"l - {'I'Dﬂ'l Pm}ﬁ‘] - |: 0 ] =
Pi=y Plis) P13
— g _ _ G; _ cosh "'r'-la" -G;.
=roth I'a - rot G1a - [ 0 ] = {roth T'1a}z, [ 0 ] = sinhyus® ] . {1524)

Here the directional cosine vector e of the second motion is orthospherically shifted, with
respect to the original vector eg. The two-steps hyperbolic motions on the unity hyper
boloid 1 are realized with topological constraints corresponding to the cotanpent hyperplane
model or more visually to the tanpent cylindrical model outside the Cayley oval (sect. 12.1).
They are possible iff hyperplane cotangent or cylindrical tanpent projections of these mo
tions may be connected by straight cotangents (coth -g) or tangent (tanh o) segments
without topological obstacles. We'll continue considerations of such relations in Ch. 104,
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As aoresult, the points of the unity hyperboloids 11 and | and in corresponding to them two
concomitant hy perbolic and hyperbolic-elliptical geometries (see above and in Ch. 12) haw
the additional cotanpent—cosecant negative and positive psendo-Boclidean invariants:

¥ If.i=r)y, - If .1 = cschy - csch y — coth?y = —1 = 2. (I

p'-I*.p=rjy- It -1y = coth’y - coth 4 —csch?y = +1 =12 (I)

Recall, that due to the formulae of psendo-Euclidean trigonometry and hyperbolic non
Euclidean geometry, we have the correspondences for the complementary hyperbolic angles:

sinh(T, T) = esch (T,T) < sinh(I, T) - sinh(Y,T) = I,

cosh(T', ) = coth (£T,T') < tanh(+T,T) = sech(T,T).

This determines strictly the peometric interdependence of these complement ary anples shown
at Figore 4 (Ch. 12), 1. e, cotangent and cosecant cross projections of the angle Tor T may
be interpret as the usual orthoprojections of the angles T or T

In both these cases, for the hyperboloids 11 and 1 in {(P™1), one may interpret clear
these hyperbolic angles through their trigonometric projections by tangent and cotangent
projective models either on the projective hyperplane or on the projective hypercylinder with
respect to the trigonometric n-ball equivalent peometrically to the Cayley n-oval absolute.

With any own reflector metric tensor of (PP hyperboloids 1 and 1 are conjugated:

i-IF.p=p I i=0 <« 1, -IF.rg =1y -IFrg,=0|.

I

Further, we describe in general form an algorithm for evaloating main characteristics
of summary polysteps rotation (motion) in (P™1) and (PP = (82 H EE} {see before in
sect. 113, 11.4 and (111A)) in the tensor, vector and scalar forms. The algorithm starts
with application of formula (485) for correct transformation of the initial unity base By
On the final step of the alporithm, the polar representation, sccording to (474)—{476) and
(111A)-{118A) is used. On these stapes, the homopeneons modal transformations are

.E't =roth I'ya - roth Taz - - - roth F(t—lj,t . E‘1 =T rE_‘h

£
T]_t = roth I‘]_t -Tot B]_t = rot Eh;, -roth Tt -

Fa Fa
Ty -Tl, = roth® Ty = roth My, T, - Ty = roth® Ty= roth 2 Ty,
Tﬂf B]_t = rath_ll"n . T]_t = rath (_Flt} 'T]_t.
The latter gives rot By as defect By of the Closed cyele of principal rotations! We use

P
ey and e, they are the directional vectors in structures (362), (363) for Dy and Ty

o
tr rot By — 2
e

P is the cosine form of orthospherical scalar shift 8 in

DCE’H]_-; = E':J- By =
o
canonical structure (497). This formula is valid in {P™), see (497) and (120A4).

The matrix roth 'y is evaluated at 1 = 3 in canonical forms (362) or generally -
in form (363) or in cell form (324). The matrix rot By is evaloated at n = 3 in canonical
form (497) or generally — in cell form (259). Lorentzian contraction is evaluated with the use
of the summary rotation angle Ty and the hyperbolic deformational matrix with canonical
structures (364), (365), in particular, for objects of Ch. 4A . However, tanh T'yy (the velocity)
and sech Ty (as the relativistic factor) may be computed divectly from sinh Iy and cosh Ty



CHAPTER TA. NON-COLLINEAR MOTIONS I[N STR AND HYPERBOLIC GEOMETRY 231

The canonical and polar forms of Lorentzian homogeneous transformation,
in that number, for arbitrary and summarized polysteps principal motions:

&
Ty =roth T'ya---roth F(;_lj,; =rothl -rot @ =10t 8 .1oth T = (1534).

_ [ Iaxa + (coshy — 1) - ese;, | sinhy - e, ] [ [rot G]axa ]

sinh+y - e | coshy
[ [rot ©laxa | O Iy.3 + (coshy — 1) - 9494 |sm.h-",r e, ]
1 o | 1| sinhy - e’ coshy -
[rot B)axa + (coshy — 1) - eqe’ | siuh"r -8
- sinh~y - e, | cosh =

[rot B]3.3 + (coshy — 1) - cos - e’ | sinh-y - e,
= _ - (Compare with symmetric tensor (T00A)).
sinh-y - &', | cosh

I U U U ! U ! !
ecby = 858,, 8.6, = es0, = [rot'Blaxa - eqey - [rot Baxa, ese, = cosf -eqe,. (154A4)

If sume roth I'y are collinear or if n = g = 1, then they are grouped. Formuola (153A) gives
also General Law of summing principal rotations (motions) in (P™), expressed in
hyperbolic form (363) or at n =3 in (362) in the original base By = {I}. Now, with (153A),
our readers may one time again be convineed in truety of all formulae for summing two-steps

rotations (motions) inferred by explicit muoltiplications in beginning of this Ch. TA.
The matrix § = roth I is emanated, for example, from the last and lowest elements £y

and tgy for general matrix T in (153A). They permit to express the matric 8§ in the base By
in canonical forms (362), (363) in (P™) and evaluate scalar and vector trigonometric
functions in the anple « with its directional vector e and the angle 8. The matrix rot © in
{(P*1 is computed in canonical form (497) with the use of (499) for sin#fyz with the sign
of @ and ey, Forn =3 and k-1, 2,3 we obtain, with final velocities v* and v, the following

coshy = taq,sinhy = v/eosh®y — 1 = v* /e, tanhy = v/e; tanh 1, = tee/taa;
008 Tk = tu,-"smh"r, cos Tk = hu,-"mnh"r, e; = {msr:n.} e, = {mscry.} {1554)
cosfi3 = ey, - e TN (f1a) = e @ ey = Fsintha- en {La;-t for n=3).

Scalar final results do not change under the mirror permutation of particular motions.
It leads merely to substitution in (153A): T =T with 8 — -8, e; — e

Theorem. In general, any polysteps noncollinear hyperbolic rotations roth Ty in (PP
or motions on hyperboloids are represented as hyperbolic one and single orthospherical shift.
Such interpretation of Law (153A) of summing hyperbolic motions in By = {I} is confirmed
with polar decomposition (111A) in the psendo-Enclidean space, where rot 8 is revealed, for
example, in the hyperbdlically shifted Eyp = roth 'y - By, In physical space-time (£3® EE},
it is confirmed experimentally by the Thomas precession of the electron spin — see further.

ln the sequel, in accordance with our trigonometric approach, we shall nse Cartesian sub
biase .E'iz} of the universal base Ey = {I} analogous to projective homogeneous coordinate s
in the Euclidean projective hyperspace ((£%)) (see in Ch. 12). Consider again the tangents
(velocities) summation in scalar and vectorial trigonometrie forms (138A) and (125A) inside
the trigonometric ball as analog of the Cayley oval absolute with radii B = 1 for tanpents and
R = ¢ for velocities. Hyperbolic tangent models of principal motions are preferred, becanse
they are limited by finite parameter 1 or B! This scale factor belongs to the finite tangent
flat model of a hyperboloid 11 and to the finite tanpent cylindrical model of a hyperboloid 1
Indeed, there holds: tanhy << 4 < sinhy. The hyperbolic cotangent models are infinite
as well a5 sine one. Besides, in the tangent-cotanpent models, the hyperbolic geodesics are
straight lines, which are coaxial each other — see at Figure 4.
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Consider in details the tanpent flat model of principal topologically unlimited motions on
a hyperboloid 11 (Figore 4A) . It is identical to the projective Klein’s model of the realvaloed
hyperbolic space, see in sect. 121 Though the anslogous tanpent model of & hyperboloid 1is
realized on the cylindrical model with taking into account topological constraints! We choose
the origin @ of this tangent subbase E'Ea} as the start point (1) of first tangent projection
[12], the origin O in the subbase is the following point (2) of second tangent projection [23],
where both the projections are summarized, and s0 on up to the last summand. There is
one to one correspondence between all these origins @ in this limited tanpent subbase E_"Pj

and all these points k inside the Cayley oval. (The coordinate velocity is v = - tanhyyy.)

Small Pythagorean Theorem :

|c|22'n|: + |42 30 T = 230

Big Pyvthagorean Theorem

Small Pythagerean Theorem -

T S 2 . }
w13 w2 30| = |11 3n] el 22 + 4230 = [l Inf?

Figure 4A. Summing tangent projections of hyperbolic motions in the tangent (velocity)
model due to the theorem on presentation of their sum in biorthoponal Pythaporean form.

Variant 1. Centered triangle in E'P):
[12] = tanh T2y [23] = tanh Yoz - k; - kﬂ . ki, [13] = tanh T35

— 1
[22'] = tanh 7a3, (2'3] = tanh 7oz, £* =w — Afsz, Atz =£* — 0.
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Variant 2. Centered right triangle in .E'iz}:

[12] = tanh v2, [23] = tanh 493 -sech 42, [13] = tanh 413, £ = Ajaz = /2.
Variant 3. Decentered triangle coplanar with center () in EEE}: Eg = Az,

23] = tanh 73, £ =7 — Ajy;, [34] =tanh 4y, £ =7 — Ajy,, [24] = tanh 7y,

r=r—Aly=citet—smp=nm—{r—&} — [r—=0— (v — 1)}

¥ ko

The matrix of pure hyperbolic rotation in the base of its own determination E; can be
considered as matrbcfunction roth Tya = Fy,ey) due to its canonical form (363). Each
such matrix with these two parameters v and the vector of directional cosine e, implements
motion of point (1) and determines any other point (k) inside the oval.

All centered tanpent projections tanh s are radiated from the point (1), i e, center O
of the tanpent subbase ..'_:_.-'{3} (for excample, along ey). They are not distorted in Enclidean
metric of the Euclidean projective space ({£2)), i. e, its Euclidean length in EP} corresponds
exactly to tanhya. Moreover, the central spherical anples gg between tanh 4y, and tanh -y
in the tangent model are not distorted too. We shall take advantape of these facts!

Following motion ~og starts at point (2). If it is directed along e, then in ((£%))
the second motion in its tangent projection {tanhyss}e is expressed in the same tangent

subbase E'Ea} with these three coefficients of distortions in Euclidean subspace {(£2)):

{tanhvi3};
ky = L = 1/(1 + tanh ~ya3 - tanh <L
1 {taﬂ]l’rm}gl+{taﬂ]1’mz}ﬂ, /( 23 ~12)
tanh = — {tanh P tanh 5
kg - by — {tanhvi3}z — {tanhya}p  {tanhqma}z — serhygs << 1,

{tanhyas} 7, ~ {tanhya}g,

where ks = k3 =sech o, The first distortion is caused by hyperbolic summation of sepment s
712 and qaz as one for two collinear segments. The sequential distortion is combined from
two factors. The first one ks = sech 7y is Einsteinian dilation of time in the base Es the
second one kg = sech g is contraction of distance as result of cross projecting at tangent
muapping of distance between two cross-bases (it is formally analogous in result to Lorentzian
contraction of extent, when a distance in (3} is reduced in B due to its cross projecting
into (3} parallel to Er"[ﬂ}, see in Cho 4A).

ln the triangle 123 (Figure 4A(1)), only the term |23 is distorted by ks, k3. Due to
Pythagorean theorem (138A) in the big right triangle 123, its parallel projection |227] is
the difference of distorted parallel projection |12°] and undistorted term |12, i e [227] is
distorted by kf, ka, ka; its normal projection |2'3] is distorted ooly by k], ka:

cos £ - tanh ya3 - sech? 49
1+ cosc - tanh ~ag - tanh yqa

tanh Ty, = = cose - tanh oz - kY - ka - ka. (1564)

sin £ - tanh vygq - sech o
1 + cos= - tanh a3 - tanh a2

1
tanh Tag= = sin ¢ - tanh g - k7 - Kka. (157A)
Note, the distorting coefficients of type ks depend on the angle £ and the coefficients of
type kg act ooly on the parallel projection of tanh o according to the Herglotz Principle
(the last see initially in Ch. 2A).



234 APPENDIX

Due to Big Pythagorean theorem (125A), (1384) in the right triangle 12'3 in Ey, there hold
2 2 = 2L
tanh” yi3 = tanh”[y13 + Ta5] + tanh” a3,

_ . 1
cosEp = €] - 85 = tanh [y12 + Ja3|/ tanh 13, sinsp = €} - @5 = tanh Va3 / tanh 3.

With squared (156A) and (15TA), we obtain in E'Ea} the Small Pythagorean theorem for the
right triangles 22'3 and 123 as (130A), due to variants (1) and (2) at Figure 4A:

tanhvys; = tanhyz — tanhyys — {tanh ya}z = {tanh ~ea}y k7 - ko - k3 =

— 1
= \/tanhgf_rﬂa + tanh? Ta3 = tanh Yoz - kb - sech - \/cmﬂg - sech? 712 + sin’ &.

(Compare ko and k3§ with coefficients of Lorentzian contraction — collinear {53A) and non
collinear (54A4).) The Small Pythaporean theorem gives the general variant at Figure 4A4(1)
and the simplest variant at Figure 4A(2). For sine and tangent orthogonal summation, both
Small Pythagoresn theorems were inferved in (12045 (130A). Note, that we may apply
geometrically the sine vectorial summation {without kg) according to Pythagorean theorem
(124A), (135A). But sine projections are non-limited by K Buot in the spherical geometry
(Ch. 8A) the sine projections are limited by B!

The decentered anples subject to distortions too. Consider distortion of the angle £

between tanh s and tanh qeg (Figure 4A(1)). Cross projecting transfers the origin of
distorted vector 23 into point O, The distorted anple £* is expressed in terms of the
distorted projection tanh qos due to formulae of Euclidean scalar trigonometry:

-

. ta.l:l]'l?23 cos £ - sech 9
{tanh 723]‘5':2 veos2 e - sech” Y13 +sn e

— cose - ka/kj < cose.  (1584)

In STR £* is a distorted spherical angle between velocities via and vaz in the space ((£%)).
If £ = w/2, there is no distortion: coss* = coss = 0, see this variant at Fipure 44(2).

For coplanar decentered motions in the plane (%) = (ea,ep)) at Figure 4A(3). such angle £
s expressed in terms of distorted partial angles £7. 2% and undistoeted central angle 50 between
tanh 2 and tanh 3. These open engles T are oot distorted too, that follows from (158A). By
theorems of Euclidean scalar trigonometry, there holds:

=gty —sgp=m— Ay =T —{m—85 —[7—=p — (7w —£})]|}, 1594
1t ez 234 { 23— ( ) (

. cos ey -sech yiz e sin gy
cosEy = = 57—, SIlE = = —
v eost £y - sech® 1z + 80 £y voos? £y -sech? 1z + 8in° £y
. cos £z - sech i3 e sin &g
CosEz = = 57—, SllEg = = —
v cos? £z - sech® 12 + S0 £z v'cos? g2 -sech? y1a + sin° £2

cose’ = cos[e] + 3 — 0] =
= [cosen - (cosey - cosea -sech iz - sech a3 — siney - sines)+
+sinegp - (siney - coseg - sech Y13 + cosey - sings - sech y12)]

JI{D:B* £y - soch® Tz + sin® £1) - (cos?eg - sech? Fia + sin” £a).

Such summation of tanh s and tanh yag is realiced as [12]+[23]* = [13] under €] and [13]+[34]* =
[14] wnder 2%, see at Figure 4A403). Further we have again variant 4A4(1).

But. generally. with non-coplanar summands, for example. tanhag € (£%) = (@a.@g). for the
summation in (£%). (15394) do ot hold. We choose tanhia - @413y = tanhyia - @x due to (1384)
as the first segment and tanhyas - @ggagy as the third segment. Further, we use (156A)-(159A) for
thi# two-2teps motions in I[Ez} = {eq(13). Bagaqy). oo
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¥ ko

Kinematics of a material body progressive movement is determined by kinematics of
the material point M, which is the baryeenter of homogeneous body. For the poine M,
distinction between non-relativistic and relativistic kinematics can be seen in projective
representations of the point movement in the universal base By = {I} as original one. (For
the current coordinate of the proper distance along the movement, we use in B} the greek
notation ¥ = ' introduced in (73A), by analogy with the proper time!)

_}
In Lagrange space-time (£33 = (83 @ ¢ ):

the increment and differentials of progressive movement, with decomposition (137A) in (%),
along a world line of point M change as follows:

At = dx™ 4+ PV 4. = de M ey + s g2 4., dxV = dy - eq,

_ 1
dﬂx{l}=d2x-EJg=dﬂx-{DmE~EE+5inE~EF}=d2x~eﬁ+dﬂx -8y,

|| Oeqll
= [fdx]q - €q +dx - [y, -e,. Here we used for eg decomposition (137A). That is why

ey
= d(dx - 2) = [0dx]a - €0 + dilOealix = il -ea + dx { I0eall - e} =

N 1
[Bdx]a = cose - d>x = d2y, dy - [fa]de = sine - d*y =d”x;
dx(D t
v(t) = T = vo-ealta) + [ g(t)d
to
- 1

(1) 2
g0 = T — )05 = TX ealt) + X () = 50) - ealt)+ § 1) (1),
1
g

=W

= Ody . dy |[Oa

g(t) = cos£(t) - gt) = [EL, (t) = sine(t) - g(t) = — - [EL: = v(t) - wa(t), ete.
Ort hospherical rotation de or wy does not change here a progressive nature of the movement.
The Law of Mechanical Energy Conservation holds as [cose - F|(t)dx(t) = d[mvzfi].
The Law of Angular Momentum Conservation holds as [sine - F - e, |(t)dt = djmv - e5).

We see. that in Classic Mechanics similar Laws act separately and independent ly.
#

In Minkowski space-time {P*H) = (£2H EE)
with (80A), (137TA), (1454 there hold:

In By: Ax™ #dx™ 4 %™+ ... dx'V =dr-e, =dy-eq;

In B :  d2x(™ = g2gim) . eg = dvy™ . d(er) -e5 =
1

=d*c'™ . (cosc-e, +sins-e,) = d2z™ . e+ L2 2'™ e, =
— 1
S dy=dy-es=coss dy ey +sins dy-ey) =dy-eq+ dy -6y

In (P31, the differentials dx™ and &2x™) are not summed immediately unlike the
case in (£31) as they are situated in different subspaces (£%) and thus should be summed
hyperbolically with the use of motion angle -y and its differentials dy™) = dry.
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Then from the differentinl d2x™) in the instantaneous base B, we obtain the current
inner 3 acceleration (as pure Buclidean characteristic in (3™ gotten before for collinear
motions in (T9A), (82A), and 3D Absolute Pythagorean Theorem in (145A) in (P31):

— L
d'u{""}-eﬁ _ dg:':-eﬁ _ dir - @+ d°r -8,
dr Todrr dr?

glr) = 1:ﬂ =F/my =g(t)ez =

_ 1
g =T(T) e+ 7 (T)a,.

- — L
In the base Eg, projective differentials d®z and d?x are situated together in (3} Then
in the instantaneons base B these projections of the inner acceleration are folowing:

c'—:% = %'T—} = g(1t) = coss - g(t) = F/my is the parallel proper 3 acceleration with eg.
1 1
d d‘l.f[m} : L - - L x
crs = =sme-g(r) =7 (7) = v*(r)-whit) = F /mg is the normal proper
Foaeeeleration with binormal unity vector e,.
By (119A4) we get cose = €g@,, 0 < £ <« (acceleration in [0;7/2), deceleration in (/25 7]).

Evaluate differential variations of the basic scalar and vectorial triponometric functions
projected from the hyperboloids 1 and 1 |see preliminary in (13245, (146A) for 11 and in
(133A), (149A) for 1], including Euclidean projections inside and outside the triponometric
ball with B =1 and scalar projections on the time arrow, with produced furt her from them
the space-like and time-like physical characteristics as velocities, accelerations, momentums
and energy. We'll use formuolae for twosteps motions (12245 (1244, (135A), (13TA),
(138A) for 11 with 3D Absolute Pythaporean theorems of type (145A). Analogous formulae
for I will be potten in last Ch. 10A. In resolt, at diffirentiation in the base By, we'll muost
obtain all trigonometric angular differentials with proportional to them physical vector and
sealar characteristics. Here de is the anpgle of the orthospherical rotation of the velocity vg
or of ey (as above in the 4D Lagranpe space-time), and it is the scalar value of deg.

For the correct results in such scalar and 3D evaluations of physical characteristics, we
must use such a metric reflector tensor of the space-time (P*1) in order to take into account
usual adopted mathematical forms of them , conpected with gotten trigonometric prototypes.
For this correspondence, we use below the tensors {IF} and {I£}, in accordance with the
imapginary time-arrow of Poincard and the classical real valued Euclidean subspace.

On the hyperboloid 1, constrained by its cylindrical topology (Ch. 12A7, slong the time
arrow and in the Buclidean directions eg # eq, there hold:

dsinh v = cosh g dvyg = coshy d7. (1604)
dx d
cosh + = sinh~y - coth v =cosh~y-e, — Mth'?=d_y=§'ea=mth"r"em

R

d cosh v = d(coshy - ,) = sinh+y dv - 5 + coshy dos - ey =
= sinh -y, dv, -, = sinh+y, - [cose dy, - &, + sine dy, -8,

|d cosh 4|* = sinh® v dy? + cosh® y dod = sinh® 5, (dy,)? =
_— 1
= sinh® 7 - [(cos€ dyg)* + (sine dvq)?] = sinh® 3 [(drg)? + (dg)?),

o

(161A4)

cosh v = coshy - ea(7) =

= coshyy - €4p) + J:; [sinhy dvy - e, + coshy dag - €,].

See in detail in (2384).
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On the hyperboloid 11 (at its top sheet), along the time arrow and in the Eoclidean
directions eg # eg, there hold:

dlct) dlct) . .
msh’}'=m — dcoshy = m=sm]1frp dy, = sinhy dv. (1624)
. _dx dy . v _odx dy B v,
s;mhry—m— IEl,l[m_}utaﬂ,—511:]1'-,--eu— = tmT__d{d} ——d{d}ﬂu—tﬁ-ﬂh’)‘ﬂa— =

d sinh v = d(sinh - e,) = cosh~ dv - €5 + sinhy doy - &, =
= coshyp dyp - €5 = coshyp - [cos e dryp - €a +sine dyp - @],

|d sinh 4|? = cosh® v d+? + sinh® v da} = (cosh 1y dvyp)? = (coshy dy)? =

] — i b (1634)
= cosh? ;- [(cos £ drp)? + (sine dryp)?] = cosh® vy [(drp)? + (dyp)?]-
sinh = sinhy - ea(7) =
=5.1'.11]1’}1;;.-l=.',;.:.[|:;.}+J:;T:I [coshy dvy - €5 + sinhy day - &, )

If 4p = 0, we get the Local Absolute Pythagorean theorem (145A). See in detail in (228A).

d tanh v = d(tanh v -e,) = sech®y dv - e, + tanhy da; - @, = )
= :n*.{h?-"m dyp -8 = :i':.‘{:hﬂ"r'p - [cose dyp - €4 + sine dyp - &),

|d tanh 4|2 = sech? dv? + tanh® v daf = {:il-.‘{:hﬂ’)‘p dyp)? = (sech?y dvy)2 =

— 1 b (1644)
= sechyp - [(cose dyp)? + (sine dup)?] = sech’ay - [(d1p)? + (dp)7);
tanh « = tanhy-e,(vy) =
=tan]1’}'u'E.1(D}+f:u ki':.‘{:hﬂ"')‘ dv - 8, + tanh v doy - €. )

Relations {161A)-163A) give us differential and integral summation on the Minkowski
hy perboloids 1 and 11 of these three vector trigonometric functions with the change of their
angular arpuments and directions, in addition, to two-steps summations. General tensor
vector-scalar (tvs) summation with metric forms along a world-line see in last Ch. 10A.

We see in (164A), that |dtanh | < |dy'|, which causes the limitation of the tanpent
motion model by B = 1 in the trigonometric ball (the Cayley oval) at Figore 4A. In this
limited flat tanpent model, one may begin the motion either from the origin O (at " =0
and with ey) or from the non-centered point OF (at 4" > 0). In any case, summation or
integration is realized in the projective hyperspace ({(£2)} inside this trigonometric ball with
R =1 (for coordinate velocity v with B = ). On the other hand, we see in non- limited
flat sine model {163A), that analogous motion summation or integration is realized with the
same direction vector ey (1), in all the Euclidean projective hyperspace, in that number for
proper velocity v*. The angle « (with its vector of the directional cosines) is main anpular
arpument of these motion models. For transferring to accelerations we use bond (T9A).

ln last Ch. 10A, we will give complete 41 representations for these hyperbolic sine—cosine

differentials variations with parallel strict inference of the peneral 47 metric forms along

a world line and on both its concomitant hyperboloids with accompanying calenlations of

adjacent geometric and physical characteristics, in particular, as movable tetrahedron — all

in tensor trigonometry form with vector and scalar orthoprojections (i, e, in "tvs" forms).
#
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The summary F-vector of proper velocity v*(7) of a particle M or the barycenter of a

body M may be strictly inferred trigonometrically with (163A) and from the parallel and
normal inner accelerations with the use of the proper time, but formally in {(£3))()):

v*(r) = v*(m) = c- (sinh y —sinh ) = v*(7) - €a(7) —v"(r0) - €alro) =  (1654)

= E],: cos(T) - coshyp(T) - % d7 - ea(T) + cj;; sing(T) - coshyp(T) - % dr - ey(T) =
= [ costr(e) - [e- L] tr-ear) + [ [e-sinhin) - F| ar-eur) =

du* T
= dr - 7)) wh(T) dr - ew(T) =
j;u o eﬂ{T}+[uw (T) - walT) e (7]

T _ T J_
:f coshy(7)-g(7T) &T'Eg(‘l’}ﬂ'[ g (7) dr - ew(T),

o

where: do

is the differential of the non-relativistic spherical rotation of the vector eg(t);

cosh - g{'r} = =7 *(7) is the tangential inner aceeleration, v* = - sinhy — see (82A);
. ( }
m
cd _ dv

=g =19 [t(T)] = v*(7) - wi(7) is the normal inner acceleration in time 7.

Parallel and normal inner accelerations in By satisfy the 30D Relative Pythagorean theorem:
2

F* +9 =g° (see about it in details in last Ch. 10A). wi(7) = da/dr is the proper angular

velocity of the Enclidean part of rotations of a world line (or of eg) at a point M in (£3)(™),
The summary F-vector of coordinate veloeity v(E) at the point M may be strictly inferred

also trigonometrically with (164A) and with the use of the coordinate time in ((£%))(1):

v(t) — v(to) = ¢~ (tanh y — tanh 7p) = v(t) - €a(t) — v(to) - €alto) = (1664)

1 T
= r:f cos £ - sech yp(t) - % dt - ex(t) + r:f gin £ - sech yp () - % dt - eu(t) =
ip tg

_j:u cechy(7) - [r: —] d«r-eu(«r)+£m:h3ﬂr}~ [c-sinh*‘r[’.r}%]drﬂp{ﬂ:

f —dt et f: vi(t) - wg [T{t)] di - e (t) =
ty

:f sech¥y(t) - Jhr(t)] dt - ea(t) +f sech -",r{t}-ﬁ frit)] dt - e, [r(t)].
to to

where fg = 7, £ = #{7) along motion (85A). The parallel coordinate aeceleration as (83A) 1

7 (t) = sech® 4. gr(8)] = = (167A)

The normal coordinate acceleration with normal 7 (84A) and parallel (85A) ¢ to v times is

M v
g (®)=sech -9 [r(8)] = 5 = v(8) - wilr(®)] = w(®) - v3[r(0)]. (1684)

(But, in fact, the time in the normal direction of motion streams as proper time 7.)
From here we get the STR formuolae for parallel and normal foree parts acting on M in By

lm

f=ms£-mqg=mu-msh3 _{l}ﬁ}, F—SIIIE mg g =mg-coshy- g (E).
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The current proper distance is evaluated by analogous two ways with the separation in
two time parameters tg = 7, and ¢ = £(7) under condition (84A), (85A) of simultaneity. In
the base By from (165A) and (166A) we obtain two identical integrals for xat < &

X (T) —Xp =%(t) — %0 = [ v () - eylT) dr = L v(t) - ealt) dt =

zf [uu Ea{TD}+fmsh*r{T} F(T) dr - EE{T}+£S{T] dr - E,,I:T}] dr =

f[m ea{-ru}+f () dT-Eul:T}+£j{T] dT-E,,.{T]]dTE

_ f [‘L'u ealto) + f sech®(2) -5(t) dt - ea(t) + f sechy(8)- ¥ (¢) dt - E,,{t}]
to

t t t (1)
=f {uu~eﬁ{tu]+f 7V (1) dt - ey () +f 7 {t}dt-e,,{t}] dt. (1694)
to to to

Variation of the time-like hyperbolic cosine differential (not according to its expression
by scalar product (162A) on the hyperboloid 11) | is proportional to the work of the tangential
inner force (81A) cansing a rectilinear part of free progressive movernent of material point M:

d(et) | fdmsh"r fsinh'r d'r=ftsinh'r-eu.‘l t-f'r~e;a1=fmsiﬂ-shﬂh'rd?=

To To To To

-5 f cose(r) v (7)-g(r)dr = - L cos el (6)]-vir (O] -afr(8)] de = - [ cose(x)-a0x) dx =

Xo

x A A AFE
:ﬁ-xumssm-Fmdﬁ%Lchm == =ke.  (704)

If 5p = 0, (vy = 0), then [k — coshy — 1= A/By| = |E =coshvy-Ey= Ey+ A=me?|

kg s a foctor of energy increment: kg - Ep = A We infer, that during progressive motion
of a body its total energy E = me? is the hyperbolic cosine orthoprojection of the tensor of
energy—momentum Tg = ¢- Tp (Ch. 5A) onto the axis e it is conservative under F = 0.

ln 1900, genins Henri Poincaré in his well-known now article |62] inferved fiese (1) the
fundamental physical relation between energy and mass as m = E/c? identical to E = me®,
for the light's energy, as a kind of electromagnetic radiation. Later in 1905, Albert Einstein
inferred relation m = Efc? (but as often for him, without reference to article above — see in
the end of Ch.12) for the thermal radiation energy of a hot body, on the basis of the Planck
quantum theory of radiation by massive body [88]. 1o 1908, Gilbert Lewis confirmed the
analogous relation B = me® (of course, with reference to Einstein’s article) between incre
ments of relativistic kinetic energy of a moving body and of its relativistic inertial mass |G8].
However, only after the historical event when the very respected scientist Lise Meitner acen
rately considered the fact of uranium fission in the experiments of her colleapnes — chemists
(tto Habn and Friedrich Strassmann (bombarding thorinm with neatrons) and explained
the mass defect in such a process by this fundament al relation m = E/fe?, physicists and not
only they will paid superextra great attention onto this formula, with well-known further
consequences for all peoples! However, according to the Rules of Scientific Ethics, priority in
the discovery of this fundamental formula belongs to Henrd Poinearé if the present scientific
community continnes and will continue to comply with these Rules.
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ln Ch. 5A, we marked that as a true progenitor of concepts momentum and energy, in
the relativistic sense, should be considered the oun 4-momentum Py = mge (98A-11). 1t is
4-th column of tensor of momentum Tp (101A), proportionsl with coefficient mgpe to our
trigonometric measureless tensor of motion (100A) in the space-time (P3F1), i, e, we have:

)
. sinh sinh -, P
Pu—Pu-lu—eru—Pu'[ ok ] — R [ el B
It is preserved under F =0+ Py = Const. The scalar value Fy = mge = Ep/fe is pseudo
Euelidean invariant for the particle or body M. The own 4 momentum Py is s hypotenuse
of the pseudo-Buclidean rvight triangle of three momenta. 1ts sides are in the psewdoplane
of motion {8y, 1), which is similar to ones of the interior right triangle at Figure 1A (1),
becanse Tp = Fy-roth T, We pet again the Absolute psewdo-Buclidean Pythagorean Theorem
of three momenta (98A-1):

Po=F-i=P-ii+p-j= (iP)? = (iP)? + p* = —F; = —P* 4+ p*. (for tensor IY).

We may adopt that m = Pfe, E = P.c, p=mv. The own momentum Py = Fy-1 = mye, as
absolute 4-vector in (P31, is the geometric invariant along a world line to the Lorentzian
transformations, where € = ¢-1 s 4velocity of Poincaré. Py and ¢ are always tanpential to
a world line, Its variable cosine projection onto the time arrow AW is the total mementum
P=P-.iy = Fy-coshvy-.ij. lts variable 3-vector sine projection into the Eoclidean space
(£ is the real momentum p=p-j= Fy-sinh v = By - sinhy - 85 = mgv* = mv. Both
these relative momenta are expressed in the base By of the Minkowskian space-time (P3+1),
This illustrates, that during progressive movement the real momentum p = mv of
body or particle M is the hyperbolic sine orthoprojection of the tensor of momentum Tp
into (£2). The tensors T and Tp with 4 momentum Py are conservative under F = 0.
The real momentum p(t) as sine projection of Py into (€3 due to (165A) changes as

= p(t) = plro(to)] - €afro(to)] + mo L{ gl ()] - ealr(#)]+ -é"_ [7(t)] - e [r(2)} dr(t) =

= Plro(to)] - €a[m(to)] + L{ Fo[r()] - ealr(®))+ F [r(0)] - s lr(6)} dr ().

In STR and external non- Enclidean geometry on the hyperboloid 1 in (P31 = (E9EY,
according to (141A) and (144 A-1) abowve, any progressive non-collinear motion of a particle or
i body M is accompanied by the induced orthospherical shift d8 or precession in time wj of

. 1
the 3-rd normal axis eﬂn} of the current normal plane (£2 g:j = {ELm},e{ﬂm}} = {Eim},ﬁlr,[— }},
— both rotated with the angular velocity wf, under hy perbolic inclination ~ to the immobile

axis EE;I:' of the base By and hence with the cosine slope to EE;I}. The latter and rotated eﬂ“j

have the common point of application @ as the center of Ey. The rotated {normally to E&m}]l

vector ey has the point of application in the body M baryeenter. Accordingly, the slower
this rotation, the smaller these induced effects up to zero. Initially we have the elements
from (144A-1): tanh (7,/2) = tanh(v/2)-ef™, dvyp = dyp-ef"”. el™ xel” = ef™ = &x™.
To develop expression (144A-1) in (£3) C (P*) = (£%) [EEE, tuking in account (162A),
we add the so-called normal relations at 9p = 0 |see more at 4p 7 0in (230A), Ch. 10A[:
. L . . 1
sing dy, = dyp = sinhy, doy & sine - gg = gg = vf - w;,. (1714)

L3

It follows if compare normal increment s in (13245 and (135A) at e, or both in (163A). We'll
obtain normal relations with generalization and its rigorous justification in the Absolute
Pythaporean theorems in last Che 10A, produced by the differential tensor trigonometry.
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With our tensor triponometric approach continning (144A4) with (171A), we get penerating
chain of clarity understood tvs formulae for the induced orthospherical shift and precession.

_ — __tanh __ sinh _ )
—dET;dHeN_tanh(ryfﬂ}@(:g—wﬁlﬂd’r—aﬁ ST @dr =
=m5mT+ .Ea.g(dfy~eﬂ]=“;mi;—~ea®{dw-9ﬂ}=

1

— tanh § -sine dy- & — YL sine dy & — YL dy - & -

=Em']:—l%l-si.l:l]:t"rdr:bﬁr}={msh*}'—1]da-ﬁr}=k£rdﬂ,@=
= [(da)* — da] - ey ~ 1/2 4* da - &x; , (1724)
‘gg=w§'5\f’=taﬂh%-ﬁn£~§%-ﬁ¥=tmh§}.smhq .%.@},

_%'g=-u_rg.ﬁ’:taﬂh%.sinhrr.wa.e_JvP:tanh%,iﬁ%,ﬁ:

= (coshy — 1) - wg - 8N = ki wa - €8 = (wh — wa) - &N =~ 1/2 (2)? - wy - €N

Thus, in the instantaneous plane (£2)™ = {E&m}?&& }}, the orthospherical as if orbital
rotation w), of an electron in a hydrogen atom H, due to its planetary model of Bohr, as a
microscopic gyroscope with its erbital moementum L {in addition to its proper momentum
named by spin), induces mathematically (1) and in a result physically, the orthospherical
. . . 1 . .
precession of the electron orbit axis enm = en™ x el = E;E;mj contrary to direction of w},

and with a lower angular velocity wyj, fixed as wg in the base By (called sometimes as the

laboratory system) with its 3-rd immobile axis 85 = EL ). In aceordance with the Lorent zian

group, this precession causes the negative difference —wy in By between relativistic and non
relativistic maps of the electron rotation as (wf — wg), perceived by Observer in (£3)(1)
At the value £ = «/2 for the electron rotation, this precession causes the additional
correction to spin—orbital interaction in normal direction with the coefficient "1/2" which
came to be known as the Thomas half Soch interpretation by Llewellyn Thomas in 1926) |93
was the first independent confirmation of STH with its foundation as a theory of the new
relativistic space-time with the Lorentzian transformations of coordinates, having & group
nature, developed by the preat Henri Poincard in 1905 [63] in result of his very successful
collaboration with the contemporary to him eminent physicist Hendrik Lorentz!
Expression (1T2A) gives immediate and simplest tensor trigonometric ezplanations of
the indwced orthospherical shift with the Thomas precession and angulaor deviations in both
non-Buclidean geometries sssociated in Chs. TA, 8A with this shift under the anpgle £d8 as:

|6 = (1 — coshy) da = [da — (da)’] <0 df = (1 — cos) da = [da — (da)’] > 0.] (1734)

This angular shift is coused by "angulor dissonance” between the true local orthospherical
inerement dooin (E2Y™ on the trajectory of non-collinear motion, fived from an electron
moving on its orbit, and its cosine projection (da)*, perceived in (£2)Y) acconding to STR;
and in hyperbolic geometry on the hyperboloid 11 in spherical geometry on the hyperspheroid.

Translating this angular shift in time, as in (172A), with the use of these two physical
"pelativistic factors y and 8 ", we come in the base By to the well known in STR physical
relativistic formula by L. Foppl and P Daniell |91, who in 1913 (1) in Gittingen predicted
theoretically such a kind of precession as the kinematic effect of STR (quite possible, with
the use for such rotations the time dilation, introduced by Herman Minkowski before in 1908
(=ee in Ch. 3A) and published also in "Gittingen Nachrichten” |66] without trigonometry:

wg =dffdt = —(coshy — 1) - wa = —wa[l/y/1 - —1] = —wa - (y—1). (A)
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The Thomas precession is cansed by the fact, that the Fuclidean normal plane {£2>gnj
of the sine binormal rotation dog has its current local slope cosh g exactly in the place of
aparticle M (here the electron). 1t is interpreted either as the difference of the same angular
velocity in two bases Ep and Ey, or as if the rotation of the difference [do — (da)*] < 0 with
velocity wg, which is fixed separately by Observer in the immobile laboratory system Ej.

Similar reverse anpular dissonance can be observed even at a home. To see it you need
to swirl the water in a round sink. As a result of braking only of the lower layer of water due
to friction, we'll see an imapginary counter-rotation of water at a much lower angular speed!

This precession, due to (172A)) is approximated by area of trianple with sides v/e gfe
and angle £ between them. Besides, expression (172A) is represented exactly in the physical
relativistic form, but without "¢" | through anguelar velocities gfv and g/v*:

L L

R e (R R LA [E AT

This induced orthospherical precession is explained by the matrix formulae of type (111A)
for differential summing non-collinear two-steps hyperbolic motions T and d in (P31, with
appearance in result of the same induced orthospherical precession d8/dt. In vector formulae
for two-steps hyperbolic motion, due to (141A), the sign "—" for rotation of precessing
axis @y illustrates the following Hule sgn #13 = —sgn £ in the psendo Euclidean space of
the theory of relativity and in the hyperbolic space of velocities. These are also mathematical
and physical clear confirmation of the imapinary nature of hyperbolic motion anpgles as iy

From the point of view of the hy pothetic Observer in the uninertial base Er,, this induced
orthospherical precession with internal rotation of a body M in (£%)™ is cansed by the
manifestation of the Coriolis acceleration go from the force Fo = mge in the base Ep.
Then from (172A) and vsing connecting relstion (T9A), we obtain this Coriolis acceleration
of the body or particle in the space-time (P31} acting under angular hyperbolic velocity
1y = dy/dr = g/e of the base By with exact formula and with approdmation:

dé dg did . . . -
go = [E-E+E-E] mﬂc-E-ﬁ =9e-wh|-en = —sms-u-% -an = —sins-v-1" -en. ()

The Thomas precession may have an ephemeral character, so, for rectilinear motions.
This has a place if @ = const, and it is not obligatory that eg = es. This is accelerated
(decelerated) physical movement in the plane (€2) = (eq),85) = {Ea(n:,,ep} = Clonst with

vp under the angle £5 to €5 = const. In the origin of the base E,, such a world line slope
corresponds to tanhyg = w/e with ey, Execute the hyperbolic modal transformation

of the base as roth T - By = By with T = 70 and €5 = ey Then, in this new base,
we annihilate the rotation df, becanse in it tanh ~ (v) and dy (g) are collinear vectors
(sing = 0). Such modal transformation is equivalent to translation in the base with v = vy
Thomas precession was the first in 1926 real confirmation of the Theory of Relativity with
its basis Poincaré — Minkowski 40 space-time, thanks to the remarkable work of Llewellyn
Thomas |93, which was deservedly awarded the Nobelean Prize. He has explained with the
STH group approach the anomalons normal effect of Pieter Zeeman with the spin-orbital
interaction of an electron in the hydrogen atom. In Cho 9A we'll show that the Thomas
precession has a relation to executing of the Law of Energy conservation by its own part.
ln our time, the pature of mass inertia with confirmation of the Mach Principle and the
Principle of Relativity by Galileo-Poincaré was inferred in works of the very eminent now
seientist Peter Higps |82] by the Higps field with its quantum particle "bozon" | discovered
experimentally in 2012, The Higps theory has confirmed in fact the Poincaré — Minkowski
space-time of our Universe! We have maintained the same opinion since 1-st edition of this
our book in 2004 |15], despite fierce resistance from some agpressive apologists of the GTH.



Chapter 8A

Trigonometric models of two-steps and polysteps
motions in gquasi-Euclidean and spherical geometries

Definition of the quasi-Euclidean oriented space (@) (sect. 5.7) is similar, but only in a
certain extent, to that for the psendo-Eunclidean Minkowski space (P} (sect. 12.1) — see
together in sect. 6.3, The reflectortensor IT or IF (1TA) is also important in (@), It
determines orientation and admitted own transformations in this space. But the metric of
the quasi-Euclidean space is Evclidean! In geometry of (@™FY), the guasi-Euclidean tensor
trigonometry act with their spherical functions and reflectors. They are defined in canonical
forms, with respect to the universal base Ey = {I'}, maioly, by the principal rotations rot &
(313, (314) with the frame axis and by secondary ones rot 8 (how in hyperbolic case too).

The main geometric (with the radios B) and triponometric (with the unity radios) object
of this binary space (@™} is an oriented hyperspheroid, centralized in the universal base
Ey = {I} with the origin O for all admitted Eg. It is oriented along its frame axis 37 -
see at Figure 4 in Ch. 12 (similar to arientation of both Minkowski hyperboloids in (P™H).
The origin O is also a center of all orthospherically conpected universal quasi-Cartesian
bases By = rot 8- Ey. The rotations rof O, admitted usually by the cossdally oriented
reflector tensor I (17A-1), express, in the external quasi-Fuelidean geometry in (Q7H1),
the induced or free orthospherical rotations under summing non-collinear principal spherical
rotations rot ®; but | in the internal spherical geometry on the hyperspheroid, these rotations
give anpular excess in closed geometric figures, composed from peodesic large circles on the
hyperspheroid. The absolute space {Q™1) is represented in any quasi-Cartesian base B as
the spherically orthogonal direct sum of relative axis ¥ and Euclidean subspace (Em));

(@) = (EMWBY® =CONST, Ay>0, (1744)

where (€™ is a Enclidean hyperplane, 3 is an oriented down or up frame axis for angle .
From a point of view of the guasi Buclidean tensor trigonometry, also the subspace

(E™Y®) is k-th Euclidean hyperplane and §® is a kth cosine axis. The imaginarization

of the axis § transforms our realvalued quasi-Euclidean binary space (Q™1} into the

complesx-valued quasi-Buoclidean binary space of index g = 1 by Poincard (see in sect. 6.1),

isometric to the real-valued pseudo Euclidean binary space by Minkowski with the same T%.
The following operations are admitted in {Q™!) with right bases:

1) rotations of the two types: as principal spherical rot @ and orthospherical rot 6,

2) parallel translations preserving the space structure (174A) with reflector tensor T

The principal tensors of rotations (motions) (rot ®) execute principal spherical rotations
(motions) with the frame axis 7 at spherical angles & in (Q™1); the free or induced tensors
of rotations {rot B) execute orthospherical rotations and shifts at orthospherical angles 8 in
the Enclidean part of (@™ in (174A), — according to general conditions (257) from Ch. 5:

rot &I .rot & = I%,
(with reflector tensor 1£)  (1754)
rot' 8.-1% .rot B =1 =rot 8.1 .rot' B.

That is why, for analysis of homogeneous composite rotation (motion) T, we shall use
the polar decomposition (the right-oriented nniversal base should be chosen as oripginal one):

— — - -
E=T-Ey=rot®-rot ©.-Ey =rot ©.10t & -Ey. (176A)

£
T=vrotd.rot @ =roft B .10t &, det T = +1. (1TTA)
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The hypersphervid of radins R embedded into (@™, as a perfect hypersurface, is an
object | where its internal spherical geometry is in one-to-one correspondence with the quasi
Euclidean tensor trigonometry of (@) up to the coefficint of similarity R, both having
the same orientation. Abstract spherical-hyperbolic analogy (322) in Ejpqy, see (443), and
(323) in ..'_:_.-'.[ugj, see (444) ) takes place. Specific analogy, for example, as sine-tanpent (331),
can be used locally in any universal bases, see in sect. 6.1, 6.2, Thus, the principal spherical
rotations are expressed in By, according to abstract analogy (323) as follows:

e il @, rothT e rotil & rot &, (Ejgm  Egy ¢ Eng), (1784)

(n the base, we expose the materials of this Chapter in parallel with ones of Ch. 74 !
The spherical tensor of motion rot € with the frame axis 7 in (Q1) has, due to (313),
(314), the following canonical structure in By corresponding to the reflector tensor T

{rot ®}a.3 =cos® +i-smd {rot B}a.a reflector tensor I
COS i - € -€a’ +€a -€a' | Fsing: - ea {rot B}z.2 [ D T2 | 0 (1794)
:l:S\iDtPi ‘EL gy | DJ- T ﬂ' 1 .

The orthospherical rotation in the angle 8 as a rule is also secondary for principal angle.

According to abstract spherical-hy perbolic analogy (323) ) all formuolae of the hyperbolic
geometry from Cho TA with relation (119A) are transformed into their analogoues in the
spherical peometry. With right correspondence between principal motions in both geomet ries
measured either by natural psendo-BEoclidean and Evclidean measures of leagth or by angular
Lambert’s hyperbolic and spherical measures of anpgle, there hold:

ay=A=7-R, = ag=Il=¢ R (1804)

Further, we infer formulae of the spherical tensor triponometry (g = 1) often with the use
of this spherical-hyperbolic analogy (with corresponding to it commentaries). For two-step
noncollinesr motions, by (176A, 17TA). we obtain the modal transformations with a new
hase expressed in By = {I'}, as spherical analogs of (111A):

B3 = rot 12 - rot @23 - E1 = {rot ®12 - rot $2a - rot’ B2}, -rot $12-Er =
=rot By3-rot Oy - Ey = {rot ;3 - rot O3 -rot’ Pia}g,, -Tot Dia- Ey = (1814)

£ £ - -
=rot B3 -rot B3 -Ey = {rot B3 -rot Hyg rot' 'Ehs}g-ln ~rof B3 - By = Tia - By = {Tha}.
These formulae are given for the direct order of the two principal motions

Corollary.  Two-step noncollinear spherical rotations (motions) rot ®y in (Q™) or on
the hyperspheroid may be represented as sequential spherical and orthospherical ones.

Some characteristics of such motions in direct and inverse orders are expressed as

&
rot $ia=rot’ By -rot i3 -rotB3 = rot (—O43) -rot Pz - rot (+043), (1824)
due to (1134) - e; = {rot (+843)}axa-ey (under rule 2 > 0 — B3 > 0) = cos s = e'-e,.
o

Rotation £8 is expressed in Ey, = rot ;Ii Ey. (If n = 2, it acts in the plane (E2)(19)) If
n =3, we have TN(f) —e; @€, — +sinf-€x, Tn(c) —eq @€z —+sinc-ey.

There is the essential difference between the angles T' and & in By, T is symmetric,
& is antisymmetric. o their disgonal forms, T is real valued, & is imapinary-valued. As
consequence, all these triponometric formulae are identical, when anples are represented in
symmetric forms: [ in the base By, —i® in the base .E-:'[m} —see (271, (277).
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The next formula holds due to this peculiarity in the real-valued original base Ej:

rot dy3 = \,.l"r'i'ﬂt Byo 1ot (2dgg) - rot Ba = \,.l"r'.l'ﬂf (2813) =

= /[rot @, -rot Bgg] - [rot Bog - Tot Byo] = VT T*, (1834)

The formula is analogous to (114A), but square roots are trigonometric (see in sect. 5.6). We

have a peculiarity, which relates to spherical case for permutation of motions with change

of order into contrary. From the original By = {I}, as in (181A), this leads to the base

_:';' =rot Paz-rot 13 =T}, By, where T* is quasi-analog of T in (116A), but Ty #£ T4 !
From the direct formulae (181A) we obtain the orthospherical analog of (115A):

£
rot (+813) = rot By -rot $og -rot Hag= rot Py -rot $ia -rot Bag = rot B3y -Ty3. (1844)

It represents this orthospherical rotation as result of the closed cycle of rotations (motions)
rot $45 in the spherical triangle 123 and adds (183A). It is executed as in (115A) from points

1 and 3 in bases of particular rotations (motions) actions along of the trianple sides!
ln order that s result of (183A) was rof &3, we adopted for two-step rotations (motions)

inverse to (181A) the expression analogous to (116A) (without transition in Egpn!):
E‘;:raiﬁ'za-rﬂt B2 - Ey =T{3-E‘1 = rot I:—'Elia}'!‘ﬂfﬁ'ia'éi =

Fd - £ £ £ -
= rot @13 -rot (—613] . Ei = {Tﬂt fﬁla rof {—Gm} - l'Dt' @13}&1 - ol @13 'E-l. {135.4.}

This expression is completely compatible with (182A), gotten from (181A) For inverse order of
rotations (motions), we obtain the analogs of (11TA), (118A) with inverse cycle (184A):

& &
rot da= v/rot @z - rot (2P12) - rot oz = \ vot (2 $1a) = VT T, (1864)

&
rof (—81a) = rot &3 -rot Baa-rof 12 = rof (—Daz)-rot (—P2)-rot (—P1a) = Tiz-rot $ay. (1874)

The anples 45 and éla differ by vectors of directional cosines. Due to (182A) its scalar
summarized angle @y (including for polysteps motions) does not depend on ordering of
summands (direct or inverse). The case when the directional cosines of motions are either
equal or additively opposite each other corresponds to collinear motions. Choice of direct
or imverse order of summands in two-steps spherical rotations (motions) T or T* is redused
to these partial angles substitution analogous to (121A):

Y12 & a3, ok & B, k=12 (1884)

Formulae of two-steps motions summation in (@™} in their direct and inverse follow
are obtasined either with multiplying two modal matrices in (183A) and (186A), or using (as
in the end of Ch. 10A) immediate summation of these two motions, or alternatively applying
ahstract spherical hyperbolic analogy (1T8A). The scalar cosine of summarized angle @43 is
expressed as abstract analog of hyperbolic (122A), and with the external anple £ = 7 — Ayqoa:

©OS (P13 = COS (219 - COS (Pag — COS £ - 810 (719 - SN Pag =
(189A4)
= COS(f13 = COS P19 - CO8 oz + cos Aqog - sin g9 - Sln pag.

It i similar to the cosine formuola with + cos Ayag in the spherical peometry for solution of a
triangle 123 on a sphere, what no has a relation to our first formuola of tensor trigonometric
two-steps cosine summation of principal segment-ares (of big cireles) on the hyperspheroid.
This formula shows that cosine scalar summation of motions on the hyperspheroid does not
depend on ordering @qa, wag (similar to hyperbolic analog in Ch. TA).
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Motion on the surface of the hyperspheroid with increasing y-coordinate preserves the
angles @y positivity.  That is why, for positive angles of motions and distances in the
spherical Lambert measure, the "parallelogram rule” takes place (as in Eoclidean ppometry
and non-Euclidean hyperbolic geometry):

li1z — 23| < w13 < 12 + i

It is analogous to (123A4) and follows from (189A). Due to the inequalities and @y > 0,
distance in spherical prometry is & norm. The whole quasi- Euclidean space has Fuclidean
metric, that is why the lenpth of a geodesic spherical are dy and an orthospherical are
df are Euclidean. The nD hyperspheroid in (@™, in its sine model, is mapped entirely
into the two-side closed projective n-dimensional hypersurface [((E™)})], also with topology
of nesphere (see in Ch. 12 and Figure 4, but only inside the Cayley oval of radins R
(trigonometric circle st B = 1) with its whole internal border. In internal peometry of the
hyperspheroid, the sealar and veetor formulae for the sine and tanpgent of the ares sum hold
in direct and contrary orders of motions. Thus, the scalar sine formuola is evaluated from
(189A) including two commut ative variants as the mirror Pythagorean swms, provided that
@13+ ipag; and, of course, it is a spherical abstract analog of (124A4):

sin’ 13 = 1 — cos” p1a =

= sin® @12 + sin® w23 — (1 + cos” €) - sin” 12 - sin° @23 + 2C08 £ - COS P12 - COS P23 - SIN P12 - SiN P23 =
= (sin 1z - cos ip23 + cos £ - 8in @23 - cos p12)” + (sine - sin @)’ =
= (sin 23 - coS 12 + CoS £ - 8in P12 - co8 ) + (sine - sin piz). (1904)

Tangent direct formula follows from (189A) ) (190A) as spherical abstract analog of (125A4):

2 - 2
tan +cosE - tan s E - tan - BRC
tan? gz = w12 (a3 ] . [ P13 w12 ] . (914)

1 — cose - tan g - tan @ 1 — cose - tan oy - tan o

They express the spherical Big and Small Pythagorean Theorems in (@), which act in
gquasi-Buclidean and spherical geometries also for sine and tangent segments as projections
into [{{E7})]. They act in two variants: for direct and inverse orders of these segments.

Further, with Tensor Trigonometry as before in Ch. TA, we infer all vector trigonometric
formulae for summation of two-steps motions on the hyperspheroid and in the spherical
type of the non-Euclidean peometry, or identically of two-steps principal spherical rotations
with the frame axis (from sect. 5.12) in {Q""'i}. These spherical vector formulae with
directional cosines have also the same abstract analogy with summing by perbolic motions
on the hyperboloid 11 and rotations in (P™1). And the metric form on the hyperspheroid,
given in the end of Cho 6A, has abstract analogy with one on the hyperboloid 11 in (132A),
Ch. TA, ete.. The result of such vector summation depends on ordering of summands @9
and ey, So, the summary vector sines in two contrary variants of ordering two motions,
expressed in the initial Cartesian sub-base, are the following:

(1) sin 13 = sinyg1a-e: =

= (cos s - Sin12 + COSE - COS P12 - SiNGa3) - Be + SiNE - Sinwaa - e, =
= [cos 23 - singiz — cose - (1 — cosiz) - sinwea) - @a + sin gz - ea;
(2} sin wfg =si1up13-e§ =

= (cos (943 - 5N (P23 + COS £ - COS a3 - 8iNG12) - @5 +5InE - Sin ;s ey =
= [cos 13 - 8inwaa — cose - (1 — cospza) - singia) - @ + sin Pz - @a.

(1924)

From here, under conditions @1a = ¢ and @az = dip, we obtain the same metric form
(109A) of the hyperspheroid from its Pole, but in the vector form — see more in Ch. 104

A 7
={DDE k—?ﬂﬁE'fmﬁk} _ BT COSE Bx ®a®a B8 ee before in (1364]).
sine k=123 EInE [lexet - ea]|



CHAPTER S8A. NON-COLLINEAR MOTIONS IN SPHERICAL GEOMETRY 247

The vector e, (and e. for inversely ordered summary motions at ey + eg is used in
biorthogonal decompositions of principal motion increment into tanpential and normal parts.
They are executed through biorthoponal representation of the 2-nd vector in the sum:

€5 = CDSE-€, +SinE-€,, €,-€,=0, €, -eg=snc (& [0;7]).

In the spherical geometry, this finite vector sine summation s seen descriptively on the projective
hyperplane at Figure 4, Ch. 12, similar to also finite tangent summation in the by perbolic geometry,
for example, as at Figure 44, Ch, TA Sine formuolae, in sguared aod vector variants as (12447,
(130A) and as (125A), (138A), have in E'Ea} similar interpretations in (£

= 1 = L1
sin gy =Sin Paa+ 8in oy — singy = (Sin @2+ Sin @aa) + sin @,

Both these relations are compatible. So, as results, we obtain the Big Pythagorean Theorem
in its sguared variaot correspondiog to (124A), and, as a consequence, the Small Pythagorea
Theorem for the second segment in EY | with the trivial case corresponding to (129A4):

sin” 13 = sin’(i12+ aa) +sin” ina , sin® s =sin’ 23 +sin’ :,ojés .

In these formulae, sin @13 = cose -singis . sin (pjis =sin (,E}Jia =sine -singia. Their cosines, are,
as due to (122A), the scalar projections into T parallel to (£%),

Formula for the vector tangent 2 analogous to (138A), and given only for completeness:

tan @z + coss - tan gog ) +( sin e - tan @y - 260 P13
=

tan = tan - By =
w13 ¥ia -8 (l—cmz-tanm-tanwm

cep. (1034
l—mas-ta.ncpgg-ta.ngutg) ev- ( )

L] L] L
As the abstract spherical analogs on the 20 hyperspheroid of the cosine-sine differentials (160A, 161A)
an the hyperbaloid 11 we abtain:
deos wp = sinyp dyp = sinTyi dyi;
|dsin @(7)]* = cos® ¢ dig® + sin® ¢ do® = cos” p (diep)? =
 cox? g - [(cone dipp)? + (sine diog)?]  con? - (Bg+ dbp ] < 1

Hn g - 8, () = sin g - 'E‘u{u}+f@ [cos e dip - ey +sing do - ey

]
|
i (1944)
|
]

Here dex is the angle of the secondary orthospherical rotation of Euclidean basis vector.

L] L] L

Hesides, principal angles @ and  are the covariant parallel angles in the spherical and hyperbolic
peametries  see in Cho 6 and Cho 1A, They are accompanied by the complementary counfervariand parallel
angles v [(by Lobachevsky) and £ All relations betwesn them were inferred entirely in the end of Ch. &,
Simplest additive bond of spherical scalar and tensor angles @ 4+ £ is & peculiarity of the spherical geometry.
With (317 ar by analogy with (496], we give the robation at complementary tensar spherical angle as Fol lows:

rof & = rot =
— —
BN - ege,’ e8| Foosp-eg cosk-ege,’ +ege,’ | Fein £-e,
+eosp- el sin @ L=in £-ef) oos £
L] L] -

From [(189A ), for summing conventionally orthogonal particular spherical segments or maotions, the scalar
cosine multiplicative formula hold, with its generalization:
COSiF13 = COS{)3 - COS P23, (g =%m/2),
t
cos P = H OBy, Sij = w2, l<ij=<t<n, i#j (onaxes Er and ?{k}}_ (1954)
k=1
It is the spherical abstract anslog of hyperbaolic formula (131A) in Ch. 7A. The final sealar angle @ and the
distance a = K- ¢ do not depend on ardering of conventionally orthogonal particular angles,
If &ll £ orthogonsl segments are infinitesimal, then the Infingdesimal Pythagerean Theorem holds for now

non-conventionally orthogonal infinitesimal spherical segments with the angular measure of Lambert .
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For the sine of conventionally orthogonal motions sum, we obtain:

sin” 13 = sin” 12 + (sin a3 - cosp12)? = sin” w93 + (sinp1a - coswa3)?, (@ = I/R).

Suppose that, instead of the possible k orthoponal spherical motion’ angles, we deal with
only their orthogonal differentials at zero values of these angles at the point M. Then we
have the Hule of their squared Pythaporean summation on the hyperspheraid (till & =n):

(dip13)* = (dip12)? + (digaz)®.

The Rule is analopous to the squared Pythaporean summation of the inner hyperbolic
differentials and inner accelerations in the instantaneous local base of STR - see in Che 94
See analogous quadrics, as decomposition of the inner differential, below in (197A).

The projective sing measure Rsinh (I/R) may be used also in the flat sine model of
the hyperspheroid of radins B, which follows the Big and Small Pythagorean Theorems.
Decomposition of dsin ¢ in (192A) and summation in (193A) are executed in this model in
the trigonometric ring (ball), limited in the projective hyperplane [({£™)}] by the radius R
(At B — oo, it is Euclidean as for the hyperboloid 11 in Ch. 12))

We can use the same formulae (136A) and (139A) for the vectors of directional cosines:

— —

Eb_e,g—cms-eu_ eqey, -es o, Ba—cosE-e5 8585 - By
= - = : B= - =T :
sme lleas -esll ¥ smeE llege; - eall

And we obtain: cosfyz = E’é "By} B = COSE-€g +SINE- 6y +F 8y = COSE - 85 +SInE - e,

IE;.. 'Ef.. = —C0SE = +m5A1133, ey -Eﬁ =eg -8, = +s8InE = +sin Aqa3.

Vertors ELI:', EEE:', €,. €y, e, x e, are formally inside an angle 7in the plane (£2) = (eq, es).
s o

Due to General Signs Rule, see in (182A) and in sect. 12,2, for spherical geometry
we have: |s_gm. B3 = +sgn = !l If £ = 0, then #13 = 0, and if £ < 0, then &3 < 0, 1. e,
the leg 13 is shifted orthospherically in divection always with incressing the sum of angles
in the spherical triangle 123, Plane of this orthospherical rotation is (£2) = (eq,eg). If
n = 3, then wectors E.'.;.:,,ll%g,,lﬂ.r:‘L and E_!;:r;,,E.'.;r.l,lﬂ.r:‘L form the right (£ = 0) or left £ < 0 triples.
They correspond to connter-clockwise scalar angles in right-handed bases. (Oriented vector
ﬁr’(ﬂ} —e:De; =+ sinf - €y determines right screw of rotations if n=3.)

Formula (143A) from Ch. TA for cosfy3 is transformed by similar way as it was on the
hyperboloid 11 For two-steps principal spherical motions, formula gives the anpolar ezeess of
geodesic spherical trianple 123 on the hyperspheroid. For two conventionally orthoponal (at
maximum [#]) and general motions, we obtain € hese expression for orthospherical shifting #43:

COS (f12 + CO8 P2a
CO8 {1z - CO8 a3 + 1
+sin 12 - sin gz ; sindf = df = +sine - sing dp
CO8 {0y - 008 0z + 1 1+ cos g
As before, in infinitesimal considerations we shall apply the wseful formulae for the cosine
of the first anpular differential fwith ezactness up to 2-nd power of differentials):
cosdp = 1 — (dyp)?/2 and cosdf = 1 — (df)?/2.

In both sine formulae (194A), put these values of angles: @10 = ¢, waz = dip. The latter
is the differential of an are @ under angle £ to the segment @ Further, by abstract spherical
hyperbolic analogy (323) to (172A) at n > 2, and similar to inferring hyperbolic formuolae
(144A) in Ch. TA (using direct and inverse ordering variants of (194A) with the anples @
and dp and relations (141A)), we'll obtain the differential of the unduced orthospherical
shift in (E™)) of (Q"+1) and, in particular, in the plane (E2)) = (e4,€5). In addition, we
use the angle da of the current rotational shift of the unity directive angle e, in the plane

(EH)™ = (eq,ef™).

l.'.\CBgi; = - D,

sinfha = = +sine - tan (/2) di.
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1
With the spherical sign Rule and normal relation sing dp = dp = sin g dey, in result we get:

_ g =% (m) _ SINY-€a N B L L
eéxeg_n'ﬂ an _1+msgr:®d(’g ez _tangdp r:».-_+1:a.|:|2 sine dg-en = (196A4)

1 _
= tang dy -an = %ﬁimmﬁ- — (1—cos ) do-en — |df = (1 — cos ) da = 2sin®(ip/2) da|.

MNote that the normeel reletion (of type above) will obtain with a rigorons justification in the
differential 3D Relative Pythagorean theorems in the last Che 10A of the Appendix. §t i elstrect
analog of (1T1A). In the Euclidean sub-space (E™)MY, this shift is couwsed by difference between the
read orthospherical rolation differentiol de, = do in {Eﬂ}tml on a curved trajectory (reegbe closed)
aned its spherical (here) cosine projection ondo the projective hyperplane I[I[E"}}“J !

It has positive values due to same directions of @ and £ The angles @ and dig are expressed in
the bases Ey and Em of (@™, This differential variont of the induced orthospherical shift and
rotation @ is uselul in spherical geometry, For example, on the Globe, it gives the chaonge of latitude

see further. (But recall that for two arcs, the single normal @ exists only in (@3] Thos, for
a triangle 123 in (@*1"). formed by dg12 and digza. with their also orthospherical external angle
(using the expression for vector element of the area |21, p. 526])). we infer bonded formula d5(d8):
(dip12) - (dipas) (&% = si Ndlyz) - (dlza) — _ dS1m

2 SETTog N T TR W

dfy; - @y = sine -

Due to the Harriot’s result in spherical geometry or geoerally to the Gauwss Boooet Theorem
|21, p. 533, the area of the geodesic riangle 123 (oo a sueface of positive constant Gaossian curvature
and the angular excess of this spherical triangle (here with external €) dfiza = 27 — (51 + 52 + £3)
are conoected as digag = dstmfﬂz = Kg dSjs; > 0 Az resultz, we obtain the differeotial and
integral formulae for connection of these two specific angles

dfa = dbiaa = %=Ka d5123 = 313=§133=%=Ka~5123

in the geodesic triangles on the hyperspheroid and, heoce, in the other curvilinear spherical non-
Euclidean spaces too. These formulae mean: the angle $13 of orthospherical shifting and Harriot's
angular excess +d123 in o spherical triangle 123 are equal, as well as it was for Lambert’s angular
defect —dyag in a hyperbolic triangle 123 (Ch, 7A 1

An inference of both these expressions consists in contour and surface integrating with further
applying their infinitesimal identity, This is internal poiot of view on the hyperspheroid geometry.
It (as well as any sphere) canoot be bent without loss of its metrical properties, and, beoce, it is
a surface of constant positive radivs. (The same i valid for the hyperboloid 11 as a sphere of the
imaginary constant radios i/ see in Ch, 12.)

The orthespherical tensor of rotation B3, in accordance with tensor formulae (1844, (187A).
i identical to teresor erguler cxeess of 2 geodesic trinngle on the byperspheroid. Angular deviations
(=ealar and tensor) take place due to dependence of parallel displacement on a surface with curvature
on its way, The scalar or tensor angular excesses are expressed through the orthospherical shife 8
or 8 as the result of & closed cyele of geodesic motions along the triangle sides! Takiog into account
the analogous results in Ch TA, we formulate the following our result for the spherical geometry
on the hyperspheroid with frame axiz, which adds che previous our results for the byperboloid 11
and for the hyperbolic non-Euclidean geometry.

General Corollary (Theorem). e induced orthospherical roletion 8 ds o frae cowse of the
Huorrviot, Lanbert and, v general, Gouss Borne! anguler devietions in conwer geodesic figures in
nori- Buclidearn geomeetrics, incuding their sphericel and hyperbolic types!

The special case is summation of two-steps or polysteps motions when both particular angles
are infirdesieally seell Suppose that, for example, in foemuolae (193A), (196A) with n = 2 hoth
these principal spherical angles are infinitesimal. So, for right trinngle 123 with cose = 0. we obtain
as e —+ 0, e = O

12 - {132 - 33
‘.‘-"13=‘I|,|'"F"‘f3+59§3s b1z = £ 2?’33: aRz = Sz - Ka.
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For ksteps principal spherical motions on the hypersperoid, according to formula (193),
the following, peneralization holds:

E
m =R |3 ¢
()]
vy —+0 =1

V=pupwm B k<n, eg==2=/2

They are the simplest infinitesimal formulae for the peometry on the hyperspheroid as of
the Euclidean geometry. This confirms the infinitesimal character of Euclidean metric on
the hyperspheroid of radius R

Corollary. Geometry of the hyperspheroid is infinite simally Buwelidean.

Conclusion. Orthospherical induced shifting © gives the clear mathematical explanation,
with the wse of Tensor Trigonometry, to the Harriot angular ezcess in closed figures in the
spherical geometry, in that nuwmber, on the surface of the hyperspheroid!

Commut ativity of the partial anples of motion (ares) takes place in the scalar variant
of conventionally orthogonal summation formulae. In particular, the first differential of the
total anpgle are is represented on the tanpent nedimensional Boclidean subspace {E™) to the
n-dimensional hyperspheroid embedded in the quasi- Euclidean space {QP1) = (E"B )
with reflector tensor IE (as on the hyperboloid 11 in Ch. TA):

(de)? Z[dsﬂm], (dD)? = (Rdg)® = ) [dlg]*,  £ug=+m/2,  (1974)
k=1

According to the Big Pythagorean theorem (see it in sine versions: scalar (1904 and
vectorial (192A)), in spherical geometry of the hyperspheroid, it is possible to use Cartesian
suby base E{nj of the original base By = {I'}, as sine projective homogeneous coondinates into
the Enclidean projective hyperplane {({E™)}, but only inside the ball with radius B or for the
quasi-Buclidean tensor triponometry at B = 1 (similar to tangent model of the hyperbolic
geometry on the hyperboloid 11 in Cho 12). The sine model of principal motions with
its Pythaporean theorem are preferred here, becanse they are bounded by finite parameter
either 1 as triponometric one or B as peometric one for considerations of geometric problems.

N

In {@*1), for analysis and interpretation of two-steps motions on the hyperspheroid by
differential method it is useful to apply decomposition of the inner total differential digg
along the instantaneons axis ™ into its spherical orthoprojections, parallel {along eg) and
orthogonal (along e,) ones with respect to the current vector of principal motions eq at the

local point M in the current base Eg. We decompose this current inner differential of the
increment of motion with the spherical differential cansing it into the parallel and normal

parts by the Pythagorean Theorem in the current Euclidean sub-space (%)™ with respect
to the direction of ey, as follows:

JR— 2
dgp - op = cosc dpp - e + sine doy - e, = Fpp - et dby -0, — (dpe)’ = (d0p) + (dies )
(1084}

r:HJ, €y = COBE - dt., e, +sine - d.lp e, _d.l.._, (=3 +r:iip (= —}r:iip_ r:HJ, (rﬂp) .

It is the spherical Local Abselute Euclidean Pythagorean theorem for spherically orthoponal
decomposition in the Cartesian sub-base ES of the brutto differential di - eg, with respect
to the directional vector e of the hyperbolic angle of motion . The parallel part accelerates
motion along the curve, the normal part rotates the direction of motion with its curve.
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#F #
Consider the hyperspheroid of radius R including trigonometric one it B = 1.

Hyperspheroid (see at Fipure 4) has B = +1. (Radins may be B), @ > 0if Ay = 0.
Represent it by £(p) = rw) as its radivs-vector and the principal tangent to a regular curve
and by n(y) as the principal quasinormal to the same regular curve in (@) under absract
analopy with hyperboloid 11 an 1in {PT1Y) (see in the end of Ch. 6A). They are expressed
in Ey with the clockwise @ connted off § and with counterclockwise @ counted off (7)1,
With presentations from its North Pole and Equator, we have the following two variants:

t{w}=[3‘““””]=[5w‘e“ ] n(sa}=[ cos ]=[°°5““"“‘°]. (1994 — I1,T)

Cos o Cos o —sinyg —sinyg

() 1k - t(0) 1k = SIN' 1 -SIN @1 + cos” ig = sin® 1k - €€, +cos” i = 1. (2004 — 1)

(€)1 - n(€) 1k = €08’ @1k - COS Py +5in” @1x = cos” Y1k - €48, +5in” w1 = 1. (2004 — 1)

sin @y is the n x Lvector orthoprojection of (@) into (E™Y parallel to 3,
cos @y is the scalar orthoprojection of (), into ¥ parallel to (7)1
€os @1k is the n x Lvector orthoprojection of n{y) 1k into (™) parallel to 3,

sin i1 is the sealar ort hoprojection of n(g)y into 7 parallel to (™)) — (see Figure 4).
Consider for the 1-st case the geodesic motions 12, taa — t1a on the hyperspheroid along large circles
in B and Egz with tensor of motion (179A ), polar decomposition as in (I81A) and by analogy with (1484 ):

tya t1
ot [ ot ey, 2] o
t1 t1
= {rot @43 - (rot q:ga}éi -rot’ $yg} - rof $yq - [ l: ] = {rat ¢‘13]'E',1 - {rot %}E_!i - [ t: ] =
ty £y tia
=rot $13 - rot O13 - [ l: ] = rot ®13 - [ l: ] = [ si:::;t-;a ]

We ll continue this in Ch. 104, A spherical triangle on a hyperspheroid with radins B can
be easy implemented as a cyele of 3 geodesics. If the start apex is a central element 1y, then
rot ®12-11 =Wz, {rot $1a-70t $yz-rot’ Ba}p Wiz =Wz, {rot Sa}p Wz =,
The triple can be converted into a non-centered triangle with the admissible transformation.

A trajectory of spherical motion wye — wyg is in the cot of unity hyperspheroid by the
eigen quasiplane of rotation {rot @gg}E . Intersection of this quasiplane with the projective
2

by perplane is a straight line segment ag in {({E™)), it corresponds to this geodesic trajectory.

Thus, for any twoe points Wa and Wy on the hyperspheroid of radius B, there evists
a unigue geodesic line passing throwgh them. However, there is a special case, when two
points of the hyperspheroid are polar (as North Pole Cyp and South one at Figure 4). Such
two points produce only spherical digons. (1t is a polygon with two sides and two vertices.)
This illustrates the following well-known Theorem of spherical peometry: any two points of
a semisphere (beside nonpolar ones) of a sphere can be connected by a unique are of a large
circle (as geodesic line), this are is shortest in the natural Foclidean and Lambert angolar
lenpth messures. Therefore, this gives the matriz tensor trigonometric way for solving such
a problem. In the base Es = rof &y5-Ey. the geodesic motion Wys — Wyg is going along the
shortest are with lenpth asg = R-ag. By (201A), for only a point element my, orthospherical
rotation By, in fact, annihilates. A triangle cyele of motions returns a nonpoint object into
the start point, but the geometric object in it is turned in the base Es at induced angle ©y3.
Hence, the application point of this non-point object is trapsformed here as Wy — 199 — W43
along the spherical geodesic lines Rigya and Ripog as ares from the large cireles of radins B
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Let us apply the 20 hyperspheroid with the frame Earth axis from sect. 512, with North and South
Poles (at po = 0,&0 = £x/2 and #p = 0] and the greenwich reper meridian for a tensor trigopnometric
model of any angular motions on the Earth globe with two its fixed angular coordinates: § =x/2—p
(& latitude)] and @ (& longitude).  For this, we'll use both motion tensors from (179A) and general as
TEmJ =rot ®-rot 8 see it below in (2024, (50, rod B may be free and induced orthospherical rotation along
the globe parallels.) We can begin the angular motion from some choosing point with its two coordinates:
Eo = w2 — o (as initial latitude with respect to the Equator] and 8o (as initial longitude with respect
to the greenwich meridian), Accordingly, in it, we have the initial values of the two tensors as rod $g and
rot Bo with Tigy = rot ®o-rot Bo. At the given motion in Narthern hemisphere for measuring we chose the
counterclockwise @ = /2 — £ with its zero point Crp as the North Pole, but after the Equator transition for
the same motion in the Southern hemisphere for measuring we chose the clodewise @ = /2 — £ by change
of its sign how on the upper and lower parts of the globe, For the Southern hemisphers, we change anly the

sign of & latitude, For the Western hemisphere, we change anly the sign of & longitude, See also in Ch, 10A.
¥ kK

Now, we describe in general form an algorithim for evaluationg main characteristics of summary
polysteps rotation (motion) in (@) and (@**Y) = (E2BY) in the scalar, vectorial, and tensor
forms.  The algorithm starts with application of formuola (485) for right transformation of the
original base Ey = {I'}. On the final step of the algorithm, the polar representation (176A). (177A)
accordiog to (TR1TA)-(184A) is wsed. Oon these stages, with T and T from (183A). the homogeneous
modal transformations are

E: = rot ®12 - rot &2 ---rot Pre—1ye - E1 =Tie - By = {Tw},
Ef =rot ®_qy,---rot Bz3-rot @12 - E1 =T7, - By = {Th}.
Ty = rot @4 - vot By = rot By, - rot tl;i:, T = rot 1{1. srot (—8u) =rot (—B01) - rot ..
Tie-Th = rot? @y = rot 2@y,  Ti, - Tie = rot® Gre=rot 2 b1 .

&
. !
rot §y; = rol’ O - rot By -rof B rot O = rot’ $ae - The.
LChe matrix rot @4 is evaluated io the base By io canonical forms (313), (314): the matrix rot 1,
by (209 or (497). Quasipolar representation (1T6A), (177A) is used for inferring the general law of
summing multistep motions or mest general homogeneous rotations in the spherical trigonometry
of {Q""'i}. identical up to radivs-parameter B to the spherical non-Eoclidean geometry of the

hyperspheroid. As main result, we obtaio the following,

The canonical and polar forms of Quasi-Euclidean homogeneous transformation,
in that number, for arbitrary and summarized multistep principal motions:

i
Tie=rot ®ra---rot &y gy, =10t -0t B=rot B -1t & = (2024)

COS - €56, + eye] | —sing-e; | [ [rot ©)nxn | 0 ] _
: -

= +sin - el | cos @ 1] | 1
— —F )
— [ [T‘Jt B]nxn|[]:|1 COE 2 - E§E:€+E§E"§ —mn.;p.eé _
0 | 1 +5in.:p-e"é | cos @
[Tﬂf e]ﬂxﬂ_{l _DCIS\'PJ'EEE; —sin;;;nea
B +sin.;p,e*é | cos g =

— .
[rot Blnxn — (1 — cosy) - €5€”, | —sing- ey
iq

= : (Compare with asymmetric tensor {153A)).
+sing - e, | cos i
o
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Formulae (202A) give General law of summing principal rotations (motions in (Q™+1)
and on the hyperspheroid, expressed in their canonical forms with respect to the initial unity
base By = {I}. The matrix rot Bt 1y neny B emanated, for example, by the last element
tnn and all the rght elements #e for matrix T in (202A). They permit one to express it
in the base By in canonical forms (313), (314) with the frame axis in (@) and evaluate
scalar and vector trigonometric functions of the anple @ with its directional vector eg.

The 3D case corresponds to . = 2, when the canonical stroctures of matrices rof g,
and cell roft Bays are expressed by (313) and (259), but with 8 The complete matrix
rot Baya at n = 2 or general Tot Omat)eme1y may be computed also by matrix formula
(184A), or throngh (497)-(499) if n = 3 with the frame Boclidean axis ey and the sign of 8.

fn=2k=12 there hold:

cosp =133, sing = +y/1—cos?p= || —sing-e||; sinygr = —ts;
. £ . £
cosoy = —tpg/sing, cosoy, = tq/sing, e, = {msa'k}?eé = {cosa,. }. (2034)

DD59=E‘;~EE§=E"£-E¢? sinfl = v1 —cos2f > 0at £>0and v. v.
o

Besides, if n = 3, then we use formulae (409): ﬁr}(ﬂm} —e. Qe = 4 =10 f3 -E\r’. It is

similar to (153A-155A) in (P™!) un the abstract hyperbolic-spherical analogy from Ch. 6.
Scalar final results do oot chanpe under the mirror permuotation of particular motions.
It leads ooly to the substitution in (2024 T — T* with 8 - —6. e; < e

o
The specific matric T* in (185A) with contrary ordering of partial motions (T* #£ T as
d £ B but & = —B') has the peneral strocture, potten from T with e; +3 e,:
o

T* = rot By - 1ot B3 = rot ;{i -rot (—8) =rot (—8) - rot & = {rot (—0)-T -rot(—6)}

_ [ [rot (=8)]ax2 — (1 —cosy) -e.e; | —sing-e,

_ - (2044)

+ s - 8 | C08
T and T* are connected by simple transposing in original complex binary base (271), where
due to (277) they both are Hermitianly symmetric (see at beginning of this Chapter).

Theorem. In general, any polysteps non-collinear spherical rotations rot ®q in (@) or
maotions on hyperspheroid are represented as spherical one and single orthospherical shift.

Such interpret ation of law (202A) for summing spherical rotations (motions) is confirmed
in the guasi-Buclidean space, for example, by the fact, that rot © is revealed in the base
Eyg = rot &y - By by polar decomposition in (181A). In the Chapter, laws of hyperbolic
geometry motions, established in Chs. 5A and TA, were transformed sometimes by us very
simply by inverse hyperbolic-spherical analogy (323) T — @ into spherical ones! And then
polar representation (183A) was inferred in analogous form of the quasi-Euoclidean tensor
trigonometry with the use of anslogy (322) —id & T Between two types of peomet ries and
tensor triponometries, we used the abstract anslogy & —id & T & il & & entirely.

#OF #

First steps in creating hyperbolic non- Euclidean geomet ry were made by )0 Ho Lambert
[36] and F. A Taurinus 38|, Lambert assumed its geometric analogy on a by pot hetic sphere
of an imaginary radins iR with relations @ — iy and 4 = (), and revealed exactly the
angular defect in the hyperbolic triangle. Taurinus established on the sphere fiest formulae
of its planimetry and proved that in its triangle the sum of anpgles less than «/20 Later
F. Klein |48 and H. Minkowski |65] proved that this hypothetical peometric object is the
upper complex hyperboloid 1L Nicols Lobachevsky |40, 41] and Janos Bolyai [42] created
independently this first non-Eoclidean geometry in sufficiently full forms by the Eoclidean
axiomatic method. Unfortunately the Lobachevsky—Bolyai plane and space on the whole are
unvisual for men, in contrast to the Lambert’s imapinary sphere (as upper hyperboloid 1),



“Eoerything must be made as simple as possible. But not simpler.” — Albert Einstein

Chapter 9A
Real and observable by us space-time in the gravity field !

ln present we can state, under enough logical previouns and modern arguments, that | indeed
Tensor Trigonometry with its differential and integral parts since 2004 |15] is applicable for
simplest correct studying and description of relativistic motions in the Poinearé — Minkowski
space-time of the Nature in the presence of pravitation and in parallel with the simplest
trigonometric explanations of all STH- and GReeffects and paradoxes. For this we apply
mathematical-physical analogy (sect. 12.3) between physical scceleration and intensity of
the gravitational field on the basis of the classical Newtonian Principle of Equivalency, with
introducing the so-called aecelerational and gravitational cosines as such equivalent factors of
two specific time dilations. Note, that they do not relate to the well-known Minkowski time
dilation from velocity (Ch. 3A). Here are the factors from acceleration ge and intensity gp.
If Poincaré life had not ended so early — at the ape of 58 (in 1912), then, perhaps,
he would have continued to develop his new relativistic theory of space-time and in the
pravitational field along the same path, especially since in his pioneering article |63 he
predicted the possibility of the existence of pravitational waves, 1. e, without nnnecessarily
bending space-time, but duoe to additional bending light rays to Newtonian optical reasons
—see below in (208A). Before the creation of hyperbolic non-Fuclidean peometry, in fact on
the surface with its inherent curvature, it never ocenrred to anyone to take light rays for as
if & priovi straight lines. In GTH, the Einsteinian mixing straight lines and light rays into
one concept ocenrred, but as geodesics in the curvilinear psendo- Hiemannian space-time.
The historical merit that the inertia of any massive object is created by the Mass of the
Universe as a whole belongs to Ernst Mach |55] — eminent physicist and philosopher-positivise
of Science. The mechanism of action of this fantastic Mach hypothesis remained unclear for
along time. And Albert Einstein in his GTR refused it with all the Galilean inertial systems.
The Mach System, associated with the Center of Mass of the Universe, specified a priori
the unigque inertial System of Galileo generally for space-time and relative to it all other
Galilean systems. But in 1964, finally, the Hipps theory appeared |82 which explained
that, during development of the Universe with formation of its Mass as a whole, the latter
produces the specific Higps field, created the Galileo’s inertia of any matter as the necessary
force of the Nature, Moreover, just like in the flat space-time by Poincaré — Minkowski, at
any point and in any direction of this Higes field in the Universe, the inertia depends only
on the mass of an object, in accordance with the Galileo’s Law! Then, it is the real space
time by Poincaré — Minkowski is combined with the homogeneons and sotropic material
Hipgps field of the Universe! This corresponds to conditions of the Noether's Theorem for
acting the Law of Energy-Moment um conservation. According to the Newton’s Equivalence
Principle, inertial and pravitational mass are identical, and this fact has been repeatedly
and accurately confirmed | starting with Newton's own experience. Consequently, with the
Newton's theory of pravitation, but taking into account the finite speed “¢” of the wave-like
propagation of gravity, due to Poincaré himself in [63], in fact since June 1905 such new
relativistic space-time was introduced! The term “uniform rectilinear motion” in the Hipps
Theory has been revived in this relativistic space-time. The so-called "ether", rejected also
by Einstein, factually returned in the Universe as the material mediom of the Hipps field,
but under other name. Poincaré and Lorentz never rejected the material mediom of the
Universe, and in their works it appeared under the term “ether” accepted at that time. So,
the preat chemist Dmitri Mendeleev has placed the “ether” in the zero cell of the fundament al
"Periodic Table of Chemical Elements", which he had discovered on March 1, 1869,

Y'he chapter 94 had before discossional character up to this S-rd edition of the book.
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The new essential renovation of the real space-time conception is realizing from 1964 |832],
by the very eminent now Peter Higps, within the framework of the Standard Model for the
set of element ary particles, put forward a revolutionary theory, that during the formation of
the Universe, according to the Big Bang Theory of the eminent physicist George Gamow, at
the stape when its full Mass appears, the latter creates in the Universe a certain material field
with its most massive quantum particle “boson™. 1t is the Hipps field creates “inertia” as the
fundamental force of the Nature under such its well-known name. The inertia acts on any
massive object proportionally to its mass (as its charge), but iff this object deviates from
the uniform and rectilinear motion in the field, i e due to Galileo’s Law. This Higes theory
was strictly confirmed with the discovery of the Hipps boson in 2012 at the Hadron Collider
in the Switzerland. And he was deservedly awarded the Nobelean Prize.

We hope that the brief explanations above help to understand to our readers, why the
author, since first publication of Tensor Trigonometry in 2004 |15], develops it together with
the many various applications of this new math subject in the Theory of Relativity, namely,
in the 4D psendo-Eoclidean Poincaré — Minkowski space-time. But, unlike a number of very
agpressive apologists of GTH-curved space-time, the author did not impose own anthor's
point of view on the other men, as should be in the Free Science, developing this direction,
in accordance with own self independent scientific approach. Besides, we take into account
the first theory with flat relativistic space-time in a gravitational field by Nathan Rosen,
who was Einstein'’s assistant at Princeton. However, Albert Finstein did not prevent him
from daring in other direction! But the book author believes that theories with curving
space-time may mapping only observational space-time throngh s if & pravitationsl lens of
the pravitation field, but any real caleulations can be troe only in the Poineard — Minkowski
space-time. Our approach is a pood compromise that does not destroy the harmony, but
excludes the positivism in real assessments of the relativistic world events. Unfort unately,
agpressive behavior of specific apologists of a curved space-time resists such a peace-loving
point of view and continues to secretly and persistently hinder its popularization.

The Special Theory of Helativity (STR) formulates the Laws of relativistic movement of
the matter both in inertial and in uninertial coordinate systems under abstract condition that
gravitation is supposed to be absent — see, for example, in |T6]. The absolute motion takes
place in the macroworld and the microworld and does not depend on g nature of active forces.
ln Chs. TA-TA. we used tensor trigonometry for describing Laws of the relativistic motion in
clear trigonometric forms. In June 1905, Henri Poincaré made the super revolut ionary stepe
he introduced the imaginary time axis with scale coefficient "¢" identical to constant speed
of light in far Cosmos. With the use of this innovation, he suggested the idea of the united
complesx-valued space-time with its psendo Euclidean metric based on the group nature of
its coordinates’ transformations, named by him as Lorentzian ones |63, 76, p. 107, However
this genius idea of Poincardé was ignored and not estimated by contemporaries (besides by
Hendrie Lorentz himself). 1o 1909, Hermann Minkowski suggested the realificated variant of
the psendo-Fuoclidean space-time ahove |65; 76, p. 41, but without reference to the Poincars
fundamental works. He has introduced in the relativistic theory the notions of sotropic cone,
time-like and space-like intervals, proper time, time dilation and many others. | We can only

guess what the relationship was between German and French scientists at that time!)
#

While elaborating the GTR |69], Albert Einstein paid attention to empiriocritical Mach's
regards on the celestial mechanics uniting dynamics and pravitation, especially on the Law
of Gravitational and lonertial Masses ldentity. So, pravitational mass does not depend on
substance nature, this was established by 1 Newton and confirmed with high precision by
L. Eitvis. This Principle of Equivalence holds in classical and relativistic forms, but no one
has established experimentally: whether this Principle applies to moving mass "m"
We'll use below such kinematic full mass "m" of the Mereury with non-moving mass " Mg"
of the Sun in our trigonometric representation of the Mercury peribelion relativistic shift.

or not 7
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For more convincing concept of GTR, A Finstein had proposed the General Principle
of Relativity, instead Galilean-Poincaré, in which all Laws of Nature have covariant forms
in any free moving frames of reference (but only in the frame’s origin!¥). For its realization,
he introduced in addition the General Principle of Equivalence of inertia and gravitation.
This led to curving 4D space-time of GTR. Such bend relates not only to time-arrows, but
and to the geometry of 30 Eoclidean subspace with its geometric material objects!?

(Mhwiously, this Principle and this definition of an inertial system as freely falling in space
completely contradict the Higgs theory, This time aggressive apologists of GTH remain silent!

Another explanation of both these masses identity Law is closer to Mach’s approach. So,
for a body M, the Newtonian foree of attraction is cansed by active gravitational action of
other material objects, while the foree of inertia is cansed by passive gravitational influence of
the whole Mass in the Universe M and now due to the Higps theory, o such interpretation,
the 2nd Newtonian Law of mechanics complements naturally his the Law of Gravitation.
To get for M their geometric influences in Ep, of (P31 we pass from its inner acceleration
to its proportional analog in (81A) — the local psendo-Euclidean corvature K of & world line:

—Fiyy = Fiay = mog = moc” Rk = Eo/Ri — Ry = Eo/F), K = Fg)/Eo < 0. (2054)

Here:

Fisthe inner (i e, applied in the current base Em]l active foree cansing bending trajectory

of the absolute motion of M in (P*1) with the psendo Euclidean curvature K

Fiygy is the passive force of inertia counteracting to F in Eg;

my and Ey are the own mass and the own enerpy of the material point;

Ry is the radius of instant aneous absolute pseudo-Euclidean corvature K of the world line

at the point M in (P31

cis the constant module of 4 psendovelocity of M in (P31 introduced by Henri Poincaré.
Energetic pravitational form (205A4) of the 2nd Newtonian Law is in accordance (and it

is necessary ) with his 1st and 3rd ones, where, in particular, F = Figy or F = Fipy s the

force of gravitation:

F=0¢ g=0 & K=0(st), F = —F (3rd). (206A.)

lu this Chapter, well bond both kinds of the matter Higgs inertia, caowsed by acting either

physical acceleration ggy (1) or gravity-intensity gy, (2) with two equivalent local cosine
time dilutions. That is, the inertia in both Ends and the local time dilations in both Ends
are bonded in (PP, The first case is illustrated at Figure 3A, Ch. 5A, with trigonomet ric
and physical formulae. See the following development in relations (209A), (2104).

From "energetic formula" (205A), Ey = —Fy - B, a5 an inertial torque of the passive
force Figy, causes local pseudo-Eunclidean rotation of 4 world line (F = 0 & RBg = oo).
For each body absolutely moving with general acceleration (in extreme cases, as parallel or
normal to velocity), such "gravitational interpretation” of inertia as in (205A) means that
Fiy is the centripetal foree always directed towards the instant aneous center of a pseudocirele
(either of a hyperbola or of 4 normal circle), and namely Fyy curves world lines in (P31,
Recall, that as long apo as in the 15-th century Nicholas of Cusa (Nicolaus Cusanns) noted:
"The Universe is a sphere, and its Center is everywhere!"

With results, gotten preliminary in Che TA in (131A- 1) and (145A), for a point M of
summations in {P*1), we have got the Euclidean Rules with Pythagorean theorems for
summing orthogonal hyperbolic anpular differentials, corvatures and inner accelerations, in
that number, collinear and normal ones. Indeed, at cose = £1, we have from (124A4):

sinh® ;3 = sinh® 7, + sinh® 433 + 2 - sinh® 3 - sinh® 23 + 2 - cosh 7,3 - sinhy; 3 - cosh 23 - sinhyzz =
= sinhyy3 = sinh 3 - coshyas £ coshyyz - sinhyes = Y13 = 112 £ Y2a-
At Tz —* 0 and Y2z —* 0. we obtain d’}'-u = d’ﬁ_g + d’}'gg — k3 = kyz £ bz — g3 = 01z £ gaa.
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But at cose = 0. we have fo independent two 2teps and three steps sine summaation in {'P3+1}:
sinh®yy3 = (cosh+yag - sinhyy2)? + sinh?® yza = (coshyya - sinh ya3)” + sinh? 9.

At iz —+ 0 and yza — 0. we obtain: dyly = dyfz +dyds = ks = k2 + k1 — gha = 052 + 0%,
By apalogy up to Eucldean dimension 3 in {'P3+1:|. we have:

sinh® 14 = sinh® yy2 + sinh® 23 + sinh® ya4+
+ sinh® 712 - sinh® 23 + sinh® 13 - sinh® 434 + sinh® 23 - sinh® a4 + sinh® 12 - sinh® 423 - sinh® a4 =
= (coshyay - coshyaa 'Si]']]l"r'i-g}z + (coshygy 'SiII]'.I."r'g;g}z + siuhz-"f;,,. =
= (coshyiz - coshyzs - sinhya4)® + (cosh-yyz - sinh 23)” + sinh® y12.
Lo its turn, at yiz —= 0. 23 = 0 and s — 0. we obtain
l'-"}'fq = d’]"izi + d’}':*?a + d’}'gu. — kig = kiz + k33 + ks — i1 = 012 + 0% + Gaa.

If & material point M is subjected to simoltaneous actions of a few of active forees with
different directions {only three may be independent), then forces and penerated by them
inner accelerations are summarized as 3-vectors in Euclidean subspace (£3)0™) of (P3+1):

T t T t
F=) F;=) mo-gy=mo-g=mog-e — g=) g, k=) k=K-e (2074)
F=1 j=1 j=1 j=1

Therefore in (P*1Y) with fully compatible both the Higys inertia and Newton gravity fields,
we fiz the cardinal difference of this non-relativistic Law of summations proportional inner
characteristics of motions and regular curves from the relativistic Law of summing velocities
in STH, and the same characteristic in the curving space-time of GT'H by Einstein.

lon Ch. 10A | we'll obtain all Relative and Absolute Pythaporean Theorems for summing in
(P and in (P*1) all inner curvatures, accelerations and hyperbolic or spherical angular
differentials in the most common forms.

Since the admissible spherical curvature has similar properties, then for the radios of
curvature of lipht's way, the additive optical Newtonian formula acts with the same property:

1/B1+1/Rp =1/Ra, — ki +kp =Fka (Ba =const), (2084)

where Rp is the focal distance of a lens or a mirror, it is either negative, or positive. 1t is
the Airst formula for summation of curvatures applied repeatedly at summation points
of a certain light ray along optical acds, each time for trigonometric admissible curatures!).

In STH, froan the point of view of & Gollean-anertaal Ohseever Ny o the Eoclidean subs pace (EBI qny

oo lerabed Trame_ ol relerence B, as an ansbonloneous base, preserves Tocmally Tor his estimations the inectiality
in (PHY e, Em € (Ezy. This fact was used in Chs. 3A-TA. However, lor an acoelecated Ohserver Neg, sitoated

in the corvent Evelidean sobspace (£330 jis fame of relerence, noted Tuher as B, is Galilean- oninertial one
with respect 1o {E_-,'}! Thuos we have Lhe relofimsbae duolisre and two ways [sioplest and complex) Tore deseeibiog
aceelerated movement in (P31 Soeh a doalism was considered, for example, in [L05, p. 121-128]. In By = {%.eT}
coordinates ave curvilivear. Mappiong E_-,; 3+ B is oo phism, Specilie examples of soeh somorphism weres given
in Ch. 54 and BA as deseed ptioos of Uhe same by pecholie motioos o ioectial aond ooioectial coordinat es with map ping
pro-generated thoe lke Iy pecbola ioto other corves — as 00 a thoe lke catenary and as 00 a space-lke tracteiz with
ane connnon ioternal argument ¥ along all these corves, The connection between Lhe coordinates o the hases
Em and B, s expressed also by a smooth Tonetion, that is why di Terentials diet) and dEg in B = {&, 67} are
homogeoeons Hoear Tooetions depending on d:‘l!im} and dier™) in B_ = -[x("':',cr("':':}. this b= equivalent to 1 he

one-valued conpection of diferentials as di = V(‘__]ldu':“‘:_

The are of a world line at a poiot M, as jovaciant sealar element in (P3P may be evaluated by these two

wiys, #ither in B, or in By

[der)]® = [da™]" - 1F - du'™ =di’ - {V, - IF -V}, ) - dil = di’ - G, - dib.

The matriz of local linear transfonnation Vg bs uniguely determined by this geoeral congroent representation of
the meetme tensor of merbio [see also josect. 11.1):

Gﬁ} =R -D* -R=(VD¥.-R) -I* - (VD% -R) =V}, - I* - V.
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Thus, the snatval meetrie of the bosts space of cvends da preserved under possage inbe dbs aceslerated bases. In
the Mat Minkowskian space time (P3N applyving Gavssian corvilinear coordinates with respect to B Tor juner
analysis ol accelecated motions Tormally leads 1o the ose of Hieel tensor caleolus with conservation of topology.
So, o uninertial and inertial bases, diferentials of thelr coordinates Tor the same are are afine conpected, this
connection s determined by vaciable tensor G:E in the Minkowskian space-time [the so-called melrie lensor of
meerbia). The tenzor acts as a cectain Tooetion of all coordinates of ao arbitvacy poiot M. 00 as smeportand Hhal
temaor of Hieronman-Chrsboffelion curvabure Jor Gﬁ w zero here, as Mhas bosis spoce-limee as Tod. Tooan
accelerated Trame of relerence, hending the coordipate geid takes place just relatarely to hasrver Ny, He s
situated always in the ceoter of his own instantaneous hase B, Bul Goltleme-inerbiol Ohserver Nj nolices no
hend of cosrdinates X and 5 with respect Lo the instantaneons Tame of reference B wherever No 15 in Ee. In
particular, a rod moviog with accelecation together with Ohserver Ny s seen by Wi oas cectilinear, since [or the
Oh=erver al H.II_"-' paviuis ol B the metrie tensor is IE . However, wnsnerbial Ohsecrver N 0 By can see the exietly
same rod in hent. This relativistic effect is observable! There ave no additional mechanieal stretehes in this rod
merely n-r-r:rueri hent, as the same acbive dnner Joroes may be expressed o aoy ioectial Trames of reference (doe Lo
the common seale of a dynamomel e o E_-,;_l. They are identical az abzolute charactedistics in (P3P The met vie
Le s G:‘i i5 wmed For representiog the gquadeatic Toem of & meteie iotecval o the basis space as Uhe sealae prodoct

af diMerentialz, Soch tensor s determioed alzo io terms of a loear element @ diTerentials:

2 dUcow
[di]* = -du,,, = du’ mm =du  Gpydu,,.,
du
=dul,, —=du,,, =dul_ &pdu.,., G =06
g2-11 d'l.‘lmu g-1i ]

In accelerated BEm, one have distorted Minkowskl geomet vy, varialble Gﬁ}. and the gero tensor of the Rleman nian
Christolelian curvat ure (sect. 11.1]. Christoflelian symbols o B, play a cole of the lensor acesleration .

I grawtatacn i gresend, Lhen Ny o Ej; Dxees the distortion of Eq too with the mete Qensor ot = {gﬂ} (1.
iC G the 2o order of approcimation o the real distortion! ), as Ny and N, ace divided by a Geld. The 1ﬂ.l'\dlllﬂ.|
reason Tor such distortion is that in cosmic space there b= only one ool of estimatiog geometvie and temporal
parameters of GTH: it is a lght ray between an object and s external Obsecrver (oo the Earth N o a weak fleld).
This lght vay, doe tochanges o the potential of the Beld oo a Hght's path, i sobjected to corresponding Soldoer's
|| s addit jonal Einstein's [6%]) beods, The idea of acceptiog rays of Hght as steaight loes or geodesics in GTH)
in cosimie space was taken by Eiostein Doom the expeciment of the great Carl Gaoss with his stodeots (as a head
af the astronomical obsecvatory o Géttingen] with measociog the som ol The angles of a teaogle Toemed Ty @ hees
mountain peaks. [ owere pecessacy o sobve the dilemma: el her what s observed and measoved osiog Hght rays
should be taken for realilty (a pesitivist appeoach), or Dhe sane shoold ool always he considered as real assessment
al the preseat, but ooy as its mappiog with possible distoetion of real local data (an objectivist approach). Eiostein
accepted the At point of view, as a cesolt of which, a corvatore of the single space-time (R3FY of GTR with
its thne arvow and geometrie objects arose. Then Tor Ny o the Held, the tensor of Riemann-Christoffel coevat ure
becomes non-gero o GTH. The dualism o description of the same motion by Ny and N, was esseatially widen:
now two sealar prodocts ave onevaloed Tonetions one of anet her, To space-time (RIFYY there is oo such deviations
of Hght rays, hecanse in it these rays ave steaight loes, Do the space-time (P3N hot b deviations of light rays ave
fized with respect Lo ils pseodo-Eoclidean steaight Does o Ej;.

Similar dualism takes place in the bimelrie Mheories of grovbobon (BMT) with metrie teosors IE of the
Minkowskian space Hme and GF aof the pseodo-Biemannian space-thme, They do oot Tl veluse of the Minkowski
space-Uime, as GTH, amd ose i do dierent degree. The Hest BMT was constrocted, o the USA jo 1840- 1575
Ly Mat han Bosen |TE], who was an assistant and colleagoe of Albert Elosteio, o that oomber at the Frioceton
University! In Bosen vardant of BMT, metvie tensor I5 deseribes in (P31 as o STR Uhe inectial part conpected
with the abs=olote matter motion.  The tensor of energy—momentum for a Reld of gravitation s evaluated,
characterizes this Reld by GF, which determines (BRI with the pzendo Riemannian geometry Tor observations
of sneh elativistie movements o a weak Aeld. Under translation inta (R3FY by Observer on the Eactl, the
time slows downy bl geomelrie poramesbers are as §f destorbed s reod Knelie distorbion of moteriol objecls s
amegeran ble. We have porades o BRMT Hke apparent optical corviog a Hght pletore seen throngh a leos, where &
i a0 grovebabional lens for {R:”-l} as bhe lemsed spoes-baree! This term bs osed o Astronomy, when cosmie ob jects
are obzerved oo the Eacth throogh a steong Beld of gravitation |47].

In the USSH, o 1HEL-1T8ET the groop of physicists Trom the BMoscow 51, Udiversity headed Dy academician
Anatoly Logonoy constrocted the relativistie theory of gravitation (HTG), as a kiod of BMT [104], vsed the same
Pws meteie tensors with dividiog inectia and gravitation oolike GTH. Gravitation is regacded to the Censor plgss cal
Jield in (P penerated by the tensor of enecgy-moment um For all kiods of matter ineloding Aelds, The motions
equations were Tormulated in the o Jective Ricmannan space-bime, generaled by tensor GF of 1his Reld.

The Riemanoian hinacy space has some ioternal local geometey, s geometey has a dilfecential chavacter,
delfed throug it he set sy oometeie met cie tensor of s s pace, as the Tuonetion of a poiot element . Bot the Blemannian
peoaneley as a whole dilfers sigonifcantly Trom homogeneons geometvies, soch as gquasi- and pseodo Eoclidean ones,
inowhich the concepts of groug of seobions, freedome of meotaen of figures, and togedoge end properlies ave of pacticolar
importance, Forthe Blemannian space as a whole with its iodefoite topology, the notion of "embeddability” with
respect Lo the Euclidean soperspace does ool make any seose. This caoses the aocertaioty For it ol the mioimom
dimension of 1he enveloping supers pace Temin. Bol 00 we restoeiel ooeselves Lo the stody of any topologically alioe
equivalent domain of the Biomannian medimensional space, then the valoe of e b5 detemined eotively by its
local dilferential- geometeie propecties. The symmetcie tensor of (™) contains a maxhmom of kB =m - (m + 1),/2
independent Tunctional scalar elenents g dn all its eells. Heoce, the domain T ol the Blapanoian mespace s
embeddable in Mal (%) withoul changing internal geometry. This was inferved sieietly by E. 1. Cartan |108].
Consider an analytical defoition of T o the sopesspace (E™), where m 2k owith s Cacrtesian base theoogh
% lradius vector @ with m degrees of freedom of translations. Let each degree of freedom @ corresponds to the
Gavssian corvilipear coordinate v, of the Rlemanoian mespace, Theo there is an exact map via) + wiv). Heoce,
al an each poiot ¥ of T io (R™) there exists mox m Jacobi mat iz dofdv (m > m) as st decivative of oo v
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The interoal geomet vy of T s defoed {hroogh Che homomuoltpleat fon as Che moxmometcie teosor of (R™) o (£™):
dul’ [duo
dv' .G . dv = du’ - du e G+={E“} {E} det @+ £0 (v,ue D).

For (R¥Y due 1o A, Friedman in 1861 [108], there is 100 space of embedding (P and then

du J-It-

d
r.-nr’-f;i-:nr=r.-ru'-:t-::u.m.ai={E {E“},mci;eu{v,uem.

For the Tunctioonal independence of all kB element s of the syoomet vie meteie Censors, i s pecessacy Uhat the inegual ity
n o= k holds, @ the cose of an equal signe, Mas mede pendenes o realized ondy wth bhe offine topology of the
grven Miemanndan spoce. Oibherwise, Lhey ave conpected Dy some pavametecs, So, Cartesian coordinates of a
sphece ave conopected by s radios B For m 2> kB, the analogoe of Gaossian Egreghom Theorem allows 1o lower

the order of smbeddinog of a boooded domain of the Blomanonian mespace 1o al least R, = k osiog bheoding,

By this way, an izomorphic translation of the motions desceibed o Bdimensional pseado Eocelidean space, Dot
within medimensional paeodo-Riemannian space smbedded o it s caccied oot For the obzervational  pseodo
Riemannian space-time (RPN 0z n. = 100 (PP can be a Nat space-time Tor complete mapping motions

ina gravitatioonal Qeld by Obsecver fooa weak Reld, [ See move o 2004 |15, po 2802838 and Tocther o 2011 [107].)
* ok

For simplest kinds of gravitational fields, it is possible to use our trigonometric approach
with the Newtonian Principle of Equivalence as —gey = gay = gepy- The hyperbolic motion
in (P*1) (see in Ch. 5A), produced by the uniformly accelerated rectilinear movement in
the time under an action of 4 constant tangential inner acceleration ggg, is as if physically
equivalent to the hyperbolic motion under (only!) an action of & static gravitational field with
the field intensity g (as the rectilinear movement in the time) — both beginning from the

origin of the common base By (with = =0, £y = =0). Another simplest psendoscrewed
motion in (P} (see in last Ch. 10A), produced by the uniformly accelerated circular
movernent in the time under an action of a constant centripetal inner acceleration gy, is as
if physically equivalent to the psendoscrewed motion under (only and one-times!) an action
of a spherically symmetric gravitational field with the field intensity gy from an astronomic
object (as the circular planetary movement in the time) — both with the common origin of the
base By (with =g =0, tg = 0 = 0). For a correct comparison of the local coordinate time £
{usually on the Earth) and the local time in the motion and in the field 7, we chose for them
as now adopted the local standard atomic clocks. Below at estimations of the potentials,
where g & const and v << ¢ for both rotations we use E & mgv? /2 = Jyw? /2 = mg(rw)?/2.

dﬂ_ld{::-} = deash gy = gpqydx/c” = Faydx/(mg - ) = dE(q /En = d(Pg)/<",

5‘% — coshy(ay = 1+ gayx/c? = 1 + AE (g /(mo - €2) = 1 + A(Pg)je? > 1, (2004)

% — cashoygay = 1+ (rgay)?/26% = 1 + Eqgy/(mo - %) = 1 + (Pg)/je? > 1.

diet) _

dicT) deosh gy = gipydx /& = Fipydx /(mo - &) = dEyy /Eg = d(—Pg)/c?, )
[

d

% =coshyipy =1+ 90X/ = 1+ AE 5 /(mo- ) =1+ A(-FPg)/c? > 1, }  (2104)

) — coshrygy = 1+ (rugg)?/22 = 1+ Eqgf(ma - ) = 1+ (~Fa) /& > 1.
dic?) )

In accordance with the classical Newton's Equivalence Principle, we introduoced in (2004
aceelerational and in (210A) gravitational hyperbolic cosines in result of acting inner foree
F = mgg on a body with inner acceleration in direction of psendonormal, cansing equivalent
cosine time dilation dt = dr always in direction of tangent to a world line (see in Ch. 10A).
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We established on these extreme examples of motions — hyperbaolic and pseadoscrewed
that a transition to proper time dt = dr requires proportional expenditure of energy, here
mechanical or gravitational, with increasing potential. 1t is the transition to proper time
needs in the increase of enerpy's level (as potential), with respect to time in immowable state
or in inertially moving frame of reference in (209A4) and (210A). For arbitrary motion, our
inferring is generalized by decomposition of the inoer acceleration g onto tangential and
normal accelerations, with respect to the current welocity vector v, in accordance with the
Absolute 3D Euclidean Pythaporean theorem (145A) — see it strictly in (229A4) Ch. 10A.
Therefore the true canse of matter inertia in the real space-time (P31} is a transition to
proper time df = dr, which i appeared in the process of accelerated /decelerated motions
with energetic expenditures! This statement corresponds to the Higps theory of inertia [82].

For instance, the direct and reverse hyperbolic motions need in equal expenditures of
enerpy — see at Fipure 3A. It is the transition to proper time df = dr is felt by us or
perceived by instrument as the inertia! Such translation of the time dilation in the nertia
is realized in the Hipps field with the definite energetic expenditure!

The gravitational time dilation was predicted by Einstein in 1907 |[73], but as local one!
From (210A) we get the Einsteinian gravitational time dilation, however at e = const (1)

diety) dTy
d(cta dTa)

However such time dilation is evaluated up to now by decreasing electromagnetic radiation
frequency, usually by oscillations frequency of photons. While, locally in (P31}, photons
get farer from the smaller negative potential —Pa to the bigper negative potential — Py their
kinetic energy he and frequency v decrease due to overcoming negative [(—FPa) — (—Py)), but
with incressing energy’s level (as potential) in the field with —Py. Therefore the Finsteinian
gravitational time dilation has a pure quantum-mechanical nature under conserving (P31

= [+ (=R)/S)/[1+ (-P)/| =1+ [(-F) — (-Py)]/c*.  (2114)

If P, =0 =max then 1= 1 is also non-relativistic time of Ny on the Earth, and i
the Newtonian potential of M pives us rather precise estimation in the npear-Solar region |73):

dfct)

d(c T)

Hence, "gravitational twins paradox" with g¢py is possible in addition to g in STR, Ch. 5A.

At free accelerst ed motion in space-time under acting gravitation, we obtain exactly twice

time dilation from two factors gy and ggpy — factually Newtonian and Einsteinian at only

equivalence of inertial and gravitational masses. One must choose — either additional local

curving of a world line of the free moving object M from gip) in the Minkowski space-time

or, according to Einstein [69], equivalence local curving of space-time with its transformation

into the pseado-Riemannian space-time with the sign indefinite metric tensor. According to
our tensor trigonometric approach, we chose fisst variant with STR in (P31,

—F,
—coshypy =1+ 5 w1  IM 2 1y gy > 1. (2124)

Free Science allows freedom of choice! Who believe it should be cont rolled hold back it!

Up to now we dill with massive particles or body with the relativistic mass in moving
m = my - coshy. The same cosine coefficient leads to the time dilations in (2094) and
(210A). In the following, we'll dill with the so-called massless particle, mainly, as a photon.
The term "massless" means ooly their zero mass as if in absence of motion. According to
the Planck-Einstein formula for massless particles, for example, for a photon, the kinetic
energy of its motion is equal to Ep = he, ie, it is defined only by the frequency w
of its oscillation during motion. And for them the concepts in (209A) accelerational and
in (210A) gravitational hyperbolic cosines are as if not acting. Thus, instead (2124) for
massless particles with a photon, we muost adopt | that

d(ct 5 —F M . .
_{‘_l_% =1+Lc5£1951+‘fr_fcﬂ}1' (v-A=v.A=c=const) (2134)

dicT)

LT
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A photon, as the Newtonian corpuscle of light, was introdoced again in XX cent. by Albert Einstein
to interpret due to the Quantum mechanics dualizm the Laws of photoeffect by Alexander Stoletoy
(i THEE-G0). Evaluate Newtonian, but with STR (1), and refractional (2) approaches to revealing
complete deflection of a light ray pear the Sun. Let that a photon of mas: m (in moving) moves
with respect to an astronomical mass M at velocity v = c under angle £ to the radivs-vector T from
M barveenter. By the MNewtonian Laws with STH. there holds:

F=F.es=[(f-M-mp)/r)] -es = meg-es = [(me - *)/R] -ep = F - + F-ea. (2144)

L L 4 L
F=sine-[(f-M-my)/r*| = (m-c*)/ R=E./ R=hv/ R, (2144 —T)

M:ﬂ:@:@_ (2144 — IT)
dr dr dl dl

Two orthoprojections of the inoer force F, acceleration g and curvature K = 1/, as normal and

tangential, are summarized by the Pythagorean Theorems as above and geoerally in last Ch, 10A.

Since M == m. then a photon at each moment of time receives some total differential of movement

in (€% around the Sun. F tangential projection causes acceleration/ deceleration of the light particle

along vector-velocity €. For the photon. it merely increases or decreases its energy Er and oscillation

F = cose-[(f-M-mp)/r?] = (me- &%)/ B=

frequency during motion at € = const. Hence, this projection {with very small change of mass m)
does not influence oo the Newtonien normal spherical deviation of a light. Hyperbolic curving is
also absent at ¢ = const as the scale coeflicient to time by Poincard, Contrary, F normal projection,
as a centripetal foree, canses the Newtorden bend of the light ray with its local normal radios,
MNote that the trajectory of this light ray is extremely stretched due to the high velocity cof light.
For the simple trigonometric approach, this makes it possible to construct a special current right
triangle with a constant leg b opposite the spherical angle £ between the vectorial speed of light e

L
and the radius-vector r. directed as field's intensity gepy. From (1) we have: 1/ R = sing(fM)/(rc)®.
In the right triangle |79 69: 7. p. 351-355]. the leg b = const s the distance between baryveenter of
M and the intersection point of this light ray two asymptotes: bas r-sing 7 min(r), the extremely

L
stretched arc of this light ray and second leg is § /v - cose: then 1/ B = sin® e fM) /(be)?.
With (1) this light ray beond is expressed in the differential and iotegral forms as follows:

dé; = dij R~ d(—r -cose)/ R = b d(—cote)/ R = [fM/(bc?)] -sine de = [ P(c) /] de > 0,

81 = [fM/(B-c?)] 'fu' sing de = 2fM/(b-c*) = 2 (— Prmin)/c*.

With (11}, the photons io this light ray itsell along the vector e, till the middle way point, receive
the energy, and after middle way point, give back it as £hAr, with preserving their initial energy (1)
Just this Newtonian estimation §; was obtained by Einstein in 1911 |76, p. 202] at ¢ = const, but as
often for him. withoot references to predeceszors. So, Johaono von Soldoer was higtorically firse, who
evaluated it o 1801 |79 97, p. 7] following to the Newton's gravitational and corpuscular theories.
Moreover, Isanc Newton forecasted discovery of this effect for his light corpuscles in 1704!

I 18915, Eipstein evaluated GTH correction for a light ray bend in o spherically symometric
gravitation field vsing the Tensor Calealus, with decreasing o in the field New valoe was proved
to be twice larger. To estimate in {P**1) this 2-nd term. we use the mathenoatical analogy of light
propagation in the optic medinm with variable refraction index and in the gravitational field with
variable potential |75, p. 308, But we took into account the variable frequency of photons io parallel
projection (11, cansing by the change of photons kinetic energy b from the variable potential, and
constancy of the light speed with relation ¢ = v- A = const. The oscillations frequency of photons »
increases in the 1-st part of its trajectory and decreases io the 2-nd with the same relation for £A00,
with the corresponding changes of their waves length FAX The angle of incidenee s 2 if £ < 72,
the angle of incidence is (m—e) if € > «/2. With (I} and the Spellivs Law {1626), this is interpreted
as the edditionel to the clessic Soldner’s bend of a light ray towards the baryveenter of M:
sin £/ sin(e — dfrr) = 22 £ < 7/2; sin(w — g)/sin(T — g + dipy) = =, e > /2 —

12 12

L L L L
= diyy =xdv /v =de fe=0drfc=210 .ﬂ,.".:z =dl/ R = dfy. Here 1-st differencial of the deviation
of the vector o with the light ray is orthogooal to it and bence has above corresponding notation.
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Under finally been accepted by physicists condition in the field v - A = ¢ = const, we have
dufv = d(efA)/(c/N) = —dA/A. The refractional spherical deviation drp in the pravitational
field relates only to oscillating time particles moving near light | including De Broglie ones!
For a ray along the central axis from the Star to the baryeenter of mass M, there is no
pravitational refraction at all (how for an optical spherical lens!) as the normal to world line
deviating projection of the gravitation force F is zero in this case with e =10

We pot with (214A-1 and 1) twice deviation of a light ray from the Sun potential changes:

d=4d; +8;; =4fM/(b) = 4(— P /) = 4(—Pg/c) - (r/b) —under e = const! (2154)

1-st curving is cansed by variable normal gepy, 2-nd curving is cansed by variable Fg.

The photon’s momenta vectors Pg and p chanpge only direction. The work of positive or
negative parallel projections turns in positive or negative chanpes of its kinetic energy Ay
The normal positive or negative parts of photon’s energy chanpes relate to the Newtonian
part also in accordance with the Law of Energy Conservation:

dE = £(—Ppn)-sine ds-hvg/c?, AEmar = (—Pmn)-hvo/c?, hvmar = hg[l+(—Prm) /).

We may add to the Poincaré Principle of Relativity in (P*Y), but with a field of gravity:
The gravitational potential in any world point cannot be determined by the
value of speed of light ¢ = v\ measured locally by some manner. Scalar speed of
light ¢ in the cosmic vacuum is equal to the Poincaré scale coefficient for time.

A very far Observer in a weak field perceives the same local events in a strong field as if in
distorted space-time (R¥**1) with bivalent metric tensor up to 2-nd order of approximation.

Consider another, but as if GH-effect — the "red shift" of the Sun radiation spectrum,
predicted in 1913 by Albert Finstein., Thoogh it was predicted first in 1783 by John Michell
in his letter to the London Royal Society |81] on the basis of the Newton's corpuscular and
gravitation theories! It s cansed by slowing-down of all electromapnetic oscillations from
the Sun surface due to there very strong negative potential |75, p. 346). Due to (212A-11),

we have: A > i , (w-A=¢). Let's pay attention to the fact that the assessment of this effect
is confirmed precisely on the Earth with the atomic clocks, i e in a weak pravitational field!
The "red shift" was precisely afficmed on the Earth in 1959 by B Pound and Jt. Hebla with
the nse of Missbaner's effect |96]. Though the difference of two potentials was very small.
We interpret "red shift" by the energetic part of our conception without nermal refraction
{at £ =0). The photons or other massless particles, under negative acting of pravitation,
get decreasing of their kinetic energy B = by with increasing of their light waves length
A =¢/v = hf(Efc) = hf/p for an Observer of this radiation on the Farth. For massless
particles at v = e, there holds E = pe = mwe = me® as here Ej = 0. (For a body, we have
equivalent decrensing of total energy E and pe = moe (Ch 5A) with incressing of De Broglie
waves length A = hfp = h/(mv).) Then this effect for the Sun radiation is explained by us on
the basis of the Newtonian gravitation accompanied by the quantum-mechanical approach:

Ep—hw =mp® —=Ep —(—Ps)-mp —ho —(—Ps)-my <h = ve<b, A> 1, (2164)

where mz = he/c? is the Planck-Einstein formula for the mass of a moving photon; ,3.
are local values on the Sun surface; v, A are values on the Earth, The energetics approach,
with full executing the Law of Enerpgy Conservation, were first noted by the eminent physicist
(progenitor of the matrix guantum mechanics) Max Born [74]. He did not develop this idea
and rested Einsteinian GTR-interpretation of this effect. Recall also (see more in the end of
Chs. 12 and 7A), that relation E = me? for the light's energy, as a kind of electromagnetic
radiation, was discovered in 1900 by Henri Poinearé in one from many his pioneer articles |62].
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Indeed, due to this Law, while photons get farer from the Sun to the Earth | its kinetic
enerpy and frequency decrease due to overcoming the negative Sun potential in direction to
the Farth. Without the Doppler effect, suppose initially that speeds of light near them are:

L
e=10- A —uon the Sun, and e = - A = on the Earth at kb = const.

-
From {216A), we obtain result: v =¢/A < ¢/ A = v. Further we have only two variants:
-
(1) A> A= &=c—it is correct variant, the effect "red shift" is fixed on the Earth;

(2) A= M= &> it is incorrect variant. (The variant ¢ < cis absent in (216A) at alll)
One must choose either the correct variant (1), or choose even the non-existing incorrect
variant (2) and in the "red shift" theory refuse of the Law of Energy Conservation. We chose
variant (1), 1t corresponds to strictly inferred relation (216A). The photons on the Sun in
its strong gravitational field have the initial frequency by the local atomic clocks on the Sun
and the wave lenpth (as those radiated on the Earth or withoot gravitation at all). When
they achieve the Earth, this radiation has less its frequency by the loeal atomic clocks on the
Earth proportionally to decreasing of photons energy and more its wave lenpth, according to
variant (1) with the "red shift". Interchange a source of radiation and Observer. Due to the
Principle of Relativity, Observer in the strong field will see inverse "violet shift". Both shifts
of De Broglie waves length must take place also for massive or massless particles. In essence,
this effect relates to Newtonian theories with the Quantum Mechanics, but no to Helotivity!

It is usually believed that the thied GR-effect "the Mercury peribelion relotivistic shift"
is not explained in frame of Newtonian theories with STH, and can be interpreted only
by GTH in the strange form: "It is GIH equations’ solution". Our its simplest tensor
trigonometric explanation with immediate physical interpretation in (P*) is based on
three STH cosine time dilations (Che 3A, 5A), with their doubling as in the equivalent
aceelerational and gravitational hyperbolic cosines in (209A) and (210A4), in that number, for
relativistic rotations. For estimation of this effect, we adopt the next. (1) The motion of the
Mercury is almost cirenlar. (2) In two rotationsl formulae from (209A) and (210A4), we use
now the values of kinetic energy E # mu*?/2 = Juw*?/2 = m(rw*)?/2 as appraximated well
to relativistic values, instead classical. On the orbit of the Mercury, we obtain in rotational
parts of (209A) and (210A) three STH cosine dilations: one by translation to the relativistic
mass m = coshy - mg and two by translation to the proper velocity in the item v*2, where
v* = cosh+y -v. With (206A), (200A4), (210A), they lead to the summary time dilation by
six factors kg = coshy — 1 under approximation cosh® 7 — 1 6(coshy — 1) at vfe << 1.

With respect to a time in a weak field as on the Earth, for the orthospherically planetary
rotated Mercury at our correction above in (209A) and (210A) in the base By and without
hy perbolic bending of its world line, the perihelion is shifting ort hospherically with coefficient
k=3 x 2xr, that up to now nebody physically wnderstanded | Estimate this relativistic shift
of the Mercury perihelion in one its revolution, in such our interpretations at vfe << 1t

da 6. 27r . 1271 sinh®~y bmor
ﬂ=+T~ﬁ|:DCE]1"r'—1}rE= -(a—wu}s&T~?-wu=—E:,—-v Sy =
6rr v Bmr L b6rr fM M (—Fz)
= . =—— = —— - .- — =B - =0 2174
2 r 2 TnNT T3 T e =2 ( )

We got the well-known and confirmed formula for this effect that accomulates over time.
With such approach, it is oot necessary to reduce the local speed of light and to bend
Minkowski space-time, but only to dilate time by six factors kg (99A). This positive orbital
orthospherical shift is expressed in Ej in the normal plane of Euclidean rotations (£2)y as if
together with negative Thomas precession (172A) around the instantaneous axis e, = e, xe,
perpendicularly to the orbit. The eccentricity of the Mercury orbit gives only an astronomical
opportunity us to observe this perihelion shift. The average radius T is caleolated through
the well-known connection ¥ = a(l — €2) with a big semiaxis of the exactly elliptical orhit.
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Albert Finstein evaluated this additional shift of the Mercury peribelion by the so called
Mexcact formula" (inferred above), but inthe frame of GTH with curving by gravitation space
time, in his articles |72, 69]. For objectivity, it should be noted, that Einstein took the well
known in that time formula by Paul Gerber again without reference, published twice in 1808
and 1902, which has explained the Mercury peribelion’s shift very well, but from the non
relativistic arpuments |99, Einstein has expressed the opinion that such physical formuola
would be impossible to derive strictly as the epact solution from the GTH equations. However
in 1916, in the frame of the Finsteinian GTR, the World War 1 veteran Karl Schwareschild
introduced dilation of coordinate time into proper one [100; 75, p. 326, 348], and, in his new
coordinates, realized such "exact formula”. In Chs. 5A and G6A, we showed that translation
dt — dr leads in Theory of Relativity to the loss of polysteps principal operations (roth Ty).
Such approach is artificial as if for a necessary known result, as was often in GTH infers.

Note, thanks to the mathematically identical sizfold dilation of time in (217A), we proved
that in Newton's Law of Universal Gravitation, both gravitational masses must not only be
equivalent to the inertial masses, but also be relativistic, i e., with their oun cosine factors!

For executing the Law of Enerpy conservation, we must adopt, that enerpgetic expenditure
on this Mercury perihelion positive relativistic shift in time is compensated by the Sun, close
enough to the Mercury, Contrary, the electron in the Thomas precession has no energetic
compensation. Then the Thomas precession is caused physically also by negative one-times
kinematic energy rebound with the factor kg in (99A) and (172A) of the increased relativistic
enerpy of rotation on orbit with the same factor kg due to wl > wg under translation to
proper time. And, thus, this rebound restores acting of the Law of Energy conservation!

ln our STR-interpretation of A in accordance with Einstein's wishes in the Epigraph to
Chapter, it is seen that the dissonance § = w}, —wy = (coshy—1) - wg is the quintessence of
our formulae (21TA) and (172A), which moves with the plos sign the Mercury peribelion and
with the minns sipn in (172A) the Thomas precession, and kg = +{coshy — 1) = £AE/E,
is an energetics factor in them . The dissonance arises from the fact that both these rotations
with close velocities act in adjacent Euclidean planes at small inclination -y between them.

Our explanations of GR-effects are in accordance with the Principle of Correspondence by
Niels Bohr! So, transferring to non-relativistic time and ignoring the gravitational refraction,
we return to the Newtonian theory. We are not at all satisfied with the notorions approach
to explaining GHR-effects with camouflaging formulations like: "it is equations’ solution”
(similar to abstract fantasies). Theory of Helativity in its original sense with the group
mathematical approach by Poincaré—Lorentz is the rigorously determined and exact science.

There is an wndeniable fuct: GRoeffects in the Solar system are fixed by Observers on the
Earth in a weak field of gravitation, but occur in a strong field of gravitation near the Sun
Therefore, their full description must have dualism from two points of view as in BMT. But
GTR pives only single interpretation |75, po 346-356), as seen by Earth Observers without
taking into account that local information most reach him through decreasing pravity field.
Such positivist interpretation inevitably leads to violation of the Law of Energy Conservation.

The historical statement of David Hilbert as the first author of GTR motions equations
[TO] (1917) becomes: "1 assert . that for the general theory of relativity, i. e in the case
of general invariance of the Hamiltonian function, . corresponding to the enerpy equations
in orthogonally invariant theories do not exist at all 1 could even take this circomstance
as the characteristic feature of the peneral theory of relativity" |71]. This has not been
recognized by physical community for a long time. This violation is cansed by that GTH
space-time do not contain the ten-parametric group of motions (presenting in (P31}, due to
its psendo- Hiemannian space-time bent inoa fleld of gravity — see in [ 105, p. 163]. That is why,
Do Hilbert | vet in the beginning of 1915, put the task for famons colleapue Emmy Noether
in Gittingen: to find conditions for fulfilling this Law of Nature. And in 1915, she proved
the fundamental Theorem of mathematical physics, connected the Intepral Law of Energy
and Momentum Conservation for motions with parameters of a space-time symmetry |102].
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However the general psendo Riemannian space-time is non-homogeneons and non-isot ropic.
Therefore this fundament al classical Law of Nature cannot hold in it. The curved space-time
cannot have even constant curvature, as it depends on hierarchical casnal mass distribution.

ln 2004, with publication in Bussia of 1st edition of our "Tensor Trigonomet ey |[15], at
this time the eminent Enplish mathematician, physicist and GTRH philosopher Roger Penrose,
professor of Mathematics at the University of Osxcford, wrote the similar in his book |98]:

"We seem to have lost those most critical conservation laws of physics, the laws of
conservation of enerpgy and momentum! 1o fact, there is & more satisfactory perspective on
enerpy-momentumn conservation, which refers also to certain curved space-times M as well
as to Minkowski space ... These conservation laws hold only in a space-time for which there
is the appropriate symmetry, given by the Killing vector ko Nevertheless, they do not really
help us in understanding what the fate of the conservation laws will be when pravity itself
becomes an active player. We still have not regained our missing conservation laws of energy
and momentum, when gravity enters the picture.” Anything to add to these clear words!

Soviet academician Viadimir Fock proved that predictions of GTH concerning GR-effects
in the Solar system are ambignows |77 They depend on coordinate conditions. By the canse,
Einstein considered GR-effects as if they are in a weak stationary pravitational field in fact
embedded into the Minkowskian spacetime (P31} [105, p. 156-165). Such an artificial
approach did not fix this problem. Numerous strange attempts to combine GTR without
group approach and the Quantum Mechanics with group approach, including many years
Einsteinian himself, have not yielded any results and do them similar squaring a cirele (bt
here as a hyperbola). The main reason of this lies in the positivist essence of the GTHR, which
combines the real and the observable into one whole, If return to the Poincaré — Minkowski
space-time, then this problem can be solved quite naturally, as was in the well-known Pole
Dirae spproach to the Quantum Mechanics [101], but now together with the Higps field.

The fix-idea of Einstein’s GTR |69] is expressed by the General Principle of Relativity
as his Postulate: All physical Laws in free arbitrary moving frames of reference En must
have locally standard forms determined by metrie tensor IT (asif in all By of STR). Strictly
speaking, this Postulate is a hypothesis and relates only to zero point of Ep, while it is not
confirmed convineing enough, so, by experiments with a free horoscope in a cosmic orbit.
STR is valid in GTR only in locally tangent (P31}, hence the Mach’s base Ep was refused
by Einstein. Although he did not turn away from the Mach's positivism [35). That is why,
GTH cannot be realized in the material Higps field with its Galileo inertial Thos, in GTR
all frames of reference free-moving in presence of gravitation became equivalent. This was
expressed in his well-known extreme, but scientifically honest statement on the equal ripghts
of Kopernik and Ptolemy Solar systems. Indeed, in Einsteinian curved space-time, it is so.
In fat Minkowski space-time it is not so! Unfortunately, the very appressive behavior of
specific apologists of a really curved space-time still resists for other logical points of view
in the sphere of scientific publications and they continne to make from Albert Einstein as
if the new Prolemy how in the middle Apges. So, recall wise saving of Einstein himself:
“Um mich fiir meine Autoritiits Verachtung zu bestrafen, hat mich das Schicksal selbst zn
einer Autoritiit pemacht!” (T punish me for my contempt for authority, fate made me an
authority myselff) The first confirmation of GTR curved space-time with a lot of sensational
noise around this event was that astronomers confirmed the twice bend of a light beam close
enough to the Sun during its eclipse. Nobody remembered that a light beamn is bent | passing
through an optically non-homogeneous medinm doe to the Spellins Law under the influence
of elect romapnetism, which determines the refractive index | and this may be also in addition
toits Soldoer’s bending. Nobody had previously thought to corve our space under acting the
electromagnetic field to explain such a bend of the light beam. Those who accept everything
remotely observed and messured as an exact reality are committed to positivism, although
this psendo-scientific philosophy with its apologists as if remained in the 19th century.
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The observed and real space-time cannot be perceived identically on the astronomical
seale of the Universe, if only becanse the information about variously distant space objects
arrives to the Earth at different time intervals. So far, no one has manaped to make this
picture seem us simultaneons. However, by our opinion, the most unaceeptable thing o the
GTR is such, that in gravity field its real distortion propagates not only to the time, which
is gquite natural even doe to STH, but and to the geometric parameters of material objects in
the Universe?! Similar a misconception was once held by some relativists reparding reality of
the Lorentz contraction (see in Ch. 4A). The enthusiasm with the empty project of voyages
through "wormholes tunnels" in the Universe, with a renovated and now cosmic perpetunm
maobile, and many other baseless GTR fantasies are an vsual pseado-scientific PR-populism!

These unanswered by the GTR questions are answered clarity and aoambiguonsly by
BMT—-theories with two metric tensors. The first BMT (as if with metric tensors IT of basis
{(P*Y) and G of observable {R*1) till the 2-nd order of appradmation to the possible
distortions) . was created by Nathan Rosen, the Binstein's assistant and clowse colleague! | T8
Correct physical conclusions can be drawn as true only from local and not observed data.
That is why, {P*1) exists really in BMT, but with its accompanied observed lensed mapping
as (R¥), i e, with acting the great Mach Principle |55)! Conception of BMT, by historic
roots, rises on the Hegel dialectic spival [57] to teachings of great thinkers of the Past: 1 Kant
with his Postulate on the basic role of the Eoclidean space in the real world |56] and, of
course, | Newton with his Postulate on the absolute space and time |54|. These notions were
united by H. Poincard in 1905 [63] and by H. Minkowski in 1909 |65] in the absolute space -time
{P*1) of the Nature. BMT may interpret the pseudo-Riemannian space-time as observahle
lensed Minkowski space-time. Then all motions and events have place really in basis (P31,
what gives compatibility with the Principles of Correspondence, Causality, Unigueness, with
the Law of momentum-energy conservation according to the Noether Theorems |102], and
with the Laws of Quantum mechanics (as in STH)! But in order to close this problem, it
is necessary to abandon the existing up to now positivist approach to General Relativity
and theoretically to separate the real and observed pictures of the Universe. Such dualizm
of BMT approach may be used in explicit description of relativistic motions in space-time
under the field of gravitation: firstly, as real ones in 40 Minkowskian space-time, and,
secondly, as observable ones in {R**1), or even in the 10D space-time {P*1) (see above),
with the use of the Tensor Triponometry. {See more about the last idea in [109], |15, [107]).

ln passing, we note that BMT leads to the affine topology of the Nature space-time with
properties of endlessness and infinity. Ones argoe so: an infinite space-like part of this 4D
world must have due to the Ho Olbers” paradoxe (1826), the light night sky, contrary to the
finite world of radius B. But the mathematical infinity of (P31} does not mean the infinity
of world’s matter. It may be limited. How apologists of the finite space-time can place in it
the endless time-arrow without violating the determinism? According to H. Poincaré, this
time-arrow s imapginary, which revealed by him a psendo-Euclidean nat ure of our space-time.

A dual opinion on the "Black Holes" in Big Cosmos from points of view of descriptions
in {P**1) and in observed (R3+!) deserves a brief explanation. So, these objects were
predicted in 1783 by John Michell on the basis of Newtonian Theories and later they have
considered in details by the great Laplace [81]. The smaller and very larger "Black Holes"
can be formed accordingly by some enongh massive tight Star and in the center of some
very massive Galaxy, including onr Milky Way, Such "Black Holes" are surronnded by their
theoretical horizon of events. And what is happening beyond this horizon, no one knows, but
purely theoretical it is possible to look there. For massive tight Stars, the Michell’s radios
of such "Black Hole" is equal v = fM/c?, even in according to the Newtonian Theories.
The so-called Schwarzschild radins for the Einsteinian "Black Hole" is twice more, 1. e, as
r=2fM/c? |100]. This dual opinion is explained by the equivalent influence of aceelerational
and gravitational hyperbolic cosines from (209A4) and (210A4) ) as we noted sbove for similar
doubling the relativistic Mercury perihelion shifts and consider further in last Ch 10A.
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The Hubble Law in its 1-st ancestral form AAMA = —Avfvr = —Ahv /h = Hlfe = HE,
with author’s interpretation of the constant H . only connects the relative light s "red shift"
and the distance I or "light time" £ till 4 Galaxy. Later, from discovery in 1929 it was used
for confirmation of the Theory of Expanding Universe by Alexander Friedmann {and later by
others with acceleration®!). But this Law have another logical interpretation of the eminent
astrophysics Fo Zwicky in 1929 (introduced concept of "black matter"). So, this "red shift"
may express the lack of the photons energy proportionally to their long way from a Galaxy to
the Earth due to permanent loss of their energy (like a certain cosmic "friction"). Then the
photons lose energy with decressing frequency and increasing wave lenpth at ¢ = const. And
as a result of such interpretation, a need in the so called dark energy to justify the hypot hesis
of the Universe expansion with its acceleration is absent . At analyeing of this red shift, the
light coming from the galactic cloud from billions of Stars, as something averape with a
uniform seale of local time, should not be considered, of course, exactly as a beam of light
from the Sun or other single Stars. Though, for the book author, & pulsating model of the
Universe expansion-contraction) is more preferable, since in it matter does not disappear
anywhere and does not come from anywhere, under its conservation. The strange courage is
striking when some hypotheses relating even to the Universe and its hyper-remote objects
are easily turned by their apologists into the final theories that are not subject to doubt!

A priori a certain geometry of the real space-time in the larpe was not here discossed. For
our opinion, the complete knowledge of its global strocture, in principle, cannot be achieved.
Hlusions of complete knowledpes in Mathematics were broken by the Gidel’s Theorems.
But in Theoretical Physics, the idea about transcendent nature of all the Universe is not
vet understood. Moreover, in our time, any physicist-relativist most decide on the main
dilemma:  either to accept again the preat Principle of Relativity by Galileo — Poincard,
formulated fully at the beginning of the 20th century, compatible with the new Higes theory
of matter inertia (even with the Rosen's BMT under two metric tensors), or to continue
to stubbornly adhere to General Principle of Relativity by Einstein (1916), incompatible
with the Higps theory, as well as with the Quantum Mechanics; and what is even worse: to
continue to impose the latter in new scientific publications and in the educational process.
However a concept of the entire Universe curved by the global pravity was not confirmed by
numerons long time astronomical observations, beside of curving the lipht rays propagation.

Since the 1-st edition of our monograph in 2004 |15], in finsl Chapter 10A ) we apply
widely the Poincaré-Minkowski space-time (but now combined with the Higps field), using
our tensor trigonometric approach, added by its differential and integral parts, for analysis
of motions along any world lines and regular curves in psendo and guasi Euclidean spaces.

As a result, it is possible to adopt reasonably the following important inferences.

If we consider various relativistic motions exclusively locally as if in the real physical
space-time including a pravitational field, but with the real Minkowski or complex Poincars
space-time, where ¢ = dz'™® (dt™® — const, then it is possible, with fairly high degree of
accuracy (as was shown above), to study and describe these motions with their kinematic and
dynamic characteristics at a local level directly in such basis space-time withount distortions.

Thus, relativistic motions in 4D Minkowski space-time (P!} have the four absolute
geometric and physical parameters with relative ones in the 3D Euclidean subspace (£%)
and scalar projection onto the time-arrow o. Absolute motion is mapped by a world line in
{P**1) in pseudo-Cartesian coordinates with admitted values of its slope to the time-arrow.
A world line has important feature as its dynamical character with 4dvelocity ¢ of Poincaré.
This enable us to determine all absolute and relative peometric and physical parameters of
the motion along it of a body or a particle. After full confirmation of the Higps Theory
with the Mach Principle in 1964-2012, the Tensor Trippnometry became simplest | clear,
wellunderstanding and all-around mathematical instroment for homogeneous and sotropic
spaces, perfect hypersurfaces with non-Fuclidean geometries, and the Theory of Relativity!



“Poincard, genie dgal 4 Gauss, et aussi universel ”
= Jean Diendonné, fondateur du groupe Bourbaki

Chapter 10A

Differential tensor trigonometry of world lines and curves

According to Hermann Minkowski |65), each material point M| including baryeenter of
a body, is permanently absolutely moving along its world line in the homopeneons and
isotropic space-time (P*1) at n = 3,g = 1 as realificated isomorphism of the original
complex-valued Poincaré space-time (@31}, We may analyze a curved world line with an
increase in its complexity from n = 1 till n = 3 (g = 1) for rectilinear, flat and spatial
relativistic movements. The world line is & geometric invariant of Lorentzian continnons
transformations of the pseado-Cartesian bases, and it is a regular corve with local 4 x 1
radius-vector rler). The inexorable absolute motion, limited by the slope of a world line to
the time-arrow below of the light line, ensures its regularity. Physically its trajectory is a
locally oriented proper time-arrow &% of object or particle M. The scalar integral value of
proper time along a world line does not depend on a pseado-Cartesian base too. By their
slope dr — Figure 2A, the world lines relate only to the internal cavity of the light cone. For
descriptivety and visuality, we analyze world lines with pseudo-Cartesian bases E; = (x,d)
and En = (x™), 7). In Ey, their inclination corresponds, due to specific tangent—tangent
analogy, to the visual spherical anpgle wgr @ tanhy = tanpp. In a neighborhood of its
point M, the world line with its orientation and coofipuration is completely determined
by four absolute scalar and relative 4 vector differential-geometric parameters in (P31,
The scalar parameters are invariants under continnous Lorentzian transformations. Such
construction gives us opportunity for using Frenet—Serret approach to the differential theory
of regular curves in the 3D Eoclidean space |21, when they are supposed to be embedded
namely in the homogeneous and isotropic space of its fived dimension for unigue results.

All angular parameters of motion along a world line — hyperbolic angle ~ of motion with
its direction e, are defined initially through the radivs-vector of a world point on it:

v (cr) = :; ] =[ x(er) ] iﬂ=ia(cr}=i(*r,ea}=%= [ sinh 7 - €a ];

T3 ctier) cosh )
ot
. __idx _ - ¥ _o_idx _ P .
sinh v = d(cr) =minh~y -8 = — tanh v = a(ct) =tanh~y- -84 = - = sinh ~/ coshy; |
Vdz? + de? + drd dr} + dr3 + dr}
¥ = arsinh—————— — artanh +—n—0—or———— = ), a5 d(ct) = 0;
der) d(et) (<)

Ba='[cuan:|,]-, k=1,23; cosag = drp, ; .

= %, wh = %ﬁ_—t = —angular velocities.
In particular, the so-called wniform absolute motions = r(er) are of especial interest.
Among them, the physically most important are the following three types:
the uniform rectilinesr movement at = const, 8, = const (Chs 1A-4A4);
the uniformly accelerated rectilinear movement at nj =const, e, = const (Ch. 5A);
the circular movement with velocities »* = const and wl, = const at v = const.

In (P**1) with tensor {IT} (17A), we introduced in Ch. 5A measureless trigonometric
4 % 4 tensor of motion roth T™ = F(v,es) (100A), as the psendoorthogonal bivalent
symmetric tensor, on the basis of rotations (348) and (362), (363) for applications in Theory
of Relativity, It determines slong a world line the current local base E,Ef} = 1"1':|Ii‘h,_']._":“"‘}I -E;,
and its local hyperbolic inclination T' with the local Euclidean orientation ey in Ey.
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This tensor is defined at the current point M in the base By = {I} by canonical struct ures
(362) or (363). The chanpe dI' canses locally the chanpge of hyperbolic inclination as are of
the hyperbolic rotation dy and the chanpe of spherical orientation ey as possible ares of the
orthospherical rotations deg = dey 9 3 for a curve in (P31} with (£3)m). Hence any world
line can have at its point M maximom four intrinsic vector parameters of orders up to 4,
completely defined its local configuration in (P31). The psendo-Euclidean integral length
of a world line @ s counted conventionally from the initial point O with its differential dr.
It is an internal argument for a world line. In the theory of relativity, speed of an absolute
motion of & material point M along a world line is defined as the time-like 4 x 1velocity
introduced in first by Henri Poinearé in 1905 with his homogeneous 4 space coordinat es:

cler) = c- oo — 48 _ 48 _ ¢ j(er) — ¢ g,
der) e A (T=cla)  (184)
c'(er) -1 -c(er) = ||e(er)| [ = —c® = const.

It may be also represented in {P3H) as the 4x 1 radins vector R = ic of the hyperboloid 11
lts prendomaodule "e” is the constant normalizing scale multiplier to time-axdis, introdouced by
H. Poincaré in 1905 |63] for isotropy, homogeneity and metric properties of (P31} (Ch. 1A).
Other proper parameters, in term of proper time 7 along & world line, mean the following:
ricr) is a 4 x Lradius vector of the point M of a world-line in the base Ey = {I},
i(er) = iq is a unity dvector along proper time arrow & which may be interpreted as
1) the 4 tangent to a world line as r{er), 2) the 4-th column of tensor of motion roth T
3) the time-like 4 % 1 radins-vector (146A) of the unity hyperboloid 11

Since in homogeneons coordinat es of Poinearé, with the scaling coefficient e for times ¢,
the light ray is expressed in bases Ej as Az™®) = Alet™®), then the consequence immediately
follows: Az'™ /At — ¢ — const. (Hence, it is excess Einsteinian STR Principle of equality
of light speed "¢" in all By |67).) Though the constancy of e as result of measurements on
the Farth and in near cosmos, is merely a hypothesis, which cannot be inferred and spread
into the whole Universe and onto the global world time. Perhaps, it is more important than
the answer to the still debatable question: “ls it necessary bending space-time or not?”

Coordinate 3-velovity Visa tangent eross projection (Ch. 4A) of the 4 velocity ¢ into (£%).
lts sine projection is a proper 3welocity v*. (Both velocities have Euclidean direction eg.)
lts eosine projection onto d is a sealar supervelocity of the time ¢ stream ¢* = coshy - ¢
for given angle v of motion in the base By = {I}. The 4-velocity ¢ of a particle or a body
can be changed only in its spatial directions: hyperbolic y with respect to the time arrow
and/or spherical eg with respect to the Euclidean subspace. This takes place whenever

inner foree ﬁ acts on them. For any material objects (an electron, a down, a star, and so
one) independently on their mass the pseandomodule of 4velocity of their absolute motion
in (P*1) is the constant ¢ All these arguments are summarized in the following assertion.
Any material body is permanently absolutely moving in the Minkowski space time (P3+1)
along oun world line as its current time-arrow o with the motion 4 psendovelocity € =c- 1
having the constant ¢ and the directional psewdounity 4-vector 1, which is constant only for
wniform rectilinear physical movement of the body iff no any inner foree is applied to it

ln philosophy, such an assertion means the so called perpetual matter movement.

The Postulate is based on the original notions introduced by Poincaré and Minkowski
as dvelocity e and a world line in space-time as a trajectory of the absolute motion of the
body M. With it we connect main dynamic physical characteristics: the own 4momentum
Py = mgT. the real momentum P = mv = mpVv* and the total momentum P = me. See
them in Chs 5A and TA, where they were connected by the psendo- BEoclidean Absolute
Pythagorean Theorem in (P31}, All measured physical valies relate to their projections

from a world line onto 3 and into (£%). They are changed iff the direction of iis changed!
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The General Postulate by Poincaré-Minkowski gives us to do the important infers.

1. 1t allows to consider world lines not only geometrically, but and physically as the time
nature world trajectories with absolute local kinematic and dynamic characteristics of the
body M in the metric space-time (P31}, and evaluate additionally its relative independent
geometric and physical characteristics of orders till 4 in a certain pseudo Cartesian base E,.

2. It pives simple explanation to a nature of the permanent matter movement as stream of
proper time er along a world line, and vice versa! They both move with 4-psendovelocity e

3. It mathematically explains either hyperbolic, or orthospherical {under hyperbolic sine
and cosine slopes) partial distortions of a world line in (P31} under physical factors acting
on & particle or baryeenter of a body. Indeed, due to constant psendomodule of e, its vector
derivative along a world line is permanently pseado-Eoclidean orthogonal to e (or i):

c(er) - I* - e(er) = —¢® = const = ¢'(cr) - ITE - [c~ %} —c'(r)- It. [d‘;iﬂ] _

=c'(r) - I* -g(r) =¢'(er) - I* - gler) =c-¥'(er) - I* - pler) - g = 0. (2194)

We obtain zero scalar product of the time-like 4-vector € with its spacelike dvector
derivative g, though such psendoort hogonality holds with new other 4-vector-derivatives of
higher orders up to 4 in (P*+1). In result of successive orthogonal differentiation of unity
vectors along a world line, we should obtain all four unity vectors (of its curvatures and
proportional accelerations with scalar parameters) orthogonal to each other. Similar idea
was realized in the Frenet-Serret theory of regular curves in Euclidean space (£3) |14, 21].

We also note that the psendoorthoponal characteristics, as §-vectors € and g, differ here
from the orthogonal Fuclidean 3-projections in that, they contain non-zero fourth scalar
time projections. Beforein Chs 5A, TA, 8A we dealt with similar absolute notions, but they
were by pure Fuclidean Fvectors, i e they were expressed in the instantaneous base Eg
under zero value of fourth time projections — see (97TA), (145A) (161A), (198A). Now we
mean them as more general absolute concepts in full form as §-vectors with their scalar
modulus characteristics too, for example, in the original base Ey. The concepts which include
only spatial or only temporal components, provided that both of them are non-zero, are
considered as relative ones. For example, the theorems expressed by formulae (14547, (1084)
were absolute, but relations of type (135A), (163A), (192A) give the relative theorems.

Continning (219A), in the neighborhood of a point M along a world line, in result of free
1-st psendoorthogonal differentiation of the tanpent 1{er) in or not only within the oscalating
pseuwdoplane to a curve, we pet total scalar and dovector characteristics of the 2-nd order as
4 psendocurvature k (with radins R = 1/K) and inner 4 acceleration g = 8- K, introduced
by us in (T9A) and (161A) as Fvector, with their common unity pseudo Eoclidean vector
of the instantaneons psendonormal pg and common internal Euclidean direction eg:

Ks(cr) = 1/Ry” = ggler)/c?, (2204)

kg(ct) = Kg(er) - pler) = [galer) /] - paler) = galer)/ . (2214)

Define the order of embedding ¢ of a world line as the least dimension { = k+ 1 of the
psendo- Euclidean subspace (P of the space-time (P31} containing the whole curve. All
the possible values of this order are { € {1,2,3,4}at k=10,1,2,3. So, f { =1 (k=10), then
this enveloping subspace is the straight time arrow o asitself. Thisisa relatively immovable
voyage in time along a straight world line with the same psendovelocity e A fat world line
has { =2 (k = 1). This corresponds to accelerated rectilinear movement. A twisted world
line has order § as 3 or 4 corresponding to order of the line curvature 2 or 3. The order
k = ¢ —1is the minimal dimension of the Euclidean subspace (E¥), where a trajectory of
physical movement is represented as Euclidean orthoprojection of absolute motion in (P,
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Unity principal tangent iz(er) to a world line (Figore 2A(3)) is the primary vector
characteristic of a curve r{er) —see in Ch. beginning,. 1t is produced in the psendo- Cart esian
base By by the unambiguous hyperbolically orthogonal differentiation (218A) of radius
vector Ter) in dy exactly along a world line in the space-time (P31} (as a regular curve):

{drj:r} }a —ig(er) = [ 5“;';3“““ ] — roth Ty - iy — rothT - [ ? ] : (2224)

where Ip is center (146A) of the unity hyperboloid 11 { Figure 4) and the anity 4-vector of 3;
roth I'y = Fiv,eg) is here tensor of motion (100A), with frame axis Er}, bonding 1y and i,.

From here, at constant g, we have the st differential of hyperbolic motion, considered
in Ch. 5A. If to do this differentiation along a world line more free as non-collinesr one, we
must wse in addition the lateral differential orthospherical rotation, and both motions must
be in correspondence with the 1-st two-step metric normal form (132A) on a hyperboloid 11
What is more, the time-like tangent iy(er) of a such world line & simultaneonsly both a
psendonormal as 4 x 1 radins-vector (146A4) of hyperboloid 11 and 4-vector of a time-like
tangent to the locally conjugated hyperboloid 1, where only one geodesic hyperbola can pass
through a point M. 1o the following similar bonds help us till the final differentiation along
a world line, when they will close all the cyele, and here’s why.

Let's pre-attach to a world line with dy, 2 0 st M the concomitant movable congugate
wnity hyperboloids | and 11 (see at Figure 4) so, that they may be determined locally by
four current psendoorthogonal each to other unity basis vectors of a world line — tangent ig,
psendonormal py and two binormals (as the hyperboloidal model). Our idea is to connect for
trigonometric descriptivety as one to one the st metric form of a world line with the 1-st
metric forms of two unity hyperboloids (1324 133A). We'll find these metric forms with
their basis unity vectors in process of sequential differentiations along s world line. This
will interrupt the process of differentiation in final, as it should be in the type of theory
In second, we must connect this system of four psendoorthogonal basis vectors with the
existing system of four basis vectors-columns in our tensor of motion (100A) in form (362).

The principal and free-valued characteristics Ko and Kg are produced with the 1-st
differentiations in er along s world line with one and two degrees of freedom (at > 3,k = 2),
logically accompanied with the concomitant hyperboloid 11:

cT

dig(er) BDG]I"}" =
{ B —kpfer) - | T e |~ Kpfer) - paer) —Kaler) — B,
(2234)

i (e cosh
'ijli?ir}] — Kg(er) - [ miprr ©s ] = Kgler) - pgler) = kgler) = %g'

Unity space-like 4 vectors Ppg and pg are principal and free psendonormals to a world line.
Derivatives in 5 I, = py + P}, = Ia iy and pg, at change of curve slope either converge
or diverge. First expression in (223A4) is the tensor triponometric psewdoanalog of the 1-st
Frenet-Serret formula, but second expression muost reveal the binormal in the normal plane.
All free vectors pg are psewdoorthogonal to ia (222A), pg is pure hyperbolically orthogonal
to Iy, We have cosz = eje, = egeg. From the condition of psendoorthogonality for i
and pg, we obtain the connection of positive angles yp and ¢

{tanhy, = coss-tanhyy +3 tanh+yp = cose-vy/c} = 7p < 7y € [0, 00), £ € [0;7]). (2244)

If eg = e, then i and ji = pa determine conjugate points on the hyperboloids 1 and 11
in (146A), (149A4) and at Figure 4. If e, L ey in (£5)™ = (eq,e5)™ = (v,g*)™,
then jo = pp is & binermal (i e, a psendonormal with its minimal pure Buclidean norm at
coss = 0,y = 0, see bottom point on 1), Heeall alse very wseful decomposition (13TA):

€5 = cosE-€q +sine- ey, where £ € [0;7], (€f-ey =cose, ej-e, =sine, e -e,=0).
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Proportional space-like 4-vectors kg and gg = ¢2-kg in [233A) are directed inside region
of concavity of a world line are &™) out center O of the osculating hyperbola — see at
Figure 2A(3): cose > 0 for aceelerations (gg > 0), coss < 0 for decelerations (gg < 0).
If cose = £1, then the Buclidean projection of g is parallel to v {movement is rectilinear).
If coss =0, then the Eoclidean projection of g gives no increment to ||v|| and leads to world
line bend towards ey, i. e, Eouclidean orthogonally to the cuorve (movement is centripetal).

Further, for beginning, we consider in particular the instant aneous space-like geometric
and physical characteristics from (223A) with their decompositions into pair of orthogonal
projections along a world line in the space-time (P!} expressed in the base By = {I} and
in the current base By, = roth FEm}~E'1 = {roth I'Em:'} = {F(vy,eqs)} We'lldoin two stapes
these orthogonal decompositions: at the 1-st stage, of relative Euclidean items on the relative

(1)
Euclidean sine normal plane of curvature given by 3-vectors as {Eﬁ}mj = {E{&m}?'ﬂp b
and, at the 2-nd stape, of the intrinsic characteristics on the real Buclidean sine normal
plane, given here by 4vectors as {Eﬂ}mj” = {p(m} bf,l}) in the first partial 30 space-time

(PHy = {{Eﬂ () Eg} {{ EQ}Em}Eﬁ} (at £ = 3), where pg is & unity dvector of the
principal p?eudn'rmmml with ey, by is a unity 4-vector of the sine binormal with e,. The
total psendocurvature Kg in (223A) is also decomposed into tangential and normal ones.

In the Minkowski space-time {P*1) with metric tensor {I£} (17A) (or in the somorphic
to it Poincard complex space-time) at { = 3, due to (223A) with the use of (13TA) | we execute
the first two-steps differentiation along a world line with orthogonal decomposition of the
4vector of a free psendocurvature kg and revealing all relative and absolute characteristics:

dig(er) _ dy coshyp - @ _
kp(er) = So) - e [ e o8 | - T pg(er) = Kpler) pper) = (254-1)
(e
_ di | coshi - ea sinh 7 - —L r:hf. cosh i - ea Eiﬂh'}'i'ﬁrl_'ﬂp _
=) | sinh L*[ ] 3 [ sinh J’[ el L
_ coshy; - @a a | _ _
_Kn(L'T}- [ Ei]:l.l:l."]",‘ :|u +K|:.-'I:ET}- |: 0 :|T —Kn(l’.‘?’:] -Pn(t‘T}-l-Kvl:ET}-bv{C‘T} =
_ dyp | coshyp-eg | _ dyp ) coss - coshyp - ex sin £ - coshyp - @ () _
= d(er) [ 5 ]_d{cﬂ { = B 0 |-
= Ka(er)- [ ‘“":];"]‘;{];:ﬂ ] Kgl(er) - pgler) = K% - paler)+ JC* bp[ﬂ}_kx(r:r}+ 1:* (er).

Below we use intuitive understandable notations beginning from the general curvature Kg:

a—(—% —Eg .JC‘“ = sinhyp - Kg = K] =sinhy; - Koy Ka = H?;_—‘j =E§‘-;
e
!CE:cuah’rp K:,g=5:§, ;—vl'rcuazs cnshzfrp—mnh g - Iﬂ=kp-fﬂ=ﬁu;
— = .
K% = rosh~y, - cose - Kg = coshyy, - Kg = cosh =Kt = 9.
s g 7 poE i ke Fo& \ (2254 — IT)
1 g n gji o vt
Ks=22, .JCE=—E§-= h-yp - sine - Kg = K, = sinh EIT=_::’£L=E%
o 2 — 2 2
=2 1l L —2 1
K3 = K5 kg =T 4Ky k37— KG +K5 = KA +KE= KR @ by ).

Equaling under IE paired summands, we get next relations with g = = : d‘j‘z = cosh® Tp Eh"z—ﬂil:lhz Tp r:!']-rz =

= {cuszz - cmhzfjrp EE"]": + sin® £ - cosh® Tp &T:j—mnhz Tp r:hr [:Cﬂﬂhz’]". r:hr + aln]\zfjr. dex }—am]\zf]r. :hr =

= dy} 4+ sinh? 3 daf = {mszz-mahzfrp — ain]'nzfrp} d’rf + (sin® E-Ccﬂhz"}’?} dfyf = cos? o :E*_r;‘; 4 sin? p :E'_r;‘; =0
Surprisingly, but we get twao identical decompositions of dyp  pseado-Euclidean and Eoclidean (with nnder-
line for Helative and Absolute Theorems), the latter corresponds ta 1-st metric form (132A ) of hyperboloid 11!
Thiz parador relates to hypotenuses of right triangles only in the external cavity of isotropic cone at i > 2,
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coshy -85 | . .. ) .
= i is & principal psendonormal, as a unity vector of the principal pseado

Pa = sinh

curvature Kg, and ky = Ky - Pg is 8 4-vector of the principal (collinear) pseadocurvature;

b, = v is & space-like sine binormal, as the unity vector of the normal curvature K,

0

k.= h,,.., situated contrary to the angle 4y, is a 4-vector of the sine normal corvature;

den E . + .
"?FL ?—L e, = - €y, is a proper orthospherical anpular velocity of eg.
||dEu||E

We use asterisk for proper ltems._ star and circle for cosine and sine projections!
The Helative Pythagorean theorem follows from space like part of (225A) in 3 vector and

quadric scalar forms. 1t acts in the sine normal plane {EQ}R?:} = {ey [m} ;[,..1}} for these three

proportional characteristics as their orthoprojections into the Cartesian subibase E‘P} at
v € [0, 00), £ € [0; 7], using (2254 ) with (137A) and confirming preliminary (162A), (1634A):

coshyy dyp - @g = coshyp (cose dyp - @y 4 sins dyg - &) = coshyy; dy - en 4+ sinhy doy -8y, ]
= L

cuahzf]r:, EE"]"; = cuahgfrp {cos® = d’]ﬂfj +sin?s EE"}’;:] = cosh? Fp [{d’rP}EE + {df]rp}ﬁ.] = L

= cosh? y; dy} + sinh®y; daf;

»

— L
Kg-coshyp-eg =Kiz-es =cose-Kj-ea +sine-K5- ev = Kfg-eat Kj-e =

= Kx - cosh i - @: + sinh ; -

r.

CI'-I:CT}_E Eu+_g_l‘ Gv—K:u 0+ Ko -e =

ﬁ{ :kE_kT+k*_kﬂ+kp }:_
(Kz)* = (AC*]3+[,KZ )= (K5 + (K

:}{ mSh"r'p'E_ﬁ=EE:?ﬂ:EE:nthi'gn'Ea+v:w;|‘Ev:g;'e.:;"'gv'ﬂvs } (2264)
cosh?, - g% = g5” = (g5)° + (g5)> = cosh? i - g + (viws,)? = g2 + g2

— drypfdyi > 1. (2274)

K5 -sinhp = Ka -sinh i < |si.n]1-"|rp dp = sinhyi dyi

= ooshyp -cose dyp = coshqp dyp = coshye dyi = cose =1+ 7p =T, cose =0+ yp = [
Yo/Yi < 1 —see in (224A0), 2 9p <% (vp < wi), 10 =043 9p = 0; dyp > dyp > dyi {7 € [0,00)}
From (225A)-(227A). we obtain the Absolute Buclidean Pythagorean theorer with the I-st mobile
trihedron B = (Da, by, ia) in (PP under metric tensor % (17A-1)! It acts on the Encidean
sine normal plane {EE}E::}” = (pi™,bl") in 3D (PHY,, = <[:|[4!":3:|-tw":I EE} (¢ =3). ln the right
triangle of iy rotations, it corresponds o the ernguler normeel 1-st metric form (132A) for the
concomitant hyperboloid 1L (1), as a perfect by persurfoce of {'P3+l:|-. It iz expressed in the universal
complete tensor-vector-sealer ("tes ") forme with own proportiooal geometric and physical items:

[ = L ]
ks =Ks ps = K3 pat K5 hv—l‘-lupu+ﬂ- by, i_{ z§=gngpn+_fvh:;, i }i_
iﬂ=c£§)* (E}z—{£”13+tr =KL+ KL, } 9p=98 — 95 =Gat b

dyp - Pg = d7i - P= + sinhyi doy - by, [pL-fi~pu:+l, b{,,~f:|:rb;.-=2+l}
= . . — 2 1 2384
2 = + sk o — o0 i 0 iy — () + () >0 [ O

B

Here dyp = dAg/R, p > £. By this Egregium Theorem of Differential Tensor Trigonometry
(L-st from two hyperbolic), we redoce this miced motion in the initial By along a world line
and on 11 as a perfect surface to the hyperboloidial angular are as hypotenuse dyp in the final
buse Ep. Here Eg is a summary 4acceleration of M, but along hypotenuse dyp (at velocity
vp = c-tanhyp). Both are collinear due to {225:5‘;]. The equation d coshyp = decosh  infers,
that chanpe of time dilation is equal to one in By, where real velocity vy acts at a world line.
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According to Poincard simplest approach in 1905-1906 |63, G4] to construction of new
relative and absolute dynamical characteristics in the relativistic space-time, based on the
classical Newton's mechanics and STH time dilation (Chs. 5A. TA), we get the relations for
a relativistic kinematic capacity of the progressively moving body M. Indeed, the factor
sinhy, dy, = sinhvy dy; — deoshy, = deoshy in (22TA) canses following equations:
Vh s =V} -go —F Uy Mggg = UV Mggy = vp-Fg =17 -Fy — N{aj; =Ny, in E,, and E|!
The values yp and vy = ¢ - tanhyp = cosc - vy = cose - ¢ - tanh vy are caleulated by (2244).

Hyperboloidal model (here as top 11) is useful for interpretation of relativistic kinematics.
We saw this on the numerons examples before. Inthe given case, doe to (2284) ) the summary
velocity vp or angle p in the final base E is less than values of vy or 4 in the initial base Ey.

If wg or 7y is zero, then the acceleration gg and differential dqyg in such an immobile base E; are
become as internal ones with necessary zero gy and dog. From the other hand, the summary
acceleration gg or differential dyp in the base By is bigeer than values of ge and dvy in the
base By If the velocity vp or angle qp is zero, then the acceleration gg and differential
dvyp in such an immobile By are become as internal ones. In such an immobile base B,
the summary internal acceleration gg and differential dvyp are decomposed orthogonally into
parallel and normal ones, with respect to the velocity v or vector eq; and as 4 =0 & 3 =10,
then 9p = 9 = 0. We get the Local Absolute Euclidean Pythagorean Theorem acting in the

sine normal plane {Ez}m} and given non-completely in (145A4), Ch. TA, now from (228A)
as the purely Buclidean case with such an orthogonal decomposition of internal dyp and gg:

&Tp seg = dyj - g + sinhy; doy - ey, = L
{dA/R}? = dy] = &y} + sinh® y; daf = o] ke=kgtks =ka ik, .
E— 1 =32 1
= (cose dyp)? + (sins dyp)? = (F7p)2 + (d1p) 2 K =Ks +Kg=(Ka)® +(K)?,
= 1L . .
Bs =B+ Eg =cosh¥i-ga-8a +v*-uwh, -8 = go -8 + gv - B0,
= b 2 1.3 2 2 2 2 (2294)
g,ﬂ'= g8 E+{gﬁ}E=Mh Ti'gi‘l'{l".'ﬂ';]} =g +gv-

Here we inferred in STR the spherically orthogonal decomposition of the general inner
aceeleration gg into parallel go and normal gp ones! 1 briefly, in (2204, (145A) and (226A),
formally we apply also the orthogonal decomposition of as if final here directional vector eg
in the Euclidean subspace of (P31 using our useful simple formula (137A) from Ch. TA

In addition, we ioferred that in transformations above normal sine 3-orthoprojection
sinh~y doy - by, does not change, since e, is perpendicolar to the direction of motion eg.
We apain state the fulfillment of the Herglotz Principle [84] — see it in Chs. 2A and 4A
That is why, for normal projections in By we did not use special asterisk as for parallel ones.

Geometrically (228A) corresponds to rotation of tangent iy with two degrees of freedom:
at complete are dvyg and at as if cotting are dag. Indeed, above we have only its space-like
sine projection into (£2). Although complete dog with its cosine and sine projections in
and {(£2) is a time-like vector sum at the time-like unity normal time-arrow i,. (Also under
metric tensor 1T} Such entting is cansed by mixing its time- like projection cosh -y, dog with
the time-like projection coshyy dvyy in dvyy - Pe in (228A4). However, at 4y = const | similar
mixing is absent, and we can execote as alternative to (225A) two-steps differentiation
along a world line with orthoponal decomposition of the complete 4-vector dey - 1, into
its sine and cosine orthoprojections.  Obviously, such two-steps time-like orthospherical
motion must have own trihedron in (P2}, but (as we shall see) in the central zone of the
concomitant hyperboloid 1, with the own Absolute psendo-Eoclidean Pythaporean theorem.
We'll implement this scenario later for correct construction by Tensor Trigonometry of the
time-like pseudoscrewed world line as the 2-nd type of uniformly accelerated motion (in
addition to time-like uniform hyperbolic motion in Ch. 5A). lo the Frenet-Serret theory
of regular curves in (£3), the peculiarity with mixing in the trihedron by Frenet of the
tangent to a curve and its torsion (in TT it & the orthoprocession along 3} is hushed up
by authors of text books in Differential Geometry. Our Tensor Trigonometry in the pseodo
and quasi-Euclidean spaces with frame axis § revealed and eliminated such peculiarity!
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According to both theorems (226) and (228A). the geometric meaning of the hyperbolic
differential arc dy in normal relation (1T1A) has become completely clear (with dy = d-yg).
Physically, it is proportional to the normal acceleration in the Thomas precession. With
identical expressions, extracted from 1-st relations in (226A), we give both normal relations,
when qp = 0 and when -y, # 0, as rigorously inferred in the original Enclidean subspace (£5},
produced now by the tensor differential trigonometry in {P*H) under the same tensor 1+

i L . . - - -
cosh g - sine dyp = dyp = sinh+yi day = coshyp -sine - gg = gg = v -wa (1 # 0), (2304)

1
sine dyp = dyp = sinhyi doy = sine - g =!i_ﬂ =uf-wy (pp=0).

Thanks to this normal relation, we may add to the 20 Eoclidean normal motion in (2264)
and (228A4) the angular shift —df from (172A) with the Thomas precession in time —uwyg
around the 3-rd normal axis ey = ey x ey, with expansion of whole description of differential
motions (2254 ) on the 3D hyperboloid 11 in complete (PP, because these additional shift
and precession are connected with the space-like cosine projection coshyy doy -ey in (1734)!
It is the difference between real are dog and its space-like cosine projection canses the angular
defect by Lambert with the physically detected precession by Thomas — see in detail in the
end of Ch. TA and further after (2384 1o the beginning of Ch. TA | we revealed this induced
precession in matrix form, but for two-steps non-differential hyperbolic motions.
*® F ¥

Lo (22840 3 vectors pa(er). be(er). ie(em) form the right mobile base or the first 30 trifiedron
ER = (pa(cr), bu(er), ia(er)) in (P Generally. in {(P**1). it must be subbase of the
cardinned psewdo- Cortesion bose Eﬁ'j,:} = {JaleT), jaler), jaler), i(er)). Dilferentiating anyone of
arthogorel unity vectors, for example, 8y along a world line is reduced to its orthogonal rotation
around 2econd vector az with third vector ag in a peadoplane or a plane formed by a3 and az. Then
fourth rested basis unity vector as outside this tribedron in (P*) must be immobilel A result of
thiz rotation i= az. This result i= equivalent to the result of vector product a1 » az = +ag with its
right sign. Below, for illustration of this approach, we give these complete Tables with signs for such
viector products for two tribedrons in I['Ps-"i]l with a frame axi= i, and {Q‘H'i} with a frame axiz ja.

for Minkowski .'-.[J'run:-L'luu:{'Pa-H} in {Ea}{m} C {P3+1}
De by i e by i i1 jz Ja
DP.| 0 | +i. | +h, Po| 0 | —ip | -by| | 1| 0 |+da| —d2
hl:r _in 0 TP ' h;.l. +i-n 0 “Pa . Ja | —da 0 +i1 ’
i —b 0 1] in +h;.|. +Pa 1] Ja | +iz | -5 0
1-st trihedron E“!E,f] = {Pa, by ig)  2-nd trihedron E“!EJ = {Pa. by, ia) {and in (E3yim o (PITLY)

In final, in general, both tribedrons must form the tetrabedron.

Due to these Tables of the products (in the left one for psendo-Euclidean rotations, in the right
one for orthospherical rotations too in the subspace ()™~ in the latter. in that number, for the
Ihomas precession around its axis by with velocity wy). in the upper row we chose the rotated
(differentiated) unity vector and in the left column we chose the axis of its rotation in the subspace
of rotation. In the intersection, we get the vectorial product. So. for example, we get i, < pa. = +hy.
Fhe mathematical reason for this behavior of signs is that hyperbolic functions preserve their sigo
during differentiation, while spherical functions change it. The difference in signs of both theories
in Euclidean space is eliminated by operation by + by, due to our chosen strategic plan.

The byperbolic rotations are described by the sine-cosine functions.  Differentiations along
the curve as a world-line lead here to the equivalent trigonometric processes sinhy — coshy —
sinh+y... and cosh — sinhy — coshy... for radivs-vectors of hyperboloids 1 and 1 (Figure 4), where

T4+ for both the concave arcs on hyperboloids [ aod 1L For analogous trigonometric

we have sign
version of the Frenet-Serret theory, we obtaio such processes for radivs-vectors of the by perspleroid
(Ch. 8A) with signs variations: sing — cosp — —sing... and cosg = —sinw = —cosE....

o2 %
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In the Lapgrangian space-time {j’.'.a"'l}: the tangent and the principal normal to & warld line are applied.
but & pseudonormal does not exist. Nan-relativistic decompaosition of accelecation at the point M on s world
line in the plans |:JE.'3}|IK‘"“:I = (B, Eﬁ}{m} = {v,g}"™ is performed in the Euclidean-affine space-time (£311)
[see Ch, LAL, it is the following:

wo-[7] @-[3]-[]

ﬂ_ E | _| §-®a _ %'En + ﬂ'%‘ _ T -ea + ;-'Etr
gz |0 |T| o = 0 0 L0 o |
where ?=ﬂ=y-vmﬁ£, $=ﬂ-—”dEn”E=U'Wu=£=_ﬂ"ﬂiﬂ5;

di dt T

1 — L — L L —
=@+ (3)? g=F+E Elv. Blv (B=g-F.

Here git) is decomposed along the direction eq of the velocity v and the arthogonal direction eq of the
principal normal to the curve in the constant Euclidean subspace {Ea} of the Lagrange space-time {£3+1}:
but with single Pythagorean 1'heorem!

£ & =

Since, at collivear motion, a length of 8 curve’s arc is dl = K- R then the 1-st part of (223A) is
pseudoanalog of the 1-st Frenet Serret focmoula, gotten by a purely trigonometric alternative way.
So. using the hyperbolic angle of motion 7y in the ssculating pseudoplane, with are dy, we obtain:

di di di dy 1]
di=pdy & —=p & = = p=—= =Ky-p. (2314 - 1)
& iy~ dien  der) © R

For regular Enclidean curves with ex = const in its osculeling guesiplinein the quasi-Euclidean
space I[QE'H} with reper axis o (Ch. 8A). using the principal angle @ with arc dig, we obtain, by
a purely trigonometric alternative way, gquasianalog of the 1-st Frenet Serret formula:

do de de dp n
de=ndyp & — = i — == rn= = = - IL 231411
ndp & =0 e g @ @ TR, e ™ ( )

¥ ¥ ¥

Continning the previous process, we realize the pext two-steps differentiation along
a world line, but now as of the principal psendonormal pg to find the remaining motion
parameters in the 3D space-time (PP under contrary to (228A4) metric tensor {17}
also for descriptivety. Now we'll consider this differentiation logically ss accompanied with
the concomitant hyperboloid 1 For certainty, in the beginning, we take into account only
the time-like variant of summary angular motion along a world line (relating namely to the
STRH), because the rotations of the psendonormal pg give time-like and space-like particolar
differentials — see preliminary for the hyperboloid-1 in (133A-H) and (133A-5) in Ch. TA.
The principal and free characteristics 1y and ig are produced with the 2nd different
iations in er along a world line after (223A) with one and two degrees of freedom (at = 4):
{dBele} _uen). | S22 | — Kater)-haler) — aaten) - 5,
o a
(2324)
Bl — 0fer)- [ “th’}’f,;" ] = Qx(e) - in(er) = qu(er) = 5.
Let’s adopt relation as (13TA) for new characteristics in (232A) with connection as (2244)

from condition of psendoorthogonality of pg and i, with a free directive vector g under
sine slope to g and 3-rd directive vector 8y = g X €y also in the original Euclidean plane:

€, =sine-8, +cose-g,, €€ (07|, (e, -e, =sine, €, -e, =cose, €,-6, =0). (2334)
From condition of psendoort hogonality for pg and ig, we get relations contrary to (224A):

{tanh i = sine - tanhy ~ cothyg = sine - cothyi} — 75 > 7i(y € [0, 00), € € [0; 7]); (234A4)
at complementary angle{coshv, = cose -coshv;} — vy < vilv € [0, 00),€ € [k 7)),
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At the 2-nd free differentiation in o7 along a world line, due to (232A) and with the useof (2334,
wo get as if the psewdoanalog of the 2-nd Frenet-Serret formula, with revealing a space-like cosine
bivwrral by and the same principal curvature Qu = K. but at the principad fengendt iy, and now

-
in the second purtiol 3D space-tirme {P}H}I: {m} H Ei} = {{E‘3 {“:} Ey'{""l} (also at £ = 3):

Qe(er) = dl;?:;} _ .::::;, ) [ aiifm:ﬁ ] =r;} Cigl(er) = Quler) -infer) = (2354 — 1)
(1} o
S mﬂ_dlec?_ _ 47 [ sinhyi-eq cosh i - 77y - @m :| -
_d(ﬂ'][ cosh +[ o [ ]'] = 2en) coshys ]n+[ u( 7 ) -
sinh; - R TE
= Qafer)- [ ;H’]I‘;T;au] +Kp{£?’)-|: 5] = Qafer) - ixler) + Kuler) -buler) =
= T

[amh’r-;'en ]_ g {[ sin € - sinh g - 8 ]+ [ cose - sinhyg - ap ]{1}} B
= " _

dy cosh g dfer) cosh i

=
= -8x . —_— . L == L
= Qrler) - [ i"iff,q ] = Qnler) - in(er) = QF - ialer)+ QR -bu(er) = aif (er)+ R (e7).

Below we use again intuitive understandable notations beginoiog from the geoeral corvature @,
_dvg ) o
N Gl 1 Q. = coshg - Qn = 05 = cosh i - Qs Qa = Ka = i = 5,
Q2 =sinh1g- Qn =5, OF = \fein® - sinh?7 — cosh®7g - Qn = kg @n = Qu;
o

)

— —_— [=]
0% =sinh v, - sine - Ok = sinh, - O, =sinh~y; - Qo = sinh; - Ko = 93 = 25 = Ig;
N ? ' ' = A (2354 — I1)

1
n 1 o L .
=—J£i"'r, Q’E=—‘Z&-=ainh’rq-cms-2m=K:p=mﬁh’ﬁ-$fj=c_:‘ﬂzﬂ=iﬁ'-
=2 12
FQ2 = £(Q2? Q*"‘)—(Qf‘:+2r=)—2"" -9 + Q% =-9L + K. J

Equaling under It pabved summands, we gel next relations al 5 <7, 2 :|:t1"')‘1 = :F{L‘Dﬁh Ta d"‘)'q — sinh® Ta d"‘)'q]- =
= :t[(B:-I]'.IE-E - sinh? g ch'q + cos” e - sinh? g d’rqj — cosh® g d’rq] = (sinh® v dv} + cosh® v; dod) — cosh? v &yl =

= _r:h'f + cash? ¥i du: = :|:[|:sin2 € - sinh? g — cash? Vgl d’r: + cos” € - s'mhzfy.,. dfy:] = F(— sinh® n d’r: + cosh® ] d’r:j.

We have two identical decompositions of dyg  usual and new pseado-Buclidean, the latter correspond to
the 1-st metric form (1334 of the hy perbaloid 1D We use also underline for Helative and Absolute | hearems.

The Helabive Pythagorean theorem follows from the space-like part of [235A) in its S-vector and quadric
svalar forms acting an the cosine normal plane {E‘z}i‘-";} = {BLmJ1E£|.1]::I for thres proportional characteristics

as their orthoprojections into the Cartesian subbase E_!?} at 7 € [0,00), € € [(;w], using (235A) with (2334):

Qy -sinhyy-ex = QF e =sine- 97 ey +oose- O - 8y = ﬁﬂ-an+ é-:-ap= ]

=
) &l
=Qn-alnhﬁi-an+mhﬁi-a%-a,_.=gg-au+_c.‘,_2-ap=gg-ea+fp-ap. J
= L
= { az =qﬁ+i kZ +lr.:-h }{Qu Ko = d_ but they are time-like and space-like} =
(@2)7 = (@07 +(22)7 = (€2)7 + (Kn)?, (=)
Ir ﬂll‘.l.h"]".; d"‘]"q ey = sinhyi dvyi - en + cosh yi dasz - Bu ]
=¢_i sinh?® qu*yz_mnh T,d’rz+msh3’]r.dczg_ if"
— 1
= sinh® g - [(sin € dyg)? + (cos e dyg)?] = sinh® v [(d1q)? + (dvq)?],
— 4L
- { i =Jrn=i JE:=Tnth'Jn =sinh ¥ - jo - €0 +* -WM - By =J3 " En +.'i|;.|. =T } {QEEA:I
2 = (32)% + (j2)? = sinh®yq - 52 = sinh® 5 - 52 + (e* - why)® = 522 + 52

= sinhv, - sine dyg = sinh, dy, = sinhy; d7 — drg/dyi < 1,
[rg/1i > 1 —see in (24A)] { 7g > % (vg > v, 1q =0 & % = 0; Ty < dyg < dyi} 7 € [0,00);
Qe -coshyy = Qp-coshyy = Kg-coshyg, @, =K, < |1:Cﬂ|'l"]"q- dyy = coshyy dy; | =+ dygfdvy < 1. (2374)
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From (235A) (237 A). we obtain the Absolule pseudo- Buclidean Pythegorean theorem with the
Sond mobile trihedron ES) = (p,, by. ia) in (P**'} under the same metric tensor 1% (17A-1)!
And it acts on the pgeado-Euclidean cogsine normal pseadoplane I['Pl"'i}f,‘,“:u = {iLmJ,hE,l}} in 30D
(P, = <[:|[4!","z:|{r"1:I EE} (¢ = 3). In the right triangle of py rotations, it corresponds to the
ariguler psendonormael 1-st metric form (133A) for the concomitant hyperboloid 1 (M), as a perfect

hypersurfoce of (PP It s expressed in the initial bhaseEy = {1} and final base Erm in the universal
complete fensor-vector-sealar ("tos") forme with own proportional geometric and physical items:

—_ i = =
Qe = Qn fn = O lat @° b,:g,l,+x#h",{g,=;cﬂ} ==,{ Jr = Ja la + Ju ba, (Ja = ga) }=
FQ = 4@ - Q) = —(@2)° + (%) = —@2 +K3; FR =22 -5 = -2+ 12,

vy -1, = dy; - I, + coshy; dag - b, (1, -1%.i,=—1, b, -J%¥.b, = +1)=

— PR
—d’r: = —dy? + cosh? y; dol = — cosh? p dy,? + sinh? f dyy? = — {d’rq] + (r.ﬁ,) <0,
B B (2384 — I, IT)

2 1 y32
+d1§=—d13+mah"1.- doed = — sinh? 5 dyg? + cosh®  dy,? = — {ch'q:lp+ (dq,)a = 0.

Here dyg = dAr/R, 1 < 77g. By this Egreginm Theorem of Differential Teosor Trigonometry {(2-nd
from two hyperbolic), we reduce these mixed motions in By along a woreld line and oo [ as a perfect
surface to hyvperboloidal arc if El'.’]n'g < 0. to ellipsoidal arc if Ii’}'g > 0 and to horoline if dyy, = 0 as
hypotenuses in final Em. Factor coshvyg dyg = coshy dy — dsinhyy = dsinh 7y in (2 A7TA) causes
equations: € -ge = €f ~fo —+ Cp Mofe = Cf Moy = cg-F =i -Fo — N{E} = N{EJ in E.' and El
Values v, and 5, = ¢-cothyy = sine - c-cothy; = sine - 5; are calculated h_'!r (234A). But all these
itemns relate to the so-called and by pothetical Looking Glass of Theory of Relativily — see below,

Note, in (225A) and [2598A) ) wheroyi 2 const — dy £ 0, we confirmeed our byperboloidal reodel
Jor world lives metvics! They propagate on cases with dyg = 0 too — see further for screwed lines,

We obtain in (236A) the cosine normal acceleration ju = ¢* wh,. Besides, j;z = g;z — g2 s
the acceleration gh excess, which was not explicitly revealed in (226A). We inferred that in (238A)
the normal cosine projection of do does oot change. since they with ey are perpendicular to the
principal direction of motion @z, We again state the fulfillment of the Herglotz Principle |84] - see it
in Chs, 2A and 4A and io (22847 That is why, for normal projections in Ey. we did not use apecial
sign circle as for parallel ooes. For more clarity note, that both pares of dyg -ie at Lin (238A4) give
in the STR the psendo-Euclidean interior and exterior right triangles in (PO = (b3t
Earlier in (226A) g% (as a leg) and g, (a3 8 bhypoteouse) given only the exterior right trinngle with
the acute angle 1 between them, and g;z — j;z = gz = ﬁ Lu (236A) the parallel aceelerations §5
i(as a leg) and o (s a hypotenuse) give the ioterior right triangle with the obtuse complementary
angle vi between them, Now we obtain contrary g;z—jl;z =42 = g2 lnhoth right trinngles. jg lies
contrary to ;. For characterization of byperboloids 1and L1 it is necessary to distinguish between
their geometry as a whole and the part that relates to Theory of Relativity, We will analyee below
the geometric features and more in detail what is related to the theory of world lines.

Theorere [ 238A ) wets wf the tengend psendo-Euclidean by perplone to coneoritard byperboloid 1ol
slupes of sunernary motion’s wre dyg = dA g/ R inside or outside light cone. Two-steps differentiation
(230A) gives rotations of the pseadonormal pe with two degrees of freedom: py x by = +ip and
Po ¥ i = +by (b, = const). Thus. unity by and i, are bhere the 2-od pair of the cardinal
preudo-Cartesian base ES? = {pa(er), by (er), b, (c7), i(er)} as the movable fetrafedron. which
i= rotated around an arbitrary world line in the endive binary spooe-fane I[‘Pz-"i:l (=ee further). The
d-vector ie was obtained in (222A4) for the sequential two-steps differentiations (225A) and (235 A).
Each they are realized with two degrees of freedom producing two own specific ribedrons: in (2284

E® = (pa(er), bu(er), ia(er) and in (2384) ED = (ia(cr), bu(er), pa(er)).

Non-collinear motions in (238A) and on the h_'!r perholoid 1 with theic two differential arcs have
own normal relations, in addition to (230). Here is dy = dyg. Sioce in (238A) 5 < 7. theo at
g = 0weget 1 = 0.6 e, physical movement is absent. Heoce the Local Absolute pseado-Euclidean
Pythagorean theorem in {(E%Y is absent! That i why, from (235 A-11), in the Euclidean subspace
{Es:l{i}. when g # 0. we produce oo the hyperboloid [in I['Pz-"l}f it2 own rorread relations:

cose - sinhy, dy, = dy, = cashy; doy = (doa)* > daa (1 < T5)- (2394)
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Note, in the end of Ch, TA, we established through our simple trigopometric formuala (1734)
that a true primary reason of the Thomas precession in STH is mathematical "angular dissonance”
of a hyperbolic cosine type, having place also in the hyperbolic triangles on the byperboloid 1 and
o the Lobachevsky-Bolyei hyperbolic plane as the Lambert angular defect. By (173A) we have

df = da; — (doy)* = davy — coshy; doy < 0 — df/dt = wg = wa — w’, < 0. (2404)

Differential rotation dog of 2 world line acts in (2284 ) in the sine normal plaoe {Eg:lf,‘,“:} = (al™ e}
around its instantaneous normal precessing axis E,{_.m} sloped locally under cosh i to immobile GE.“
in the base E1. But how we may describe with (240A) forming the complete Lambert negative
angular deviation —d#, for example, on the byperboloid 1 {or in time as the Thomas precession) 7
For this we'll use the descriptive process of drawing the trinogle on the curvilinear surface of
the hyperboloid I continnously and perpendicularly to the vector ey, When we pass along 3
sides of the hyperbolic triangle. the Lambert angular defect is integrated with (240A) along its
sides.  In the last apex of the hyperbolic triangle, we'll receive the complete angular deviation
_ﬁ:l [dexy — cosh i) don] = 7 —ofy) —afz —afs < 7 — o1 — o1z —oga = 0. See strictly the prove
of the bond of orthospherical shift d8 with the Lambert apgular deviation in (244A-11). Ch. TA.

However, we obtained above in (236A) the similar normal item coshqy; dog, but it is for the
second independent cosine normal rotation-motion of a world line, projected in the instantaneous
cosine normal plane {Ez}i‘-";} = {Efzm],e}_.n:l. what is more, around its instantaneous normal axis eb!

= % %

The joint pseadoorthogonality of motions in (22847, (238A) and also () of motions on both

conjugated Minkowski by perboloids in (PP are reduced to the equation p:r{f*}-iﬂ =0, which is

executed according to (224A) and (234A) iff | e -ex = cose-sine | Then we have this final equation

with conditions of the consistent orthogonality u.f all Tour basis vectors, inferred 2eeictly the existence
of a complete pseadoorthogonal cardinal base 51:}. But the complete orthogonality of the vectors
eg and g is realized in any of these three cases: (1) coss =0 — eg = Tep according to (137A) and
(2) sine =0 — ex = £y according to (233A) or [ull (3) cose =sine =0 — e = e, 8 = Loy,
* o2 %
Tor realiee various alternative motions with the eotive angular differeotial de, essentially in the

important case when dy = 00 we introdoce pew necessary additional woity vectors. Below put:

b. = EI; iz o cutting 3-rd spece-like bivormel (from complete pe and ia).

i1 = [ 1 ] iz o cutting firee-like binormael (Irom complete iz and pa).

They arise, as the additional unity $vectors, when total curvatures of the given principal rotations
of time-arrow i, and preadopormal pg are decomposed into their spatial and temporal pares,

Lo addition. for further constructions of screwed carves, we introdoce the specific time arrow
and prendonormal. perpendicular to principal ones i aod pe also preseated bhere for comparison:
) _[sinh"rp&;] _[msh"r;-ep ] ; _|:5\i|]h'"f'i‘geg:| _ msh"r.--en]
b= cosh 4 CoERT sinhy; e cosh e sinh s ’

£ & =

Geometrically (238A) corresponds to rotation of principal pseudooormal pe with two degrees of
freedom: at complete are dyg and at as il cotting are dog. lodeed. above we have ooly its space-like
cosine projection into (£7). Although complete dog with its sine and cosine projections in o and
{Ez} is a1 space-like vector sum at the space-like unity 4-vector of the normal cosine pseadonormal py.
{ Also under metric tensor 7% § utting is caused by mixing its time-like projection sinhqy; dos
with the time-like projection sinhqy; dyi in dys - o in (238A) However at 15 = const, similar
mixing is absent, and we can execute as alternative to (230A4) two-steps differentiation along a

world line with orthogonal decompeosition of $vector dog - py into two trigonometric projections,
'31-1}

Obviounsly, such two-steps space-like orthospherical motion must have own tribedron in 30
however (as we shall see) also in the central zone of the concomitant hyperboloid 1 with the own
Abzolute pseudo-Euclidean Pythagorean theorem. We'll implement this scenario below for correct
construction by Tensor Trigonometry of the space-like psendoscrewed "superlight world line” as the
2-nd type of uniformly accelerated motion (in addition to space-like uniform by perbolic motion).

£ & =
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Lo order to replenizh our 2tady of relativistic motions in eotire I['Pa-"l}. ot u2 remembor words
of the great Niels Bohr to dared physicists: “Your theory is not correct, as it is not cracy enough!™
Then, we may realize the moee complete tensoe trigonometric preseatation of relativistic motions
in entire {P3+1}. with world lines of two types — usual 8z they were before and superlight, separated
there by an izotropic cone. The first are used o the troe Poincard — Miokowski space-time, aond
the second act in the hypothetical Looking Glass of Theory of Relutivity, with the well-koown and
nice vovager Alice (following here to the non-ordinary English writer- mathematician Lewis Carroll).
This Looking Glass is realized in entive relativistic or binary geometric {'P3+1:| and physically bevond
the horizon of events as il in another adjacent othersided world. So. for instance, it may be inside
the so-called Mack hole, predicted in 1783 by the cminent Jobhn Michell |81 ooly oo the basis of
the MNewtonian Celestinl Mechanics, Beside, at our time, in 1962, the well renowoed phyvaicist aod
Pioneer in gquantum Tachyvon Theory Gerald Feinberg predicted so-called tachyons, as elementary
particles that move at speed greater than the constant speed of light € in s vacuum and no-when
noo-egual really to it Moreover, up to now oobody asked the sacramental question: "According to
what laws and equations of kinematics and dynamics the superlight relativistic motions should be
carried out inside the Looking Glass of Theory of Relativity of eatire {'P3+1:|?" We may logically
adopt. that in this superlight space-time, such laws are developed from differentiation of pg along a
superlight world line as in (238A). We get the hyperbolic angles of motion —v off an sotropic cone
to (Y and complementary to it —y(—v) as dockwise ones in (P'7Y). Coordinate supervelocity is
u =¢-cothy = c-coshv = ¢ from etill oo and proper supervelocity is 4 = ¢-coshy = c-cothv = ¢
from oo till e Scalar supervelocity of the time ¢ stream is ¢ = ¢-sinhy = ¢-csch v 2 ¢ from oo
till were! The arc of a superlight world line is a real valued cosine-sine pseadoinvariaot (dt, dr = 0).
The tensors of motion and deformation with dypamic tensors from Che §A have the tensor angles
=T or —I" with their structures of types (496) under also constant coefficients moe and moc-.

For the next clarity, it & time to copsider real localizations of two complete angular arcs dy
and all three independent orthospherical arcs doy 9.3 in entire {'Pa"'l}. Tangent and pseudonormal,
produced by differentiation (222A), (225A), (235A) change along a world line under equivalent
action of motion tensor (M00A). Two arcs dy. primary space-like in (228A) and motoal time like in
(238A), are situated in pseadoplane I['Pl+l}t;;1‘:l = (DPa,ia) of entire (P*7'} presented by analogy with
two bonded primary and matual spherical arcs dig in quasiplane {Ql+1}{sm}l = (D, ta) at Figure 3 of
entire {Qa"'i}. The first is the hyperbolic osculeting psendoplose of the yperbolic coroature Ky, The
secord is the sphevicel oseulating guasiplore of the spherical curvature Ky Hyperbolic and spherical
angles and differentials act as bioary ones too, Both binary differentials dy act symmetrically with
respect to sotropic cone in the middle between them — see at Figure 4. They express the hyperholic
identical, but contrary differential rotations of iz and pe. due fo the cspecial binery stractune of our
hyperbolic tevsor of motiore (100A ), with their permanent symmetry to an sotropic cone. 1t is from
here we bave their pairwise equality in (220A-11). (235A-11), but as scalar ones. These features has
a place in the gquasi- Euclidean space for double differentials dip for simultaneous contrary spherical
rotations of tangent te and gquasinormal De uoder our spherical tepsor of motion (313).

The sine by and cosine by binormals with their sine and cosine normal curvatures act io the sine
and cosine Euclidean oormal planes, but with the possible common orthospherical rotation dog io
the binormeel’s Buclidean plane {E‘E}EJ = (b, by}  similar to the Cardano gimbal in the Euclidean
space (E%). This plane is spherically orthogonal to the main binormal bS™ in (%™ And the 3rd
arc dios expresses o non-reladivistic free orthosphericel rotation in the binormal’s Euclidean plane.

I the 4D prendo-Euclidean space {'Pa"'l}. Euclidean binormal’s plane and csculating pseudo-
plane are pseadoorthogonal and form a divect pseadoorthogonal sum from these relative summands!
Each from them is a direct pseudoorthogonal complement to another and = defined by 4 % 2-lineors
A1 = |pa.ia| and Az = [be,bu| - see them in Che 5. We state the additional to (500} and (174A)
peeudo- and gquasi cethogonal decompositions of both binary spaces into their relative summands:

(P = (PP R (MW = consT. (2414 — T)
(@) = (@)W m (g% = cONST. (2414 — IT)
{Qﬂ"'l} = {Qi'l'l}!:;} H {Eﬂ}gﬂ =("ONST. [:242‘4}

Such properties with (500) and (174A) create a nice trigonometric harmony of these binary spaces!
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Let us pote one important property of a oworld lioe in {'Pa"'l}. lts priocipal tangent and its
prendonormal are alwayvs syvimetric with regpect to the Botropic cone. The 2ame property relates
to concomitant hyperboloids. This property 2 preserved even during their two-steps differentiations
along 2 world line. So. this should lead to the fact that during two-steps differentiation in (2354,
with revealing two basis vectoes — the principal tangent and the space-like cosine binormal with
cosine curvature at it, in provious (228A) synchrooouwsly and o addition to them the principal
pseudonormal and the space-like sine binormal with sine curvature at it shoold appear from (2384 ).
This gives the complete three-steps 1-st metric orm for a world line io the usual 4D space-time:

dig  _ gty i gy, - DL . gdog p 1
Ber) — dler) P TENO Gy Be F o080 gy B =
— sintys - SHE s T in gy, o 2L oo dog oy
= Bin 47y e iy + costys a(er) b + siniy; e b.. + cosiy; dier) b, =
=Ko Pa+Ke b +Ku-by = Fain- i + Xeoa - b + Koo - b + Ky - by,
{da/R}? = dy? + sinh? v daa? + cosh? i doa® = (2434, 2444)
= —sinh? y; dy? + cosh? v dy? + sinh® v dog® 4 cosh?®y; des? =
.2 .2 .2
mn. " Wy Wy
= Cx?®=_"T_ 4sinh?~;- 1 4 cosh? -y, - Y N s N
" - T, = T, = - - n
GEPE = §aPa + Gobo + 1ube = 8¢ = () + (v7wl 1)) + (S wl )7 J

The item coshy; at dos is situated trigonometrically ofside Cayley oval, and they give propoctional
cosine normal acceleration as also Buclidean pojection. However STH does not impose restrictions
onto accelerations, but ooly oo the value of velocity v, besides of the voyager himsell! If s < e
then coshy; — Vand K, — dog/d{ct) i as if for rodetion of the moving gyroskop on its world line,
We have again complete compatibility with the Principles of Corres pondence by Niels Bobr!

And now we may do the following infers: Ka, Ko, Ky # 06 a condition of the 40 spatial curves:
any two from these curvatures a2 non-zero 12 a condition of the 3Mspatial corves: anvooe from them
as nop-zero i a condition of the fat corves: Ko K Ky = 068 a condition of the straight world line

In the Looking Glass of Helativity, for a superfight world Do with the cotangent coordinate
velocity 8 = coth - = ¢ (from Ch. GA) in external cavity of sotropic cone, we get io the entire 40
space-time or the geometric space (PP the next relations. where as if pa and is are exchanged:

div: ) d .
é?’i‘jﬂ =3-(n—jﬂ -l=+nuﬁl:1.--%}--h,.+1smﬂi. :'r by =

=sinh';a{!(gr—"j-i1+msﬂia‘%‘%-b,+nusi’ri-a%:—:-j-h,.+1sinﬂi-%-h,=
=K, -, +K,-b, +1K,-b, =¥, -1 + X, -b, + K, ,-b, +1K,-b,,

2 _ g3 2. R 7 _
{dA/ R} = —dv] + cosh? -y, dog® + sinh® ey dey , (2454, 2464)
= —cosh? v, dy? + sinh? ; dy? 4 cosh? y; dog? + sinh? y; dog? =

3 w2 w !
= 5;_’:-&1— + cosh® i - —S— +sinh® - —g— = K% + K2 + K2
e e

™

gnin = Guia + 1ubu + 0B, = g3 = —(en3)? + (e wl 57 + (viwl )% J

We reduce the arbitrary most general motions in absolute entire (@32 and (PP, mixed from
hyperbolic and orthospherical (under by perbolic inclinations), again to purely angular ones, along
hypotenuse of the right parallelepiped from three legs in {Ea}tml. while preserving the symmetry of
tangent and psendonormal with respect to isotropic cone and under the common metric tensors,

MNote, that metric forms (228A), (238A) transform, by abstract analogy, in two-steps quasi-
Euclidean ones in gquazi-Euclidean space I[Qa"'l} and on concomitant 30 hyperspheroid. 2eparately
from Pole of IT apd from Equator of T But this analogy does not relate to three-steps forms,
becan=e both hyperboloid: do not form oneconopected bypersurfce. contrary to the hyperspheroid!
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In both variaots of motions above, their projections ooto the frame axis give us the so-called
orthoprocessions Y along it with a poiot of application M. These orthoprocessions move a world line
progressively parallel to the frame axis o with velocity either coshqy; - ¢ or sinhqy; - 20 By such
a way, we have decomposed even time like and space-like hyperbolic motions in (2434 - 246A). This
orthoprocession moves a world line progeessioely parallel to the frame axis with bgperbolic shift dy.

Let us add ooe else possible motion. It s cigen rotation o of the frame axis A e 7 with
shift doe or shift io time as the angular velocity wg. 1t is cansed by the change of a world point M
orientation. with respect to the frame axi=, at rotation of the veotor g in normal BEuclidean planes!
That is why, in result of two-steps differentiations in (228A) and (238A), when dy; = 0. ooe may have
lost the time-like cosée and sae orthoprojections of do ooto the frame axis as the projective cosine
and sine orthosphericel orthoprocessions along ) o in peewds- Euclidean geometry along A

What's more, when dy; = 0 and do # 0. we can reveal purely artificially these cosine and sine
orthoprojections of the complete (non-cutting) orthospherical shift do onto the frame axis g gy
the 30 psewdo-Cartesian bases En'}a} of entire (P**Y), furthermore uniting them into complete do.
accordingly with its sine and cosine space-like orthoprojections onto the sine and cosine normal
Euclidean planes in entire I['Pa-"l}. By such a correct and very descriptive manoer, we can construct
differentially in entire I['Pa-"i:l the two complete serew rotations dooof their Euclidean radios # and
peeudo-Eoclidean radivs Ry, with positive and negative sigos of the right and left screws shilt do
and their sine steep and cosine gentle inclinations <. Both variants at dy; = 0 (7 = const) give the
two Absolute pseudo-Eoclidean Pythagorean theorems for cosine and sine orthospherical curvatures
in entire {1?3‘“} with hypotemse Cr = wy /e Their relative projections onto the frame axis w
give the own orthoprocessions, introduced above, depending on slopes to E%UJ 48 Veos = coshyi-Cr
or 2% Vein = sinh+yi -Cr. In the byperbolic case of screw inclinations, with the permanent constant
d-velocity € of world point M along a world line, two pseudescrewed motions are patural additions
to two hyperbolic motions with slopes above and wpper Botropic cone as usual and superlight ones,

It is orthoprocession accompanied by complete rotation do give screw or pseadoscrew!

We'll consider below briefly two special variants of world liones with 7 = const £ 0 at dp =0

Lo the first variant, we'll bave 1-st metric form of 2uch a world lioe wicth the time-like cosine
orthoprocession Vess amd the space-like sine normal curvature K, a3 projections. accompanied
by the complete imaginary time-like orthospherical differential dice It is expressed by the Absolute
paeudo- Buclidean Pythagorean theorem in the interior right trinogle from dice, cosine orthoprocession
and 2ine normal curvature, Let us split cthe complete rotation dio onto E!z{i] as coshy; dice -1y and
into (£ as sinh i dice-by. Then the two-steps differentiation of iz will consist in the cosine ortho-
procession Vess = coshyi - Cr = coshy - (fw® /c) and the pormal sine curvature K = sinhy; -Cr =
sinhy; - (iw* /c) with the orthespherical imagioary pseado-Eoclidean rotation dioe of the screwed
world lioe with poiot M at the velocity dio/dr = dwy around . The purely Euclidean projected
rotation do acts around Srd Boclidean axis by io the sine normal plane {Ez}ﬁl = (Ba, &),

Instead of (228A), with such projecting, in result of the first alternative two-steps differentiation
of ig in det under 5 = const along a world line in {@*")_. we obtain the so-called tangent time-like
paeudos crew (with respect to slope to [rame axis 3“3‘} with the constant inclination of the curve:

{Efﬂ} = Veos i1 + Ko by = Cr -y = 2205,
i

dier)
. 32 Y = (2474)
~(Veas)” + (K0) = —(Cr)" = (iCr)" = — (‘”—EL) = (“"—EL) ;
[ dicyy 1w = coséyi diog - iy + sindys dicg - by, 1

= (248.4)

—[dA/B]? = —don? = d(ia1)? = — cosh® 4; doa® + sinh? 3 dog®. }

Such a type of differentiation with as if cribedron E'E.f] = (by, ba, i1} leads to summary time-like
imaginary die with unity vector &y (#s normal time arrow) of the world line rotation in (@*F1)
which is gotten by orthospherical rotation in the differentinted priocipal time arcow i, of its uoity
vector of the 3-rd binormal by with ey into orthogonal to it the sine binormal with e,

{rot T1/2} 4,4 - be = {rot 1/2}4.q - [ E; ] _ {rntg.f'?}sxs 0] [ EI; ] b, — [ ga, ]
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And in the 2econd variant, the two-step: differentiation of pe will conzist in the time-like S ine
orthoprocession Vo = sinhq; - Cg = sinhqy; - (w* fe) and the spacelike normal cosine curvature
K, = coshy; - Cg = coshy; - (w*/c) with the complete psendo-Euclidean space-like orthospherical
rotation do of the world line with point M at the velocity dofdr = wg around EI’“]. The Enclidean
projected part of rotation do acts as if around axis by of the cosine normel plose I[Eg:lﬂi = {eq. |,
It is expressed by the Absolute psendo- Buclidean Pythegorean theorere in the exterior right triangle
from complete doz, sine orthoprocession and cosioe normal curvature in the Looking Glass of entire
4D space-time (PP,

Instead of (238A), with such projecting, after the second alternative two-steps differentiation
of Py in der under 93 = const along a world line in (@) . we get the so-called cotangent space-like
peeudoseraw (with respect to slope to frame axis _ai{i}} with the copstant inclination of the curve:

d, . W
{ EE!E:;- } =y’i“'11+’:¥"h#:cR‘P‘#=_cz'|-"P:%rp’“
¥
= (2494)

)+ (1 = = () = (daz)

daeg - P, = sindy; dog -1y + cosiy; dos - by,
-y (2504)
+[dA/R]? = daz® = —sinh®y; dars® + cosh? 1 das®.

I thi= variaot with a= if tribedron E“'E,f] = {bu. by, i) normal psendonormal py = gotten by
orthoepherical rotation in the differeotiated principal p2eadonormal pg only itz anity vector of the
3-rd binormal ba with eq into orthogonal to it the cosine binormal with ey under the cosine slope:

0 1 0

Lo (24740, (248A) and (249A), (200A). their pseudo-Euclidean complete angular differential
motions dice and do, ioe, upper and below of the sotropic light cone. with physical angular
velocities w) = dafdr are displayved o the projective normal sine and cosine Euclidean planes as two
progenitor planetary motions, wsual and superlight. Moving along two pseadoscrewed world lioes
(of tangent and cotangent types), they are rotated arooand U gt the perpendicular time-like time-
arrow i, and at the perpendicalar s pace-like complete psendonormal py. These artificiel differentiols
dice wnid dov wre stradned visnelly along 1y, due to theiv pseudo-Buclidean metric!

We get a wonderful and amazing result, consisting in the fact, that the psendo-Eoclidean angular
motion, produced ideotically from the equal planetary aogular movement dag in time io the sine
normal Euclidean plane {E‘z}ﬁi = (b, ba}. is displayed entively in (247A). (248 A) from its two sine
and cosine orthoprojections into the imaginary time-like motion dice of a pseudos crewed world lioe
in E_'t of the 3D complex quazi-Euclidean 2pace- time I[QE'H}H. with its imaginary time-arrow o,
according to the original approach of Henry Poiocard to creation of the STH in Juoe 195

It i= a conzequence of the fact, that rotation dioe around Eﬂ“ iz executed at the imaginaey
perpendicular tangent i uonder its also by perbolic incination to Eﬂ“. From (247 A) we see that the
local time-arrow ©F with tangent i, to this world line is rotated entinedy at the imaginary angular
differential dice too, but with itz space-like Euclidean sione pormal pare at the 3vector hE-“ in the
siree norreal plane {Ez}ﬂ: Therefore similar time-like screwed rotations-motions are accompanied
alzo by the Thomas precesgion — see above and io Ch, TA. The Thomas precession actz around the
A-rd normal precessing axis h}-_.n wreder cornplete description of this fivee-like psewdoserewed motion
int the spooe-tine {Qa'ﬂ}e by Poincaré Minkows ki Heoce, by 2uch a way, the Thomas precesgion in
timme is propagated on any relativistic time-like pseadoscrewed motions — so. as of electrons, sputniks
of planets up to big and very big astronomical objects with their relativistic motions of a planetary
type (purely spherical and elliptical).

But in (249A7), (200A), we revealed a space-like Euclidean cosine sormeal peart at the ."l-vm:tu::bi“
in the cosine normmal plone {Egjﬂi projected from the pseudo-Euclidean complete rotation-motion
doe of a space-like screwed world line io By of the 4D complex quasi- Enclidean space time {Qa"_l}e.
However a cosine Euclidean part of this rotation dodoes oot lead namely to the Thomas precession!

{rot T1/2}axa - ba = {rot 11/2}axa - [ Flo ]: {”’tgfﬂ}m 01 [ Ca ] =bu = [ » ]
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The resulting relations (247TA)—(250A) give us the screwed shape of these curves with
kinematic, and it obviously should be repeated as a result of their permanent orthospherical
rotation de. Consequently, these relations alone are not sufficient for the overall formation
of such curves, since there are no yet some mathematical condition that ensure continnons
and smooth connectivity of all their turns — see its below. Then, in result of the integration,
we must obtain the psendoscrewed curves of tangent and cotangent types, i e with pentle
and steep slopes, and also as right and left turned doe to two possible signs of do directions.

Let us point ont another unusual features of these orthospherical rotations along both
psendoscrewed curves with both their differentials dicgy and doggy, very important for full
understanding their tensor trigonometric arrangement. The fact is that complete angular
differentials in relations (247A)—(250A) are of an artificial pature, since they were obtained
by combination of two time and space orthoprojections into united one — formally also with
two-steps differentiation along a curve. That is why, both these artificial orthospherical
rotations have the psendo-Euclidean nature and metric, and they are situated and act in
their 3D psendo-Euclidean binary spaces. Though their formally equal progenitors doe are
situated in their sine and cosine normal Euoclidean planes. Hence, a coincidence of scalar
forms of these psendo-Euclidean differentials with the true Euclidean differentials dein these
normal Enclidean planes only means formal equality of these angular differentials — artificial
and real. It is such a feature leads to number of the uwonsual paradoxes of screwed and
psendoscrewed corves with corresponding to them number of characteristics, right triangles
with additional Pythagorean theorems, all described below in details!

Note, that these features hold in the spherical case too for the analogical screwed right
and left corves in the quasi-Buclidean space of cotanpent and tangent types, i e with steep
and pentle inclinations; and also with conservation of value do on the curve.

Using locally hyperboloidal model for hoth types of two psewdoserewed world lines,
we can relate them to the central eylindrical region of the concomitant hyperboloid 1 — upper
and below of the isotropic cone with respect to its central circwlar zome — an equator of the
Euelidean radivs B = v, This consists on its surface the coincided with them the time-like
motion diac and space-like motion do up to 1-st order of differentiation in (@31} We use
R =7 as radins parameter of this concomitant hyperboloid I and of its central zone and r as
the same Buclidean radivs of both progenitor planetary movements — wswal and superlight!

Thus, above we considered preliminary the main aspects for correct construction of two
types screwed world lines and regular curves in the both binary metric spaces.

However using above in (243A4)-(250A), and before in (132A) ) (133A) and (2254 (235A)
the complex quasi-Euclidean binary space as 40 space-time by Poincard, we must add to
Chs. 5 and 8A . that not ooly real-walued quasi-Eoclidean spaces, but and complesxvaloed
ones, including (@31}, by Poincaré, have the Euclidean metric tensor and the reflector
tensor analogous to one for the pseado-Euclidean binary space, for which it serves as metric
and reflector tensors. This owr mark is necessary for ezecutions of any reflective operations
with reflector tensor in these binary spaces. ts relative complex osculating quasiplane and
real-valued bonormal’s Euclidean plane form the quasiorthogonal direct sum as the absolute
4D Poincaré — Minkowski space-time in two presentations (2414115,

Beside similar relative gquasiplane and Eoclidean binormal’s plane form also the quasi
orthogonal direct sum (242A4) as the real-valoed absolute 4D quasi- Euclidean binary space.

Let us compare these direct psendo-orthogonal, complex quasi-orthogonal and real-valued
quasi-orthoponal sums with the direct sums in general formulae (150), (1607, (5007, (1T4A).
However it is from the introdoced paired Special planes, the sine and cosine ort hoprojections
of the true complete angular differentials dvyy and dee are reslized separately in (243A) in all
Lst metric forms of world lines and regular curves in the binary metric spaces with g =1

® F k
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In (247A), (2484), the complete imaginary differential dioy) leads to the integrated time
like psendoscrew dagqy. On the basis, we'll construct this psewdoserew with its true movable
trihedron in {(P?*1);;, the time like cosine binormal i and the space-like sine binormal by,
acting under cosine and sine slopes to 3 This will be a logical completion of our differential
tensor trigonometry approach to the theory of world lines developed in (P3+1) and (P21},

Let in (228A) dy = 0 — Kg = 0 with w}, = da/dr. Physical driving of the pseadoscrew
is planetary circular movement in the original Euclidean plane (£2) in space-time (P2,
Such driving alone is not enough to form the full corve, rotated with the time-arrow
permanently on the anple o otherwise it will have self-intersections in process of rotation. To
avoid this, we reveal an additional progressive motion of such a world point M parallel to the
frame axis of under condition of all motions synchronism and continue of the psendoscrew.
It is the orthoprocession V.o, gives this progressive motion in time parallel of from moving
orthoprojection M of a current world point M and adds to corvature Cg. The world line asa
whole is rotated by space-like do and moves progressively parallel of. But its general pseado
curvature Cg and its pseado-radins By = 1/Cg remain constant. When the curve makes a
turn at anple do = lrad, the point M passes along its are-segment R Euclidean projection
of this segment i opposite to the acute anple g in its vertex. Therefore its lenpth is
r = sinh - R, The projection of this segment onto of s s = cosh~yy- R Under the motion
dee = lrad, we have a porametric psewdo- Buclidean right triongle A with hypotenuse R
(the curve are length) and legs: r (the planetary movement radius) and s (the screw step)
with its psendo-Eunclidean Pythagorean theorem s —r? = RL — r/s = tanh~y, < 1. This
interior right triangle A (Ch. 6) ensures the formation of this curve without self-intersection.

The differentintion of the rotated tangent i, albernative to (225A), but now under the
constant angle 4 and rotation o of time arrow of, produces the unity 4vector i, with its ey,
formed by the spherical shift of the tangent iy as rot II/2 -1, = 1, 1t is the unity 4 vector
of the nermal tangent, perpendicular to the principal tangent as I L Iy since eq L e
in Ey = {I}. And with the synchronous orthoprocession Y of the corrent point M along j
with its supervelocity ¢* = cosh yy-c, we get so the 2-nd End of wniform curvilinear motion as
the psewdoserew generated by a circular planetary movement of a body M at v = e-tanh .
dyy =0, da/dr = wf}, da/dt = wy at the metric tensor 17, with the new Absolute psendo
Euclidean Pythagorean theorem in (P21 ;r with sine by, and cosine i binormals:

R

{%} = coshy - 4 gy tsinh - 2 b, =y +k = h, =
T

- -

=}F'i-|_+rp-'b :ﬂ:ﬂh"r‘i'%'[?]+5iﬂh"“- m“-l:&’

c

]:Cgrip: L (2514)

* - [ sinhy; - e,

o ]::-|f:ﬂ“=y3—x:3=(m;;c)3>n|.

.

Here: iy is the unity 4 vector as the time like cosine binormal for the progressive ortho

procession ¥ aling rotated time-arrow et = 5. ad; at its supervelocity ¢*, implemented
by the psendoscrewed motion of object M along a world-line with 4-velocity e of Poincare;
h, =Cg-i, is a 4-vector of general pseadocurvature directed along a normal tangent i, of
the curve in (P21 r to the current point M as orthoprojection of M onto f
Y =1/Ry = cosh~y - wh/eis a progressive time-like orthoprocession of the world line with
its point M and its orthoprojection M' along its unity vector iy and time arrow P (VPN
time-like progressive part (1) of the psendoscrewed motion;
K, = 1/Ry = sinhy-w}, /e is & normal corvature of the world line with its sine binormal py;
s = ¢/wg = cosh - ¢/wh = coshy; - R = cosh? v, - Ry is psendoscrew step at da = lrad,
r= R =uv/wy = sinhy-c/w} =sinhyy-Be = sinh’ - R is psendoserew Euclidean radins,
here R is radins parameter of the concomitant hyperboloid I tangent to it (see above).
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Note one else, that the interior right triangle A (see about in sect 6.4), introduced
above, ensures the formation of this psendoscrew without selfintersection in the process of
continnous motion of & world point M due to its BEoclidean rotation and orthoprocession
with ¢* along et at s =r-(c*/v*) = r-(c/v) = r-coth~. In the Minkowski space-time, this is
set independently by Nature itself, since the parametric trisngle A is similar to the interior
right triasngle V' of the three velocities, where the hypotenuse e is the Poincaré 4-velocity
of the point M along a world line and the leg: v* is the Boclidean proper 3-velocity of the
point M and e* is the scalar time'’s supervelocity along o orof M orthoprojection onto

ln the usual 1-st tribedron, its principal tanpgent iy is here an impotent vector — without
curvature (K, = 0 at dy =0, but 4 # 0), although 1, (er) exists. The normal time arrow 1,
has the curvature Cg, determined by the curvature at the space like sine binormal by, and
the orthoprocession at the time-like cosine binormal §;. That’s why, for description of the
psendoscrew . we apply as the our artificial tribedron ES _ {by, bg, i) with 3 curvatures!
ln (251A)) in addition, we defined ¥y = Y- i) (with its unity wector i) from this tribedron) as
the cosine time-like projection of 4-vector by, = Cg-i, of the general pseadocurature Cg and
as the time-like vector orthoprocession in time (as if time-like "torsion"). It is not a rotation,
but it is & purely progressive motion of & world line parallel to AW This orthoprocession in
time Vis a permanent inkerent foctor of STH, relating to all world lines! This psendoscrew
is produced by combination of cosine progressive orthoprocession Y along i) and Eoclidean
rotation do around §p. Y- iy influences on the geometry of world lines and corves, as it
strains them along iy; 4y affects on v/s, w? affects on s, Such 4 screw can be a model of a
physical centripetal accelerator with these parameters. More generally, a planet or a sputnik
is rotated around a star or a big planet on orbit of the Eoclidean radins v = o* fwl, = v/w,.

As the extreme example of such serewed motions, we give a psendoscrewed world line of
a photon circular movement around the very massive Star, realized on the isotropic cone with
velocities € = - ey and w?, of the radius r=s=¢cfw at |v =¢, r =35 (v/c) = 5-tanh ],
where in the limit: r/s = tanh~y = 1. Then we see that wy = ¢fr is determined only by
the radius r of the orbit. Einsteinian photon is rotated at velocities € and wy around the
Star as a Bluck Hole of radius r = cfw, = fM/c® and with the period T = 27r /e = 2x/ul,
predicted in 1783 by John Michell [81] with the use of the Newtonian Theories (). Recall,
that the so-called Schwarzschild’s radius for the Black Hole |100] is twice more, but this may
be explained by the "pravitational cosine” in (212A), Ch. 9A. It & the case, when there is
really no way to check which of the two anthors is right more, since this radius is theoretical!

This time-like psendoscrew (i e, in the vsual space-time) is realized somet rically on its
enveloping cylindrical psendo-Euclidean lateral hypersurface of the Fuclidean radiuvs B =7,
Factually this curve consists from identical repeated artificial time-like differentials dic
when the pseudoscrewed curve makes a turn at angle 1 rad. Moreover, this cylindrical
hypersurface as a frapment is deployed isometrically onto the analogical pseado-Euclidean
plane with translation of a psendoscrewed world line into straight world line on it. With the
tangent to both them central differential eylindrical region of the concomitant hyperboloid 1
(see above), these three surfaces and equivalent lines on them have the common metric!!!

This time-like psendoscrewed motion, as a specific 3D world line, is realized with the
inherent ort hoprocession Yegs = cosh g - wl /e = cosh v -Cg for its progressive part along iy
and the normal curvature K, = sinh -, - w3 /c = sinh -~y - Cg for its rotational part in (E5).
Necessary quantitative bond of these two partial motions is cansed by the fact that both
they have the common kinematic factor w} at its each point M under acting of the driving
planetary movement . As a result, it has the general 3 pseadocurvature Cg:

Ky = 1/Ry =sinhy; - Cg = sinh~; - wlfe= _r,&.-fcg, ky = K - by (2524)
V=1/Ry =coeh~vi -Cr=coshvi- wife. y1=Y- i1 (26534)

ER = (by, ba, i1). (2544)
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The triple K, ¥V (legs), Cr (hypotenuse ) forms interior right triangle of psewdoserew P in
(251A), where K, /V = tanh ;< 1is its constant time-like slope. 1t is realized in the pseado
plane of general curvature (Pe = {py, i1}, In addition, on the cylindrical surface, we get
the spherically bended interior right trisngle A1 with legs v, s and hypotenuse R = 1/Cg,

where r = sinhy; - B, 5 = coshy - B, (In Al s is coacdal to 3} Then there is invariant
s'—r? = R%. Rg eapresses the pseudo-Euclidean length of the psendoserew are at a0 = 1 rad.
The identical, but flat interior right triangle A2 is realized in the same psendoplane (P15
(In A2 v is coaxial to pg). Their common straight leg is s > r.

As the geometric paradox of all serews, we obtain two wonderful right triangles:
P of psendoscrew in (251A) and A in their two variants above with two pseudo- Eoclidean
Pythagorean theorems! Their legs are proportional with common coefficient s/ = r/K,.,
they have equal adjacent anples. Hence, both trisnples are homotheticc. However their
hypotenuses are inverse each another as Cp = 1/R! (This paradox extends to screwed
curves in the quasi-Euclidean space (@211} with similar Euclidean Pythagorean theorems!)

This psendoscrewed world line in the same psendoplane (P141)y penerates, in addition,
two psendo-Euclidean right triangles: they are the exterior right triangle B and the interior
right trianple C, with their exterior and interior pseudo-Boclidean Pythagorean theorems.

The exterior right triangle B has spacelike hypotenuse Ry = 1/, (radins of sine
curvature under inclination 4 to {£2}), time-like leg Re = sinh -y - R — opposite to -, and
space-like leg by = cosh -y, - Ry — adjacent to 4. From triangle B we have Rf: = b —RE = 0.

The interior right triangle C has time-like hypotenuse By = 1/Y (radius of cosine torsion
under inclination g to Er}]l, time-like leg By = coshyg - By — adjacent to ~y, and space like
leg by = sinhy, - By — oppuosite to 4. From triangle C we have B} = RL — b2 < 0.

With first triangle P, this serewed world line has 5 characteristic right triangles! 1f the
enveloping tangent cylinder with this screwed curve is cut along the central axis of | furtherto
develop it into fragments of the pseadoplane and finally to add these fragments so to coincide
windings of this screw, then we get the same but straight world line in the flat psendoplane.
This convincing example demonstrates very clarity, how minimal corving the basis flat
space, even into the cylindrical space (€21}, complicates in a large extent description of the
simplest straight world line with introducing a lot of additional parameters!!!

ln eylindrical coordinates, we summarize found parameters of this pseadoscrew with
its tanpent type till the isotropic light cone, where initially we adopt that tanhy = /s
r=HR 1y=r-cosq, Toa=r-slne, ct=s5-o (r=uvfwy=—const, s=cfw, = const).

sinhy=r/Rc = Ro/Rik — sinh®y=r/Rx =7-K,,—r =R =tanhy- s,
msh’}'=szc=Rngy —}mshﬂ’}'—szy =5 y?—}s—mth"r-r;

$* = R}, Y~ K} —Ch = 1/RE. — 1/R} — 1R} (2554)
—>b1—R:r cosh -y, bz—Rv smh'r, ba/by = tanh® 5,
— R3 =b] —RL>0, R} =R%L b3 <0; Ry/Rxk =K,/V =tanh~.

(For superlight psendoscrew in (2494 250A) of the cotangent type, we adopt cothy =7r/s)

For the psendoscrewed motion (for instance, in accelerator), the space-like hyperbolic and
spherical angular velocities with accelerations are the following [see also in (165A)—(168A)|:

v* =¢-sinhqy, w? =v*/r, u=c-ta.1:|]1"r, we = v/r; [wj =d#/dr = —(coshy — 1) - w?];

$K=g,,.. - sinhy - w} wp, = (v* Vi ="Ky, = /Ry,

(1}
1 4
q =§-m:|17=u.w;=y*.wa1@=m_

And for the time-like part of {251A) there hold:
¢* = cosh - ¢ is the proper wlocity of the coordinate time  stream for a world line,

=2V = ngRy = Cﬂﬁﬂmﬂh’f =c-coshy-wf, =¢*-w}, = {c'}ﬂfs.
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The main peculiarity of screwed curves (withoot hyperbolic or spherical corvature) is such,
that all they are produced not only by rotation of the binormal, becanse there is else an
inherent operation of the progressive orthoprocession along the frame axis. The latter is
bonded one-to-one with this rotation. A psendoscrew consists from the complementary
space (here sine) and time (here cosine) psendoorthopgonal parts. Mathematically the vector
orthoprocession is mixed with the tangent iy to a curve. Buot physically independence of the
vector orthoprocession and the Euclidean rotation of iy may be inferred by their different
types of motions. Indeed, such orthoprocessions do not relate to the group of rotation, they
relate to the independent group of translations as progressive motions in the enveloping
binary space! ln the Euoclidean space, it is a progressive torsion duoe to the Frenet—Serret
theory. 1o the psendo- and quasi- Euclidean binary spaces, it is a progressive orthoprocession.
# ok

Next we construct the spherical type of 3D screw in (@) by differentiation-rotation of
the tanpent 1in de. as the wniform absolute orthospherical motion do along a regular curve
having our artificial, but troe tribedron ES _ {by, by, t;) with two bonded corvatures!
Here rotational driving alone i not enongh to form this full curve, otherwise it will be mixed
with itself. To avoid this, we'll use the progressive orthoprocession of the point M along
the rotated axis 7 as in (247A), (248A4). Since this curve as a whale only rotates through
angle de, its general pseudocurvature Cr oand its rading Be = 1/Cr remain constant. When
the curve makes a turn through an angle dee = lrad, the point M passes along it are R,
The Enclidean projection of this segment is opposite to the angle of motion ¢y, therefore its
length is T = sin gy - Re, the projection of this segment onto 3 is s = cosy - Re. Under
doy = lrad, we have a parametric Buclidean vight triangle A with hypotennse He (curve are
length) and legs: r (Euclidean radins of rotation) and s (step) with its Pythaporean theorem
s?—r? = R%L = r/s =tany; = cot&;, where ¥ = B We may use here as argument also
& = w2 —ipy and translate by analogy (323) hyperbolic formulae {255A) in spherical variant!
By the abstract hyperbolic—spherical analogy with (251A), (255A), or under differentiation
in do slong a regular curve at @y = const, we get the screw also with the orthoprocession Y
and the normal curvature K, piving the spherical Absolute Euclidean Pythaporean theorem:

{m_dt“{‘z} =ms<p,~j$5-t1+singos-7%5-hy =y+k =h,=

=V-t1+K,-b =msga1~ﬁgr|:?]+sin{prcﬂ‘[%']=ﬁﬂrty= (2564)
=Cr- [ Sinci;:a” ] = (Cr* =V + K5 = (wa/v)? = 0; p, € [0 = 7/2

Here: Cp = 1/ R = const is the general cuorvature of this screwed curve,

R = const is the radins of this curvature and the length of the curve are at do = lrad,
hy, is the 3-vector of the peneral curvature, as the normal tanpent to the curve;

K. =1/Rg = siny - Cg is a normal curvature of the corve with sine binormal by,

Y =1/Ry = cos, -Cg is the orthoprocession of the curve for & progressive part of a serew,
s?—r? = R%, r/s =tany; = cot & for the screw Euclidean radius r and step s,

r = R is the radins of the concomitant hyperspheroid, tangent to this screw in its Equator.

In the usual 1-st trihedron, its principal tanpent tg is an impotent vector — without
curvature (K = 0at dpy =0, but @y # 0), although tangent t5(1) exists.

Thus (1), in the case of simultaneons double motion with right and left® +de. we obtain
the dowble serew, which in Molecular Biology, for some reason, is called by the double heliz
for describing the DN A structure, although in Geometry they are different curves.

Note, that in the uswal Euclidean space (E%), the frame axis can be selected in three ways.
Any each of them will have its own angle of motion as: @y &g By {E§=1mﬁ:2 wr = L
ln particular, if we choose some coordinate T3 as a frame axdis, then there are two variants
of the complete base with zp, o or with T2, 1y (cosgp) = sings ~cosp =sng).
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In {@*1) with the frame axis § and the concomitant movable unity hyperspheroid (see in
Chs. 5, BA), we can realize simuolt aneously particular differentiation-rotations of the tanpent 1
and the quasinormal 1 along a regolar corves at v = const, under abstract analogy (323)
with relations (243A), (244A), Then we obtain:

di - n = digi - Da + 8iN i do - by + cos s dae -by =
=.K:ﬂ'nn+x.:p‘hp+-x:p‘hp:yﬂﬂl't1 +Xsin'hn+ﬁ:xr'hr+xp‘hp;

{dl/ R} = dy® = dp? + (sin? ¢; doy® + cos? @; dog®) = (257A, 2584)
= cos® i; dig? +sin iy dig? + sin® oy dog? + cos? iy dog® > 0= Cg? =

= W, U7 +SIN° i - Way U + COS® i - Wag 17 :Eﬁ+£§+£ﬁ =0

Two principal spherical ares dypy — primary and muotual are situated in guasiplane
{Ql"'l}g"} = (Dg,te) of entire (@3}, presented with two bonded primary and mutual
spherical arcs dig at Figure 3. The first is the spherical osculating quasiplane of spherical
curvature Ky Principal spherical anples and differentials act as binary ones too. And both
binary differentials dp act also symmetrically with respect to as if specific cone in the middle
between them (Ch. 5). Here they express the simuoltaneous spherical identical, but contrary
differential motions-rotations of £, and Dy, according to the binary structure of our spherical
tensor of motion (313), with their permanent symmetry relative to this middle cone. The
sine by and cosine by vectorial binormal with their sine and cosine normal curvatures act
in the own sine and cosine Buclidean normal planes. Both planes are not really divided and
even are bonded, thank to the simple connection of two complementary spherical anpgles, in
that number, on the common here concomitant 30 hyperspheroid. The third independent
are deg expresses free complete orthospherical rotations in the binormal’s Euclidean plane
{Ez}gj = (by,by) as the Cardano gimbal in the Euclidean space (£3). 1t is this creates an
own trigponometric harmony of the 4D binary quasi-Eoclidean space.

EE

Let’s go back to motions with variable two parameters of roth Ty = Fyp,eg) in (P31},
Pay essential attention to the fact that simultaneously with an instantaneous point M of
a world line and of accompanied movable unity hyperboloid 1 with their common time-like
tangent ia"? and spacelike psendonormal pe'??, moving all at 4velocity c, there is the
point N on the conjugate hyperboloid 11 with its also conjugate space-like tanpgent i
and time like psendonormal pe. In Ch. 12 we denoted such conjugate points of two
by perboloids as v and v in a textual part and also at Figure 4. Between all six basis vectors
at the point M of a world line at dv #£ 0, de £ 0 and at points M and N of hyperboloids,
there are such one-to-one correspondences with differential relations in (P31 under {I1}:

iz =i = pun = run = [Palk — of Poincard 4-velocity in (218A) at a world line,

Pa=Pn =T =iugn = [ia]k —of 4acceleration in (228A) at a world line;

by = by ~ @y — of normal 3-shift sinhy dog on 1 or of sine 3-acceleration, {2504)
b, = wen ™ Sy — of normal 3shift coshy dog on 1 or of cosine 3-acceleration;

{bu};={b}: {bu}7a=0.

We obtain in 5-th raw last owr thivd and forth formulae along a world line, in addition, to
our previows first (2284 ) and second (2384 ) hyperbolic ones !

Thus, let us assume that, in the neiphborbhood of the world point M on the world line,
there is such a branch of the time-like hyperbola as in its oscolating psendoplane at point M.
We choose the point M also as the instantaneous point M of the concomitant hyperboloid L
From this point M we mentally deaw the principal uoity tanpgent iy to this hyperboloid | and
to this world line. lts lenpth and direction coincide with the directed sepment ON till the
conjugate point N of the hyperboloid 11 This directed segment ON for the hyperboloid 11
is its principal pseadonormal py at N oand the tangent iy at M of these world line and
hyperboloid 1 under the instantaneous motion angle . Accordingly, €q, €y, €y are three
possible unity Enclidean perpendiculars in {(£%) < (P!}, with respect to points O, M, N.
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Correspondences (259A) make it possible to better see the reason, why motions along a
world-line are displayed on both accompanying hyperboloids. 1t was presented at Figore 4.
S0, the first two-steps differentiations-rotations of tangent ipp in (225A) are executed in the
1-st step by space-like hyperbolic motion dvyg on the osculating pseadoplane {'Pl"'l}m}, which
we see at Figure 4 on the hyperboloid 11, and in the 2-nd step by perpendicularly to the latter
orthospherical motion with its sine slope in the Eoclidean plane of the sine normal curvature
{EE)ET = {Pa., by)™ under its sine slope. This plane is tangent to the hyperboloid 11 at
the point N. Hence the motion i transferred mathematically from the hyperboloid 1 onto
the hyperboloid 1 according to the second and third bonds in relations (25945, The second
two-steps differentiations rotations of the psendonormal pa gy in (235A) are executed in
the 1-st step by time-like hyperbolic motion dvy on the osculating psendoplane {P1+1}[Mj1
which we see at Fipure 4 on the hyperboloid 1, and in the 2-nd step by perpendicolady to
the latter orthospherical motion with its cosine slope in the Euclidean plane of the cosine
normal curvature {£2>gr;j = (ia, bp}™ under its cosine slope. This plane is tangent to the
hyperboloid 1 at the point M. Hence the motion is displayed mathematically on the unity
hyperboloid | and along s world line, according to the first and fourth bonds in (2594).
Both space-like and time-like hyperbolic motions are realized in the common pseundoplane!

As the final result, we obtain in entire (P31} all absolute parameters of a world line in
Ey = {I'} and Ep under permanent action of the current motion tensor roth Ty = Fvy, eq):

_ | coshyi-eq " N . | sinhvy-ey
pl!!_|: Sl'llh"]"g ]!Pﬂ_[u]1 p.r-l-_|:u:|,ln—|: E-EE]I"}'; . (?E-UA]

Ka= !I';r_:,_.l"ﬂ, Ka = Ko Pa; Ko =sinhy; "H-";.[]_}Jrf. ky = Ko po; @p = coshy: "H-":..[:]Jrf: Qe = Qu Pu-

At’ﬁ:n:pa:bu:[e;]?Pﬂ=hy=|:?:|: P =b =[eﬂ”]?iu=i1=[[f].

By differential tensor triponometry approach, such a model, with movable tetrabedron and
with imvolvement of the two accompanying hyperboloids, describes pretty acenrately, clarity
and unequivocally the kinematic and dynamic of matter relativistic movement with any
depree of complexity in the Minkowski space-time in their tensor-vector-scalar (tvs) forms.
For the simplest understanding the model, it is enough to refer to one-to-one correspondence
(259A) between four unity basis vectors. In (P31} we obtain exactly the maximal order
of the absolute motions curvatures {mar — 1 = 3 and all one-valued results. What is more,
on the basis of executed analysis of various relative and absolute time-like and space-time
motions with their tensor triponometric models in Chs, 2A=TA and 9A with current 104,
even with peculiarities, we showed in parallel that the well-understandable, non-cont radance
and clear arrangement of the Universe may be displayed from the nearest astronomical stellar
environment in onr Galacy with the use of the 4D space-time by Poincaré—Minkowski, i. e |
either with metric tensor {I1}in (@31, or metric tensor {I£}in (P, However, for the
more far astronomical picture with entire Mepagalaxy, if necessary, it is possible to use the
BMYT space-time, with two metric tensors (Che 9A) . namely for lensed by gravity observable
space-time. Both these theoretical arrangements of the Universe does not violate the sacred
Principles and Laws of Nature with the material Higps field and the Quantum Mechanics.
Quadruple B — {Palcr), by (cr), byler), ialer)} as the movable tetrahedron to current
world line in entire (P*1) complements both unity aceompanying movable hyperboloids and
gives the asymmetric psendoorthogonal tensor U{pg, by, by, o Her) which is connected as
one-to-one with the motion tensor roth Ty = Fvy,e,) and determines completely both
orientation and corfipuration of a world line at its point M. We accompany them below
with four measureless trigonometric tensors of absolute motions for applications in pseodo
Eunclidean binary spaces of dimensions n41, 34+ 1, 24+ 1. See for (@*F1) in (295A).
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In entire (P31} with tetrahedron for a world line, we have tensors  (261.A4)

roth I'; = Fh':"f'i: En}s {F = -F“}s {-pn+1} U':"f'iseu1 ey Ep}s ':U ?E ["”}s {-p3+'l.}
coshyi ‘€a ' +0a-0a sinh i - ea coshvi-@: | @ | @y | sinhyi - 0.
b, e RS sinh 7, TR hs
and with two trthedrons both possible tensors (2624)

Ulvi,ea.0,, (U £U'), {'Pgi-i:'{ﬂl Ui, @aren), (U # oy, {P2+1}{I}

cosh7i-ea | @ | sinhyi-ea cosh7yi-8x | ey | sinhvyi-ec
sinh 0 coshy; |77 sinhy; 0 cosh 4

(U = roth Ty - ot ©, = roth Ty = VUT?, rot © = VUU' .U = roth (T,) - U.)

The 3D psendoscrewed motion is described without an exception in its troe tribedron
(254) with its time-arrow, space-like sine and time-like cosine binormals plus impotent bg:

inh ~y - 0
Uy, w* g B, € ) = = rﬂﬁ v Eg o — (7 = const, w*y = const). (2634)

Here U gives in B, the movable asymmetric tensor of motion along a world line, which
may be decomposed polary into hyperbolic and orthospherical parts in (P31 asin (111A).
Non-collinear motion with the sine binormal induces in (172A) the dependent Thomas ort ho
spherical precession around the cosine binormal  In addition, the pseadoscrewed motion,
generated by Buoclidean rotation de of the space-like sine binormal, induces in (251A4) the
independent progressive orthoprocession parallel to rotated g = 5. aly. In the quasi
Euclidean space, for the screwed motion, it s even more obviously — see above in (2584).

Hyperbolic tensors Fyy in (261A) and arbitrary or induced orthospherical tensors {rot 8)
produce also full set of the homogeneous Lorentzian psendo-Euclidean transformations in
clear triponometric forms, sccording to unambignons polar decompositions of the latters.
In (153A) and (202A), we expressed such mixed motion tensors by canonical forms in Ey.

* ok K

Further we'll fill all the remaining "blind spots" related to the Appendix.

We will start as before with aspects related to geometric (as more general and abstract )
motions and physical movements in the realvaloed 3D and 4D pseado-Eoclidean spaces.
Obviously, quasi-Fuoclidean binary spaces have the unity metric tensor and the Eoclidean
metric (according to their definitions in sects. 5.7 and 6.5). However their objects and trans
formations must correspond to the reflector tensor, as in (460), and the spaces themselves
must have a strocture defined by the same tensor as in (500). For psendo-Buclidean spaces,
the metric tensor and reflector tensor are equal, according to their definitions in Ch. 6.

We shall complete a part of our tensor trigonometry concerning to the immediate
summation of two-steps motions on both Minkowskian by perboloids 11 and 1 oand also
on the hyperspheroid. Moreover we muost take into account the inverse order [485) of
the motion matrices, expressed in the initial unity base Ej, with respect to the order of
motions! But in oany case, we shall use the tensor of motion (100A) as the first summand
in the given order of summation. Such a procedure with inferred formulae are true also for
two-steps rotations in (P31 and STR, according to isomorphism of these motions on the
embedded perfect hy persurface and rotations in its enveloping binary space!
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On the hyperboloid 11, with its affine topology and the Lobachevsky—Bolyal geometry,
we apply time-like unity vectors iya,lsz (146A) and for them their directions e, and eg as
we did preliminary in two-steps transformation scheme of type (148A). o result, we get
immediately the cosine and sine laws of two-steps summation of motions on it or rotations
in (P31}, united below in the general law by summary unity 4-radius vector, applied to
the unity hyperboloid 11 with Eoclidean and time arrow projections, or as the summary

d-velocity by Poincard from two 4-velocities, applied to the hyperboloid 1 of radins "e™

roth T'ja - iag =

I3x3 + (coshyia —1)-ese, | +sinhyis-e, sinh a3 - €5
+sinh s - €] cosh 12 cosh a3

_ [ [sinh 712 - coshyag + cose - sinh oz - (coshy1s — 1)] - €a + sinh ez -e5 ] _
cosh 712 - cosh a3 + cose - sinh yys - sinh ez

B [sinh 712 - cosh~ag + cose - sinh a3 - coshy1a) - €4 + sin s - sinhyas - €,
cosh yya - cosh ~ag + cosz - sinh s - sinh a3

sinh 3 - €5 . L o 1 s 2
—{m}—hs—ﬂﬁem-hz (g - {1} iz =i" = -1). (2644)

This only one operation summarizes immediately all scalar and vector formuolae (1224),
(124A), (135A) and obviously (125A), (138A) for hyperboloid 11 and Lobachevsky—Bolyai
hyperplane, gotten earlier through the caleulation of two sequential modal transformations
of the nitial nnity base Ey by the same tensor of motions (100A) for first and second steps.

&
For the reverse two-steps motions as isg, Ijs — I3 on the same perfect surface, we have:

roth Taz - irg — I3x3 + (coshygs —1)-egel | +sinhyog-e5 | {Siﬂh’m-en.}=

+ sinh ag - ‘Ejs cosh a3 cosh s

_ [ [sinh 793 - cosh 19 + cose - sinh g - (coshyas — 1)) -€g +sinhyia-€a | _
cosh 19 - cosh g + cose - sinh ya - sinh yag

[sinh 723 - coshy1a + cos £ - sinh y3 - coshyas] - @5 + sine - sinh - ey
B cosh yya - cosh ~ag + cosz - sinh s - sinh a3

simhyyz - e £ £ £
= {—é =} =iz =rot’ O3 -3 (13 - {1} iz =i" = -1). (2654)

cosh y13

We see that the direct and reverse summations are connected by the orthospherical rotation
rat B3 from (1124, just as is the case of the general formulae for summation of polysteps
motions in (153A).

Further, with known eg and e, using (141A), we obtain tensor trigonometric formuolae
for the accompanied induced secondary orthospherical shift with inference also for two-steps
motion.
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We can express the most complete general law of two-steps summation, combined with
the induced orthospherical shift in compact clear trigonometric form as follows:

T (fh3) = e, ®e; = —sinby3- &y =
= -0 .ol el = —sinfz-el’ @el”, (266A4)

{ez = rot’ 913 i = EL 8y = DCIS’H‘]_E)
o o

where 85 = €y is a directed third normal wector.

lo that time, with (111A) and (153A), summary two-steps hyperbolic transformat ion
with its polar decomposition has the very clear kind in our tensor tripopnometry approach
with simplest interpretation:

Fd
Tia = roth Tz - roth I'za = rothlia - rot ©13 = rot O -roth Ta = (267 A).

(coshyia — 1) - Ecrg:zr + [rot B1a]a.a | sinhyia - es
sinhyia - &', | cosh iz

_ [ (coshyia —1) - eyel + I3xa | sinh iz -y [ _Irot ©43]a.a 0]

B ginhyis - e} | coshyia o [1 ]~

(coshyia — 1) - ese', + [rot Bia)a.a | sinhyia - es
SlrIIh"r'ig'E; | D{E]'.I."‘r'ig

Note (1), that in (264A)—(26TA) all used matrices are given in their canonical forms, set

in the original unity base By, according to their tensor tripopnometric represent ations.

On the hyperboloid 1. constrained by its cylindrical topology and with the eylindrical
hy perbolic—elliptical geometry, we use space-like unity radins-vector ppa, pas (149A) and for
them their directions eg and e, as we did preliminary in two-steps transformat ion scheme
of type (152A). In result, we pet now immediately the cosine and sine laws of two-steps
summation of motions on it or rotations in the Looking Glass of complete (P31} in the
right direction (see above), united below in the peneral law by the summary unity 4-vector
Piz. applied to the unity hyperboloid 1 with the Fuclidean and scalar time-like projections:

rath 'y - poz =

Izy3 + (coshyia — 1) -eqel, | +sinhya-eq ) cosh a3 - € _
+ sinh g - E:_,‘ cosh 12 sinh o

_ [ sinh i3 - sinhya3 + cose - coshyaz - (coshy1a — 1) - €4 + cosh oz - ex
sinh ~ag - cosh y1a + cos e - sinh 9 - cosh yag

_ [ sinh 512 - sinh 93 + cose - coshyy2 - coshyo3 - €4 +sine-coshqyaz -ey |
sinh ~ag - cosh y1a + cos e - sinh 9 - cosh yag

cosh ]y - €3 . +
=4——F ¢ =Pz (Plz - {I*}-p1z = +1). (2684)
sinh iy
Thus, only one operation above summarizes immediately all additional scalar and vector
formulae of two-steps summations for the cylindrical hyperbolic—elliptical hy persurface.
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. . £
For the reverse two steps motns &5 Paz, P2 — Pz on the same [H!‘['ﬁ!‘{fl’ Hll['Fii.{f{!'._ we get:

roth I'az - pra =

I3x3+ (coshyss — 1) -ece) | +sinhyoz-ex | [coshyn-en]|
+ sinh oy - &l cosh ya3 sinh 12

_ [ =inh 412 -sinhyaz + cose - coshvyig - (coshyag — 1) -ex +coshya-e, |
sinh 7yya - cosh a3 + cose - sinh ~ag - cosh 2

sinh 79 - sinh a3 + cose - cosh g - coshyag - @, + sine - coshyyz - &,
[
sinh 7yya - cosh a3 + cose - sinh ~ag - cosh 2

thfE = p. P P
= —é.a =Pz (P1a - {I*}- p1a = +1). (2694)
sinh 13

We see that here the direct and reverse summations in their 3 x 1 Euclidean parts are
not connected by ret ©13 and they are generally non-commutative, In (2684 ), (269A) both
matrices and cosine 4-vectors are given in canonical forms, set in By, Howewver, since both
elements (268A) and (269A) as the radins vectors remain on the same hyperboloid 1 and
belong to it as its invariants, then the first and the second are connected by a certain mixed
psendo-Enclidean rotation:

T = {roth U'ss - roth T'sy - rot B (e, — ey) - roth I'ay - roth Taa}.

Let's pay attention to the fact that immediate summation (264A) and (265A) from two
d-vectors Tyo and Fag are actually implemented by instituting the zero element ry, introdoced
initially in (146A), from the right after the products roth Tya - roth Tag with reverse one in
the modal formula (111A) as we did in (148A) for the construction of a hyperbolic triangle

roth 'ya-Tog =roth Ta -roth Tag -1y = T3 = (2704)

= roth ['ya-roth I'23|: 0 ] = roth ['3-rot 913-[ ? :| = roth F13r|: 0 :| = |: sinh s - €g :| .

1 1 cosh 13

roth T'az - T1a = roth Tag - roth Tyg - Ty = Ti3 = (2714)

z s inh s -
roth T'ag-roth ['ya- |: ? :| =rothl'z-rot’ B3 |: ‘]:_I ] = rothl'y3- |: ‘]:_I ] = |: ST Eé :| .
cosh y13

Let's try to apply for (268A) and (269A) analogous procedure (152A4) on the hyperboloid 1
roth I'ya - P = roth T'ya - roth Tag - Pr =Piz = (E?EAJ

= roth ['ya-roth F23-|: En ] =roth['z-rot 9131[ Ex ] = roth I'13~[ € :| — |: mSh'Tl:i "8y ] .

0 0 0 sinh 713
roth Tas - Pra = roth Tag - roth Tia - Pa = Pis = (2734)
‘ £ T @ coshia - e
= Tﬂfhrggrﬂth F12-|: EI:T :| = !!'I'J'E'liII'131'!'1.'.!!2F 913-|: e':';t i| = Tl'thI'13~ |: EEI: ] = '"f'lﬂz . é

sinh 3
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Both summary elements are situated on the hyperboloid I and are connected by the
orthospherical rotation rot B4 as in (264A), (266A). However both summary elements on
the hyperboloid 1 are connected only by these contrary mixed psendo-Euclidean rotations:

T (p1a — sz] = {roth I'sz -roth I'1a - ot B (eg = ey) -roth I'sa -roth Ty ). (2744)

T 1:1}413 — p1a) = {roth T'ys - roth Tag - rot B (ey — eg) -roth Tay - roth Taa}. (2754)

For the hyperboloid 1, we have:

e’ -E; = cos 0+, e; = {rot’ ©};}-e5: e, = {rot ©°}a.3-€4, €. = {roft B*}3.3-€x

. —
£
And for different initial summarized angles (segments) there hold 3y # 113, 9137712

The psendo-Fuclidean anple between two last is caleolated as follows:

r £ &
fo = piz -1 -p1a=pla-I* pia = [cosh 13 - coshyia 'G:zrﬂcr] — [sinh Y13 - sinhy13] =
= sinh ;3 sinh a3 - (coshysz + cosh yaa — coshyys cosh yag )+
+ cose-(cosh 12 coshyza +cosh? 712 cosh yza+cosh 112 cosh? Y23 —sinh? 12 —sinh? Y23 —sinh? "r'za-sil:lhz Tz}
+ cos” € - (sinh y12 sinh 23 cosh 112 cosh Y23 — sinh 12 sinh y2a cosh y12 — sinh 12 sinh 423 coshyza )+
+coste- (ﬂ:ﬁhz"'r'ig D:Ehz'"r'z; — cosh® 12 cosh yag — cosh g cosh® “aa + cosh g coshyag).

If e =0 (cose = 1), then s and o3 are triponometrically compatible and both
motions are commutative in direct and inverse ordering, then py = cosh?® Y13 +sinh” ~yz =1
If e = +7/2 (sine = £1,cose =, both motions are conveniently orthogonal in direct and

inverse ordering, then py = sinh s sinh vag - (cosh s + cosh oz — cosh yya - cosh ya3).
Next put 2 = 7y, a3 = dy and use also et and E_Lm:' for them. We obtain:

e £ £ L L .
Po =Di1z - 1% - P13 = Plg- I* - P13 = [cosh 73 - coshyyy "E:zrecr]E — [sinh 75 - sinh 3] p =

— {+cos e - cosh® 7y + [(sinh ~y cosh -y + cos” € - sinh -y cosh ) + sin” € - sinh ) dv]} g—
—[cose- sinh® y + (sinh y cosh ~ + cos? € - sinh -y cosh ) dv]p. =

= py = cose, |po|p =€ -el =cosf® = cos € - cosh” 7, [pelp = cos € - sinh? 7.
o

We decompose the pseudo-Euoclidean product in current orthospherical and hyperbolic parts.
The differential shift df has place, it can be fixed with respect to variable principal parts.

Further we represent all corresponding similar and concomitant formulae for the tensor
trigonometry of the hyperboloid 1 earlier absent in Ch. TA. For the beginning, we give the
sealar time-like sine expressions for summing two-steps non-collinear motions or segment s,
both set by radins (149A)) in direct and inverse orders:

sinh i3 = cosh s - sinh ya3 + coz e - sinh 2 - cosh g, (276A)

Z
sinh Y13 = cosh ~yag - sinh 3 + cose - sinh a3 - cosh yya. (2TTA)

They are non-commut ative in contrast to common scalar cosine formula (122A) for 11
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For the scalar space-like cosine formulae we have accordingly these two quadric expressions:

cosh? 413 = (sinh 712 - sinh 723 + cose - cosh 713 - cosh y23)? + (sine - coshyas)?,  (2784)

cosh® éls = (sinh 3 - sinh 423 + cos e - cosh g - coshye3)? + (sine - coshpa)?. (2794)

ln addition to special anpolar relations (137TA), (140A) for the hyperboloid 11 we give
the corresponding relations, in particular, with the unity vectors of orthoponal increments,
for the considered hy perboloid 1:

8, =cose- €, +sine- 8,8, =mse-EH+sinE-eﬁ,ms£=e’H~Eu=e’a-en;

(2804)

— of — s — of —_ r _ " "
E‘H~ep—eu~eﬁ—smf, eﬂ-eﬁ—erep—ﬂ? € - e; = —cosg; (e € [0;7])

Vectors for direct swmming lie in the Euclidean normal plane of cosine normal curvature
2 — % ol £ - % s . % }
{E INe = (€a,8,) mfh cosine binormal by and acceleration j, = ¢* Wy — S 0 {EEﬁr‘;}.
Thus, now we can give more understandably the two vector space-like cosine expressions

and also non-commutative in direct and inverse orders:

CDE]II’}'13 = msh-'n;; By =

= (sinh 13 - sinh 23 + cose - coshyya - coshyaz) - €5 + sine - cosh a3 - @y, (2814)

i Fa
cosh™iz = cosh Vs - e, =
(sinh «yag - sinh ~3 + cos e - cosh a3 - cosh 3] - €5 + sin e - cosh 3 - e. (2824)

Our readers can easily verify that expressions (276A), (278A) and (27TA), (279A) for sine
and cosine both in the direct order and in the reverse order, form two own gquadratic sine
cosine hyperbolic invariants, but with a small difference between quadrics of these funetions:

] . .3 2 < L2 2 2 < . .2 . 2L
cosh™ ypg3—sinh™ 13 = 1 = cosh™ ¥y3—sinh” 73 = cosh™ yj3—cosh™ 713 = sinh”™ 3 —=inh™ 713 =
cosh?® Y13 — cosh? "I"13 —sin"¢- I:msll T2 — cosh?® Yaz) = (2834)

— sinh’ Tiz — sinh” T13 —sin’e- |:31]:I]1 Y13 _ sinh® ~Yoz). (2844)

From vectorial (281A) and scalar (276A) formulae, the additional vectorial and scalar
non-commutative formulae for cotangent summation, so in ordering s, o3, are inferred:

1 + cose - coth vy - coth yas gin € - csch vz - coth
coth 13- €5 = L ey (2854 - 1)
coth 12 + cose - coth ey coth 2 + cose - coth yag
2 - . 2
coth? g5 = 1+ cose - cothyiz - coth sine -cach 1z - cothyaa (2854 — IT)
cothyiz + cose - cothyza cothyi1z + cos e - cothyza

We note repeatedly, that the very wonderful in STR and non-Euclidean geometries — see
in Ch. TA at (135A)-(138A) and above in (280A): for summing motions (rotations) ones may
combine correctly their directive vectors in own Fuclidean planes of acting, for example, in
(EHW and (£ Since unity vectors eg and e, of direct and inverse summary cosines

in (281A) and (282A) are linear combinations of e, ey and eg, e, then they lie in the

direct and reverse normal planes of the normal cosine curvature under the anple of current
hyperbolic inclination. It is a very uonsual property of STH and non-Eoclidean geometries.
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Motions from ps to pa in (268A), (269A) are possible iff flat cotanpgent or eylindrical
tangent projections of pa and pg outside Cayley oval can be connected by straight cotanpent
coth ~og or tanpent tanh o segments withont the having topological obstacles. Compare
cotangent formula for the two-steps summation at the hyperboloid 1 with tangent formula
(138A) for the same poal at the hyperboloid 11 There is full correspondence!

Recall, that earlier in Chs. 6 and TA, in addition to the well-known sine-cosine invariant
in hyperbolic geometries, we installed else cosecant-cotangent hyperbolic invariant. We have

] 3 3£ 2L
coth” 3 — esch™ g3 = +1 = coth”™ 713 — esch ™73, (2864)

Finally, the scalar reverse cosecant and also non-commutative variant of two non-collinear
sepments summation is expressed, so in ordering 9, qos, from (285A-11):

ach ~cach
eschyyg = \/ coth? qqq — 1 = ———o 112 " ERCAT23 (287A4)

coth~s + coss - cothyag

Hence, the cotanpent —cosecant two-steps summat ions of space-like and time-like motions
on the hyperboloid 1 are possible also (as we did in Ch. 7A for the vector direct tangent and
scalar reverse secant summations of necessary space-like motions on the hyperboloid 1)

What is more, with such an sbundance of invariants and quesi-invariants in our subject
Tensor Trigonometry, it would be very nseful to formulate such s clear Mnemonie Rule,
that connects all similar ones of spherical and hyperbolic types.

ln the complete scalar, vector and tensor trigonometry of any binds, we obtain the very
important universal correspondence useful for its users memory:

"Each trigonometric guadratic invariant (gquasi-invariant) for paived spherical functions is
in one-to-one correspondence, in that number by its form, with the guadratic quasi-invariant
{invariant) for paired hyperbolic functions, when both of them are sparring between each to
another by complete functional specific spherical-hyperbolic analogy of type (351)17

Natural paired cotangent-cosecant bond takes place also for the Lst metric forms on
both hyperboloids using for motions the complementary angle o) as their arpument, with
own two 30D Relative Euclidean, 47 Absolute Eoclidean and 40 Absolute psendo Eoclidean
Pythagorean Theorems, under the correspondences between the complementary hy perbolic
angles namely for the motions on the hyperboloid 1 according to all relations (235A)-(2384)
and with executing analopous operations. Hecall from Chs. 6, 12, that in any admitted base:

sinh([', T) = esch (T,T) <« sinh(T,T) - sinh(T,T) =1, -_—

cosh(T', T) — coth (£T,T) < tanh(4T,T) — sech(T,T); (2884)

cosh’y - cosh ~ — sinh? v = coth'v - coth v — esch?v =1 (fur 1) (2804 — 1)
cosh+? — sinh’y - sinh ~ = coth? v — esch'v - esch v =1 (for 11) (2804 — IT)

¥ ok ok

Concerning to the hyperspheroid, by anslogous way, we complete Tensor Trigonometry
also by the immediate summation of finite two-steps motions on the oriented hyperspheroid,
introduced by us in Che 8A ) with its spherical geometry st the set frame axis, both under
admissible quasi-Euclidean transformations, defined by the simplest reflector tensor {I1},
s0, 848 homopeneous motions on it and identical rotations in its enveloping binary space —
principal spherical and secondary or indoced orthospherical. We'll use the canonical tensors
of mation from (179A), expressed in the initial unity base Ey and in the given orders of
summations, according to inverse formula (4853), Ch. 11, how this was on both hyperboloids.
See before tvs presentations of different motions on the hyperspheroid in (1994)-(204A).
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ln Ch. 8A oo the base of the abstract hyperbolic—spherical analogy (323) with two-steps
hyperbolic summation (148A) in {Q@%*!), we did preliminary scheme (201A) for two-steps
spherical summation, but without final formulae with corresponding Pythaporean theorems.
We'll infer them for motions on the hyperspheroid and identical rotations along regular
curves in (@21} and (@31}, In E;, we have the element t(y) for motions from North Pole
as its first radins-vector and also the principal tangent to a curve, and the element nie)
for motions from its Eguator as its second radins-vector {orthogonally to the former) and
also the principal quasinormal to the same corve at motion along it with principal clockwise
angle ¢ € [0; +7/2] and complementary counterclockwise angle £ € [+7/2;0), ¢ + £ = = /2

t{‘F}:[sinap]:[singa-eﬁ]’ n(y) — cos ¢ ]=[cmcp~eﬁ]_ (2004)

Cos @ cos o — &in @ —sin @

On the hyperspheroid, for the direct order of summation from its North Pole in {@3F1)
of two segments, we apply the tangent taz as the second summand with direction eg how we
did preliminary in spherical two-steps transformations (201A) in Ch. 8A In result, we get
immediately the cosine and sine laws of two-steps summation of motions on it or rotations
in (@*1), united in the general law by summary unity vector-radius i3, applied to the
hyperspheroid with its vector cosine and scalar sine projections in this quasi- Enclidean space
under conservation of relations (137A), (140A) for three basis unity vectors and £ = 71— Aqag:

rot $1g-teg =

Iyxa — (1 —cosyiz)-€a€) | +singia-€q | [singsa-es|
— 5ln w19 - E’u COS 219 COS (Pog

_ {[5]]] 712 - COS P93 — COSE - 8ln e - (1 —Dus:;.*m}]-e&+singagg-e|g} _
COS (17 - COS (P23 — COSE - 8l0 4913 - 81N {oag

B {[sm gc:lm-Das:pgg+::Ds£-sinmg-mstpm]~e&+sin£-sin<pg3-ey} B
COS (17 - COS (P23 — COSE - 8l0 4913 - 81N {oag

_ {Siﬂﬁﬂla-ﬂa

&
— — . L =
— } =tyz =rof By3-t13 (t]s -ty = 1). (2014)

This operation summarizes immediately all scalar and vector formuolae (18945, (190A),
(192A), (194A) and obviously (191A), (195A) for the hyperspheroid, potten earlier in Ch 84
dit bt he s s tensor of - A 1TOADY for first and sec | stens. For s ot - +1
with the same tensor of motions (179A) for first and second steps. For summation in
of two-steps motions with the inverse order as tog, ta, we obtain these contrary relations:

Tot $ag-tia =

Is..0 — (1 — cosag) - E§E"ﬂ +sin oz - €3 SIn P - By _
— sin {pag E‘;EI 08 {593 COS 912

_ {[5]]] i - COS P13 — COSE - 8ln g - (1 —msmg}]-e|3+sin¢pureu} _
COS (17 - COS (P23 — COSE - 8l0 4913 - 81N {oag

[sin 423 - cos 2 + cosE - singya - cos oz - €5 +SInE - sin@ga L=

COS (17 - COS (P23 — COSE - 8l0 4913 - 81N {oag

sin w13 - Eé £ . 20 s
=q——F=p=tiz=rot' O13-t13  (t13 -tz =1). (2924)
©0s 13

Here is: 83 = cos&-@q +8ins-€y, €, =cosc-eg+sns-e,.

15
The direct and inverse summations are connected by the orthospherical rotation rot Bq3
from (181A), but scalarly commutative, just as for polysteps summation of motions in
(202A). It is similar to rotation rot B3 on as if hyperboloid 11 - analog with contrary sipns.
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Let us translate to two-steps summation on the hyperspheroid in (@31} in the direction
from its Equator. Now for the divect order of summation on it of two segments | we apply the
quasinormal Nag as the second summand with its direction eg as we did for the hyperboloid 1
In result, we get immediately the vector cosine and scalar sine laws of two-steps summation
of motions on it in the direction from its Equator or of identical rotations in {@3+!), united in
the peneral law by summary unity vector- radius nyg, applied to the unity hy perspheroid with
its scalar sine and vector cosine projections under conservation of added relations (2804)
for the three basis unity vectors for such a type of present ations:

roft B9 - Mag =

— Ein 712 - & cos @12 — sin a3

laxs — (1 —cosipia) -eqel, | +singis-eq 1{mﬁaren}=

B {[—sm 12 - SN {Pa3 — COS € - CO8 a3 - (1 — cosip1a)] - €4 + cospag -E,;}
— ©08 (P19 - SN {Pag — COS € - 810 (P19 - COS ifag

_ {[—sm 4,912-sinm;;+mse~nasm3-msga1g]-eﬁ+sine-ms¢pggrep} _
— ©08 (P19 - SN {Pag — COS € - 810 (P19 - COS ifag

i -

{= S @gena-D. (2034)
—Em Yy

Now this operation summarizes immediately all scalar sine and vector cosine formuolae

for two-steps summation of motions on the hyperspheroid from its Equator, non-gotten in

Ch. BA but pgotten above for the hyperboloid 1 as the abstract anslog of presentation nfg).

And for summation of such two-steps motions with the inverse order as Nag, My, we obtain:

rot $as - My =

Inxo — (1 —cospos)-exef | +singoz-ex | [singin-€q| _
—Siﬂiﬁ“za'ﬂ"n COS 233 — COS (212

[—sin o - cosya — cose-singya - (1 — cospag)] - €x + singys - €4 _
COS (13 - CO8 (Pag — COS € - 810 (713 - 510 P9y

(—=in oy - cOSiPa + COSE - BIN )0 - COS Pa3) - B + SINE - SlN 4P >

COS (13 - CO8 (Pag — COS € - 810 (713 - 510 P9y

singz - el p. Y
=4———= =Nz (D3 -0z =+1). (204A4)
— DS 13

Here is: eg = cose- @, +sine-e€y,, €y = cose-eg +SiIlE-Ef'.

Note, that for 30 hyperspheroid in complete (@31, all relations (2914 )-(294) are united
with all its four unity basis vectors, by abstract analogy (322, 323) with both hyperboloids.

Just as for summation of two-steps motions on the hyperboloid 1 in more complex case of
motions from the Equator in (2034, 204A4), their direct and inverse sums are not connected
by the orthospherical rotation rof ©q3, and these sums are generally non-commutative.
Though also the summary vectors are situated always as if on the same hyperspheroid | -
analog of the radius B with conservation of their Euclidean module B But for realization
of such losed properties and only in the sphericsal case, it is enough to add in the beginning
the motion from the Pole till the Equator and further to move from the Equator.
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Let’s go back to differential motions in (@3} after (257A), (258A) with our tensor of
motion roth $; = Fpg,eq). Pay attention to the fact that simultaneonsly with point M of a
curve and the concomitant hyperspheroid with their moving common tangent tg = to'" and
quasinormal Ny = DY), there is the point N on the hyperspheroid with its also conjugate
tanpent to T and guasinormal ng ™. Between ng"? and n"" and also to T and t,01
there is rotation right :-m%h*. +7/2. Hence, Dg = D' = £, t, = 6,0 = 0,0 These
features have place in (@) for double differentials digg for simultaneous one—side spherical
rotations of tanpent t, and quasinormal ng uoder our spherical tensor of motion (313).
Between all six basis vectors at a point M of a curve at digg #£ 0, de £ 0 and of concomitant
unity hypersperoid there are the next one-to-one correspondences and relations in (@31

to =ty =ngn =run = —[na]f, — of Kg and dvelocity u, below along a curve,

N =Ny =Ly = by = [tn]ru —of Ka and 4+acceleration [ug]L along a curve;

by = berry ~ evrry — of Ko and normal S-shift singi dog or sine 3-acceleration, (2054)
by = by~ ey, —of Ky and normal 3-shift —cos s doz or cosine 3-acceleration;

{bp}:r = hv}; hv}; = 0.

We obtain in 5-th raw owr last third and forth formulae along a curve, in addition, to both
spherical analogs of our previows first (2284 ) and second {2384 ) for hyperbolic ones I Both
particular cases in two (@2F1) are realized in normal rotation either only of tangent with sine
binormal by, or only of quasinormal with cosine binormal by. They are no connected here
through the spherical relation sin g, = cos & (i. e, in {@*F1) and on the 3D hyperspheroid)!

Further, using our tensor trigonometric approach to consideration of the complete theory
of motions along a world line in the Minkowski space-time, we'll state the theory of motions
along a regular curve also generally in the quasi-Euclidean space (@31}, under acting our
spherical tensor of motion in (313), (314) with the concomitant unity hyperspheroid, but for
illust ration with the sine binormal, in addition, to the previoos considerations in Ch. 8A . The
principal and free-valued characteristics Kq and kg are prodoced with the 1-st differentiations
in dl along a curve with one and two degrees of freedom (at § = 3), logically accompanied
by the concomitant hyperspheroid from zero point in its North Pole as if in (@2F1),:

{dtu{f] }E Y [ cos 1 - €q ] — Ka(D) - na(l) = ka(0),

s1n oy

dtall) _y 1. [ et s ] — Ka(l) - ns(l) = ks(1).

First expression is the tensor trigonometric quasianalog of the 1-st Frenet-Serret formula in
the nsual 3D Euclidean space. Buot with our two-steps approach, second expression muost
reveal the sine binormal in the sine normal plane. Unity 4 vectors Dy and Dg are principal
and free quasinormals to a corve. Derivatives in gy — tg and ng at the chanpe of a curve
slope to I are rotated in one side at digy. In the binary quasi-Euclidean space (@21}, with
metric tensor {1} at ¢ > 3, due to (205A) with the use of (13TA), we execute the fist
two-steps differentiation slong a curve with revealing all relative and absolute characteristics:

kg{l}:%:%. wsge o ] =%.uﬂuj=xﬂm-uﬂm; (206.4)
_ iy COB ipj - B Ein gy - Tdaﬂ‘ {“ gy CO6 94 - Bg sin gy - Tdal - {l} _
= dI-|: =im gy n+|: 0 :| - d Ein ;g ]a+ 0 -
CO8 5 - ey &
=Kﬂ.(:}-[ siﬁ'w:'“] +Kr,-{1j|-[ o ] = Ka(l) - na(l) + Ku(l) - bu () =
o P
_ i CO8 gy - @ dip COSE - COB g - By BN £ - CO8 (g - By w
e (R N A &

— Ka(l) [““““"'“ﬁ ]—Jc 1) = K% - nall) K by (D) = K= (D4 K (1) = ka + ko
= Teplhie Sl {op =Ka(l)-ngll) = ,Eluﬂ(} 8 - = ﬂ(:l ,El(}— o -
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Equaling under It paired summands, we get relations above with g = = : dg:rg = cog® ¥p dw§+sin3 ¥p :Irpﬁ =

= [cuazs - cos” wp dg:ri +8in° £ - cos® [ drpi} +ain3{pp dg:i = [cuaz i dg:r? + sin® i dalg} + sin® i d,;pf =

=d,wf-|—ain3wi deeg? = [mgs-cmzwp+sinzwp] drp§+{sinzs-nus2rp,,} dgug=nuszgdrp§+aiuzgdrp§ =0,

Surprisingly, but we get twa identical decompositions of dgg  quasi-Euclidean and Euclidean (with underline
for Helative and Absolute T'heorems), the latter corresponds to L-st metric form of hyperspheroid (109A-11)
in Ch.6A ! This parader relates to hypotenuses of right trigngles only for moving from its Pole at 2= 2,
For a dynamic of regular curves in {@*1), let up, that the point M of a curve moves with
the constant quasi-Euclidean 4-velocity u, as analogue of 4-velocity by Poincaré in (P31},
The Helative Pythagorean theorem below follows from the Euclidean part of (206A) in vector

and scalar quadric forms. It acts really in the sine normal plane {Eﬂ}m} = {&mj (1)} for all

proportional peometric characteristics as orthoprojections into the Cartesian subbase E'( !
at the motion angle @ € [0,7/2] and the angle of normal deviation £ € [0;x], using {E‘Elﬁr‘;]l
with (137A) and confirming preliminary valid two steps decompositions (19440 in Ch. 8A:

rcua{p:, digy <@g = cospyp (cose dipp -8 +sins dipp - 8, ) = cosygy di; - au+aiu{p,dcx-ev, ]
cos” g dipy = cos” oy (cos” £ dpl +sin® = dyl) = cos” @y [[dgup}E+[der}E] }ﬁ
U = cos? gi di? + sin? i do? = sin? & &2 = sin? & [(@p)} + (dp)}] = sin? & d&? + cos? & da?;
N L
Ks-cosgp-es =K5-ep —coss-Kj-eqa +sine-Ki- e = K's-eat Ki-en =
= =

=Kg-cosyp; -0, +sing,; - m-_lin Eﬂ+—3w—“ -, =K e, + K, -a, =

L
— * — k* “' —_ * k:’ .
= skt (2074)

(K5 }“ (E*}EHK? )= (K +(G)%

Kg -sinpp = Ka -sing; < | singp dgp = sing: dgi | — dpp/dgs > 1. (2984)

= ms{prmssdgap:mggpﬁzm(p,- dp; = cose =1+ gp =15, cose =061 =10;
sing; = vifu <1, tany; = vfu, @ < 7/ {tany, = cose - tany;} — p, < @ {= € [0;7]}

wplwi < 1 —see above = vp < vi, @i =0— op =0; digp > digp > digs {ip € [0,7/2]}.
From [296A)-(298A). we obtain the Absolute Buclidean Pythagorean theorere with the I-st mobile
trihedron B = (Do, by, iz) in (@) under metric tensor I1. 1t acts on the Buclidean sine
normal plane {Ez}hmjn (m&™ . b{M") in 3D (@1, = ((EHTYVET} (¢ =3). Inthe right triangle
of te rotations, it corres ponds to the anguler rormel 1-st metric form (T08A-11) for the concomitant
hyperspheroid (M), as a perfect hyperswurefoce of {Qg-"i:l. It iz expressed in the uoiversal complete
tensor-vector-sealer ("tes ") forme with own trigonometric and proportional geometric items:

E 1
ka =K mg = K nat K b, =Ko ma + K, b, =k + k.
K2 = (K3)? — (K3)? = (KG)® + (K3)? = K2 + K2,

=

digp -mg = dipi - Na +singi da-by, (b -IF -na=+1, bl -I*-b, = +1)

- . . — 2 L2 204
dpp = dipi +sin” p; da® = cos” g dipy” +sin® p dipp” = (digp Q’f( ,,) >o. f &2
B

Here dgp = dlp/R, p > &. By this Egregium Theorem of Differential Tensor Trigonometry
(L-st from two spherical), we redoce this mixed motion in initial E; along a curve and on
the hyperspheroid as a perfect surface to purely spherical one slong hypotenuse dig, in E,.
This Theorem in tvs-form corresponds to analog (109A-11), Ch. 6A, in vs-form, where oy is
the anple of motion namely from the Pole of the hyperspheroid and it is calenlated at doy off
its frame s, as in analogical hyperbolic cases (132A) and (228A) 4 on the hyperboloid 1L
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Lo (109A-1) 4oy was the angle of motion pamely from the Eguator (Euclidean subspace or axis)
of the hyperspheroid, gy is caleulated at das off it, as 4y in analogous hy perbolic cases (133A)
and (238A) on the hyperboloid 1 Sinee both complement ary spherical angles are bonded by
simplest formula £ = /2 — @, then in metric forms (100A-11) and (109A-1), they are simply
exchanged, however their nature at the Foclidesn normal part with do most correspond to
those, indicated above for these two types of motions on the hyperspheroid. Then our readers
may test understanding the problem, inferring the spherical 2-nd Egreginm Theorem {which
is closer by its cosine sense to the 2 nd Frenet-Serret formula in the Euclidean space (£%)),

with revealing its cosine binormal by at das in (@, = {{Eﬁ};:j By} (=3

The hyperbolic complement ary angle vy (non of motions) is caleoulated at o contrary to
motion angle ~; for (228A) — namely from the isotropic cone or diagonal of (P31, but also
to the frame axis, and for (238A) — namely from the isotropic cone or diagonal of (P31,
but also to the Euclidean subspace or axds. See these latter facts descriptively on the front
and back covers of this book, and our readers may present this pecoliarity at Figure 2A4(1)
with its isotropic diagonal. That is why, the complementary angles 5 and v with their dvy
and dv are connected by complex formuolae (360-11), (360-1Y), (360-Y), inferred in Ch 6
of the main Part-1l. As a consequence, both concomitant hyperboloids are divided, and
the metric forms of & world line and both of them are expressed ooly through the motion
angle g, and they are caleolated at o for 1 from the frame axis and for 1rom the Equator !

Let us represent tensor anslogs of hyperbolic (261A), (262A) in the quasi-Euclidesn space.

o entire (@) with tetrabedron for a regular curve, we get orthogonal tensors (3004 — 1)

rot & = Fa(pi,ea), (F#F'), (@) V(pi,ea,ev.en), (V# V'), (@)
m{ﬂi‘éﬂ'ﬂu'+gn'ﬂﬂi Sin i - Ba COSYi-Ba |8 |8y | SN -ea
—sing; - e cosw; || —sing: | 0] 0 cosipE |
and else with two trihedrons both possible orthogonal tensors (3004 —1IT)
Vigieae), (VEV) (@)  Vipieaew), (VEV) (@ )m
COSPi-8a | B | BN -Ea COS - B | Bu | SN - @

—sing; | 0 cospg || —singgs | 0 €08 i

(V =rot ®; -rot ©; = rot &; = VV=, rot © = rot (—d;)-V =/TV+  .V)

® F k

Tensor Trigonometry, may be, is the most musical subject of the Mathematical Science.
This is stated due to the clear harmony of all its tensor angles and trippnometric functions
as each to others in tensor, vector and scalar forms. 1If such harmony does not work, then the
results contain an error. That is why, the preatest mathematician and man Leonard Fuoler,
who created the logarithmic theory of the musical scale with explanation of its harmony,
elegantly presented and pave also a modern look to the Scalar Trigonometry! It is such a true
golden rule, which consists in observing this high harmony in formuolae and theorems of the
Tensor Trigonometry, allowed the anthor in its thicd edition to achieve the most correct and
complete present ation of Theory of world lines in the Poincaré-Minkowski space-time with all
their geometric characteristics and with interpretation of their physical senses. Besides, this
golden rule allowed the author to give tensor-trigonometric explanations of all well-known
and new relativistic effects, including such in the pravitational field without GTR-bending of
the most perfect space-time (P31} of the Universe, which is still used really in astronomy.
It is space-time bending, without its true pecessity, has cansed the non-compatibiliey of GTR
with the Quantum Mechanics. Though, according to the Noether's Theorems, it is space
time (P31} ensures a strict compliance of the Theory of Relativity with the fundamental
Law of Enerpy-Momentum Conservation as the sccompanied physical harmony.
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If Henri Poincaré life had not ended so early — at the age of 58, he, may be, continning
own pioneering relativistic works, would develop further his trigonometric approach till its
tensor level with more general concepts of the binary spaces and their perfect hypersurfaces.
The very spirit of his unwavering striving for novelty and grandiose generalization of existing
particular theories speaks about this! Unfortunately, some mathematicians and physicists
have blackened their names by borrowing brilliant ideas from his works in own publications
without references to their anthor. So, the honest and eminent mathematician V. 1 Arnol'd
wrote about such facts in his Fssay [110]) as author’s Hussian version without Enplish edits.

ln our monograph, there are many examples of applications of Tensor Triponometry in
geometric and physical fields. Thos, it reveals clarity the true canse of anpular deviations
in convex figures on non-Eoclidean surfaces of spherical and hyperbolic types as the cosine
orthospherical shifts in their apexes (Chs. TA, 8A). In the hyperbolic case, ldentity of this
negative orthospherical shift | but in time (1), with the Thomas precession is established.

The Integral Laws of Energy and Momentum conservation in the Minkowski space time
{P**1 can be simply inferred by the 4D Absolute pseudo-Euclidean Pythagorean Theorem
of three momenta, gotten by us in (99A4), Ch. 5A ) with the use of the absolute oun 4 x 1
momentum Py = Fy-iy as a right column of the 4 x4 tensor of momentum Tp = By-rothly.
L. e, the last is proportional to our measureless trigonometric tensor of motion rethDy (100A).
They have four independent scalar arpuments, as hyperbolic angle of motion 4y and its unity
J-vector of three directional cosines ey, Then, in initial psendo- Cartesian base E, = {x, ct)
of (P*H1), the tensors Tp and Tg have proportional to (100A) canonical physical structures
with the 4 ¥ Lmomentum Py as 4-th column of Tp (under e = const and 4 > 0 as Act > 0):

Tp == Po- Tawa + (coshy — 1) - 8o -@a’ | sinhy-ea _ | Fo-Taxa +AP.ex-e | p — moc-rothl
sinh - e, coshy p’ P 1

Te =Eg- I3x3+(m_ah1r—1]-éu-au' sinhy-ea | _ | Ep-Jaua + A -eq-ea | pe = mge? - rothT;
sinh~ - el cosh p'c

E

Po- [ B |- moc-m| 07 [-n Tl |- [T ][22 ] ]

P cosh ¥ cosh -y mgc® e Efe

E = coshy - Eg = Eo + (coshy — 1) - Eo = Eo + ki - Fo = Eo + A, where kg = coshy — 1 =AEEq.
Tg includes the total 4 % Lmomentum P oand the Hamiltonian as sealar B and in Boclidean
3 % Jtensor form, where the work A = AFE acts logically in the direction eg as in (173A)!
We have the trippnometric and proportional physical concepts staying on a world line in
absolute (P31} with tensors of momentum and energy in Ey under 4-velocity © of Poincaré.
The vectorial own 4 x 1-momentum Py = myg - €, directed along a world line, has its
invariant scalar value Py = mge (proportional to Ey = mge?). Therefore Py, without the
inner force F, can chanpe ooly its direction in the internal (light) cone under constant By,

Mass mp #£ 0 (as Py/eor Eg/c?) is used for massive objects. The relative |J[i]jﬂill:i are:

P = Py - coshy = me as the scalar cosine orthoprojection onto the time-arrow et}

p = Py -sinhy - 8y = mv as the sine orthoprojection into the Euclidean subspace (£3)0,
ln insulated systems, there is the absolute preserving characteristic under passive Lorents

transformations: Pp = Fy-1, = const as the invariant hypotenuwse of the Pythagorean right

triangle of 3 momenta. 1ts relative cathetuses are preserved under next own conditions.

The mechanical energy E = ¢ Py - coshy = P = const under = is const ant.

The real momentum p = Fy - sinh+y - 85 = const under 4 and e, are constant together.
Similar approach is applicable at arbitrary quant ity of moving and no interacting massive

material points also in the insulated for them system, with its various adopted bases Eyg:
EPD{&} = E[Pn[k} - i{m] =C- E[mﬂ[k} N i{k}] = const.

Our inferences are in complete and one-to-one correspondences of Tensor Tripopnometry with
fundamental concepts as the Noether Theorems, the Higps Theory, the Mach Principle and
the somorphic mathematical and physical Principles of Relativity in sect. 12.3 and Ch. 1A,
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Besides, for the anthor, in these scrupulonsly studied by him areas of the exact science,
one of the most surprises, revealed by Tensor Trigonometry in this Appendix among many
others miracles, was not only the presence, but the abundance of Absolute and Relative
Pythagorean theorems in their quasi-Enclidean and psendo Eunclidean versions in (@%F1),
(@YY, and (P, including their sine and cosine 3D hinary subspaces; and even (1) on
the embedded curvilinear perfect hypersurfaces with their three non-Eoclidean geomet ries
and the spherical, hyperbolic and mixed hy perbolic—elliptical principal motions on them. So,
Relative Fuclidean Big and Small Pythagorean theorems relate to summing motion angles in
trigonomet ric functions with their reduction to the original Cartesian subbase; 4D A bsolute
and 3D Relative Pythagorean theorems relate to summing motions” angular differentials.
The psendo- Buclidean Tensor Trigonometry is an isomorphic progenitor of all formulae and
theorems of the non Euclidean geometry on the three sheets perfect hypersurface in (P,
Jormulae and laws of the Theory of Helativity with wsing corresponding constant factors!!!

For applications of the Tensor Trigonometry to relativistic caleulations of ultra-long
distance space travel, at least to the star systems closest to us (which has become now
the subject of intense interest), we, in principle, covered this question both at the end of
Chapter A, having obtained for this purpose a relativistic version of the Ziolkovsky cosmic
formula with examination of its application to our specific extreme example of space travel,
and at the end of Chapter TA with coordinate representation of the travel itself under its
kinematics and dynamics. As became clarity from results in Chapter 5A. in the foreseeable
future such ultra-long-distance travel is possible only for robotic ships, moreover of miniature
sizes and equipped with hiphly advanced artificial intellipence, and, of course, with the use
of maximum possible acceleration for them to achieve near-light speeds. For now, their task
can only consist of identifying in the promising star systems the presence of the most suitable
planet for the implementation of Earthly life on it and communicating this with a power
laser signal towards Earth. And only after this will it be possible to send astronaot s-sett lers
there in one direction, and even then, most likely, with their long-term freezing! Otherwise,
nothing will remain of our civilization with its living and colture worlds — especially since
the fanatical politicians only accelerate its destruction and death with no entrance to space!

Of course, no one can force for mathematicians and physicists else in the Past to stop
operating in relativistic transformations with the relativistic factors "4" (as our cosh ) and
"A" [as our tanh ), and they continne to suffer with them in numerous operations and doubt
whet her they have been correctly performed | instead of switching to application of simple and
well understandable tensor triponometric operations in their scalar, vector and tensor forms.
From the point of view of Tensor Trigonometry, using such factors as " " and " 8", i. e, only
really of the cosine and tangent functions, for development of Theory of Relativity and its
numerous applications is a really pseudo-scientific sadomasochismus absurdity. These factors
do not provide any visnal theoretical representation. 1t is a preat pity for the relativists, who
from the beginning doomed themselves to torments of "creativity” with them, instead using
simplest and descriptive trigonometric approach in tvs-forms above. Without this approach,
up to now such ent husiasts do not understand difference in senses of factors "" and "1/4"
in cosine and secant formulae of STR (see in Chs. 3A, 4A) though they relate to different
transformations: sine-cosine rotations as gronp and tanpent-secant deformations as no group!

Let's hope that progress and wseful seientific renovations cannot be stopped!

The author of Tensor Trigonometry wishes creative success to all those researchers and
readers, who will continue to apply and further develop all these new peometric directions
established in this book since 2004 and hopes for high notions of scientific ethics from all its
users and readers. The preat mathematician, physicist and man Heord Poincard stated the
highest ethical bar for scientists in the past 20th century. By our opinion, the most terrible
crime in the Science is deliberate and camouflaged plagiarism. Besides, the author is opposed
to any, especially hidden, manifestation of mossy nationalism in the Saint scientific sphere!

* % % The End * **
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1. Consider an algebraic equation of power m with real positive coefficients in its
alternating-sign form.  Hepresent Cardanco’s (n = 3) and Ferrari’s (n = 4) formuolae in
terms of small and large medians.

Prove that, if the roots of the alpebraic equation in such form are real-valued numbers,
then at any "n" there hold:

0 < ka < [(n— 1)/2n]k].
Grive the similar chain for all the coefficients.

2. Explain why each of the following equations has complex conjugate roots with positive
real parts.

y(r) = r° — 10z + 40° — 802 + 00z — 64 = 0,
y(r) = r° — 10z + 402° — 7022 + 80z — 64 = 0,
y(x) = =% — 10z* + 402° — 8022 + 75z — 60 =0,
y(r) = r° — 2528 + 00 — 64022 + 80x — 1 =0,
y(z) = 25 — 2524 + 1602 + 80z — 1 = 0.

(Feneral conditions to coefficients of an algebraic equation for its roots to be real-valued see
in our other monograph [17].

3. Equation y = ||2(x)|| = ||4AX — a|| = min, where A is 5 m x nomatrix, 8 is a novector,
has o unique solution X =b. Express b, 2(b), and y(b) as formulae only with A and a
Find the spherical angle between the vector b and the plane {(im A}, Find condition for it
be zero, be right. What is the peometric nature of the vector 2(b) in the m-dimensional
Euclidean space? How does geometry of solutions depend on relations between moand n?

4. For a pair of conjupate complex numbers with operations over them, give their real
valued representations without the imaginary unit. What is the main distinction between
complex-valued representations of such numbers with operations and these real valued ones?

Prove that a real-valued alpebraic equation of power n has a complete real-valwed peneral
solution unique up to admitted permutations.

5. In the first half of the 19-th century Urbain Le Verrier "discovered on tip of & pen”
(by the words of F-J. Arago) the new planet Neptune (1846). He used his own algorit i for
inverting a square matrix B with evaluating scalar characteristic coefficients of the matric B
in terms of traces of powers BY. Prove the following statements for these characteristic
coefficients of 4 n % nomatric B and its powers B, 1 <t <n.
alftrB=tr B2 =...=tr B = ... = tv+ B* = 41, then k{B,t) = 0. In particular,
det B=01if t =n.
bh.iftr B=tr BP=...=tr Bl =... = tr B' = —1, then k(B,t) = (—1)'. In particular,
det B = (—1)".

c. ftr B=tr B2=...=tr B! = ... =tr B* = +#, then k(B,t) = +1.

d.f —tr B=+tr B> = ... = (=1Ytr BT = ... = (—1)'&r B* =t, then k(B,t) = (—1)%.

e ftr B=tr B2=...=tr B = ... = tr B* = 4n, then k(B,t) = 4C%.

fIf tr B=4tr B> =... = (—1Ytr B! = ... = (=1)'r B = n, then k(B,t) = (—1)*C%.

6. For nxm-matrices Ay and As, prove equalities for the scalar coefficients of any order £

k(Ay - A5, t) = k(A - Ag, t) = k(Ag - A}, E) = k(A5 - Ay, ).
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7. Integer-number n ¥ n-matrices generalize the notion of number. They keep also a lot

of mysteries and phenomena. Prove the following formulae (they are connected with these
characteristic coefficients too).

r1 1 0 0
1 1 2 0
1 1 1 0
dei :
1 11 --- 1
1 11 --- 1
1 1 1 ..o 1
1 -1 0 0
1 1 -2 0
1 1 1 0
det ;
1 1 1 1
1 1 1
1 1 1 1
[¢ 1 0 0
t t 2 0
£t 0
dei : :
t &t ¢ t
t &t ¢ t
L & ¢ i t
—t 1 0
+t —t 2
—i +t —i
det . . .
[:_I:It-—'!t [:_ljt-—st (—I:I:'_d't
[:_I:It-—it [:_ljt-—'zt (_I:It-—st
(1% (-1 (1%
[mn 1 0O 0
n n 2 0
n on on 0
det
1 mn mn ses i
1 mn mn ses i
ln » n - n
[ —1 1 0
+n —n 2
—n +n —n
det . . .
{_1}!—2_“ {_ljt—aﬂ (_1]‘—4"_
{_l}t—in {—1:]‘_211- (_ljt—sﬂ
1)t (—1*ln (—11*%n
L (=1)'m (-1) (-1

0 0
0 1]
0 1]
. =0.
t—2 1]
1 t—1
1 1 ]
1] 0
1] 0
1] 0
=il
—(t—12) 0
1 —(t—1)
1 1
1] 0
1] 0
0 0
= tl.
t—2 0
t t—1
t ¢
0 1] 0
0 1] 0
0 1] 0
: D=0t
—& -2 0
+t —t t—1
—t +t —t
0 0
0 1]
0 1]
: =t!C:I.
t—2 1]
n t—1
n n |
0 1] 07
0 1] 0
0 1] 0
; ; ; =[—1}tﬂC:;.
—_n =2 0
+n —n t—1
—Ti +mn —-n |

Note. For (5) and (6) there holds, if £ > n, then the determinant is 0.

(1)

(2)

()

(4)

(£)

(6)

8. For rxr-matrices B and C of rank v, give the matrix interpretation of simple relations:

det Byy det By

det {.Bn - 612)

_ det Byg

det Byy det By

det By det (Cgq - Byy)  det (Caq - Byy - Ciz)  det Bag
& det B11 - det Baa = det Bi2 - det Boy.

det By, det Bog

For example, with the use of this relation, infer exact formula for the spherically orthogonal
quasi-inverse matrix A% in sect.2.5 through elements agy of singular matrix A (v < [m,n]).
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9. Forsingular matrices determining planars or lineors, write down in our unified notation
all characteristic eigenprojectors, orthogonal and eblique ones. Their quantities are:

o 8 oand 12 for real momber and complex-munber square mat rices,

o 4 and 6 for real number and complex pnmber rectangular matrices,
e 8 for a pair of real number rectanpuolar matrices,

e 12 for a pair of complex number rectangular matrices.

Why paired orthogonal and oblique eigenprojectors muotually chanpge their nature under
translations from quasi- Enclidean space into pseado Foclidesn one and viee versa?

Are there any geometric distinctions between orthogonal and symmetric eigenprojectors,
obligque and nonsymmetric ones in the spaces with quadratic metrics?

10, ln a peometry with its binary space and quadratic metric, a reflector tensor and the
mid-reflector of the tensor anple have similar expressions. What s the principal distincetion
between these notions?

11. For such "cireles" and "hyperbolae" draw on computer graphs of the functions y(z):
lyl™ + |z = |R[*, |yI" — =" =|R[*, n=0,1/4,1/3,1/2,1,3/2,2,3,4,00.

Why the value n = 2 is chosen just for Euclidean, quasi- and psendo-Euclidean spaces?
Does the parameter nhave any peometric sense for affine planes and spaces?

These questions are connected with justification of the Pythaporean Theorem, as well
as the quadratic types metrics in Euclidean, quasi-BEoclidean and npon-Euoclidean peometries,
the theory of relativity, the Ganssian method of least squares and gquadratic regression, ete.

Whether it is possible to consider that the math ematical condition n = 2 follows from the
nature of owr real space and space-time or it is wsed as an azviom for them?

Give comparative analysis of the generalized trigponometric functions for integer n > 1:

y/R=>58ingp, ofR=Cosy; y/R=Sinh~y, z/R=Cosh q;

Why angles in quadratic geometries (i e, Foclidean, quasi Eaclidean, and pseado
Euclidean), as well as their trigopnometric functions have the nature of bivalent tensors?

When the tensors are orthogonal, either spherically, or quasi- Enclidean, or hyperbolically,
or psendo-Enclidean, and when they are affine ones?

What kinds of invariants and gquasi-invariants take place for functions of spherical and
hyperbolic angles?  What distinction is between invariants and gquasi-invariants?  What
distinction is between spherical and hyperbolic ones?

How a choice of n = 2 for the relativistic space-time is connected with Einsteinian
physical definition of events’ simuolt aneity?

12. In the process of construction and development of fundamental and applications of
the subject "Tensor Trigonometry ", we revealed in parallel some very brief and clear infers
of some classic theorems, corollaries and connections between as if different classic concepts.

Connect by general inequality all classic means of positive numbers filling "blind spots".

Give one-line infer of the classic Hamilton- Cayley Theorem.

Give one-line infer of the classic Kronecker—Capelli Theorem.

Connect the cosine and sine general inequalities for squared and rectangular matrices
with the classic alpebraic Inequalities of Caonchy and Hadamard. Give the single condition
of the first former’s intersection with the classic algebraic lnequality by Hermann Weyl

Connect by one-line simplest trigonometric relations the Harriot’s excess (from 1603), the
Lambert s defect (from 1763) in spherical and hyperbolic right triangles and the Thomas
precession (from 1926) in STR. Give the direct connection of the latter and the Coriolis
relativistic acceleration in the rested and rotated bases.
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13 The sine-tangent analogy leads to the hyperbolic analog w of spherical number o /4:
sinhw =1 =tanw/4 = w = arsinh 1 7 0881 rad; 7/4 = arctan 1 & 0.785 rad. Moreover:

f—wetani=1—Sp i 1o CED° {the Leibnitz series)

wfd = arctan 1 = gty tootgr e Letbnitz series),
, 11 1 1.3 1 1-3.5 ()% (2n— 1)1
=arsinh l=1—-——--=-¥%+— ¢ — — — e —— .- Lz
e 3375 34 7 246 Int+1  (2a)l

Why w as well as 7/4 is a transcendent al number? What is the peometric sense of w?

14, What common geometric feature do have — the circle and sphere; the equilateral
hyperbola and hyperboloids, the catenary and catenoids, the tractrix and tractricoids with
the Beltrami psendosphere? Why a tractrix is a hyperbolic analog of a one-step cycloid?

How do a quadroby perbola in a pseadoplane lead isomorphically to the emerpence of four
catenaries and tractrices in their Special quasiplanes (two time-like and two space-like) with
common determining parameter B Give bond of their hyperbolic and spherical anpgles.

Describe peoametrically and by equations catenoids  obtained  with rotation of these
parametric double time-like and space-like catenaries around the single normal asxis.

Describe peoametrically and by equations tractricoids obtained with rotation of these
parametric double space-like and time-like tractrices around the single normal axis.

Why a catenary (evolute) and a tractrix (involute) are connected trigonometrically by the
countervariant spherical-hyperbolic specific analogy and as time-like and space-like curves?

What is 2 main distinetion in 1-st metric forms of a Beltrami psendosphere, hy perboloids
L and I and a bhyperspheroid given in their quasi Eoclidean and pseado-Boclidean spaces?
Why all they are parametric? Which of them are "perfect surfaces" and why it is?

15. Which roles do play the anples 4 and v in pseado-Euclidean and in non-Euoclidean
geometries and in theory of relativity? How they are connected to each other and correspond
to the purely spherical and countervariant Lobachevsky parallel anple T1?

How do the angles of orthospherical rotation & (as scalar) and O (as tensor) appear in non
collinear principal motions (1), in 1-st metric forms (2), in Thomas precession (3)) in angolar
deviations inside concave closed figures from geodesic segment s (4)) in astronomical data (57
Give simplest triponometric explanation of the indoced shifting and precession.

16. What tensor triponometric distinetions does exist in the mathematical description
and interpretation of these well known relativistic effects: Minkowski dilation of time and

Lorentzian contraction of extent? Describe concomitant to them other relativistic effects.

17. What does the mathematical principle of relativity in some peometries consist in?
How does it lead to the physical Principle of Helativity in the Nature?

18 Which kinds of curvatures do take place for world lines in Minkowskian space—time?
How do they correspond trigonomet rically to main types of physical movement of a particle
with its kinematic and dynamic characteristics?

19, What distinctions does exist between the classical differential theory of regular corves
by Frenet—Serret in the nsual 3D Fuoclidean space and the differential triponometric theory
of regular curves in the 30 and 4D quasi- Euclidean binary spaces? Why the latters may be
realized with two different tribedrons and one tetrahedron? How easy and correctly to
construct the tribedron of serewed motions in the tensor trigonometric form?

20. Describe the trigonometric tensor of motion in space-time (P*1Y and its isomorphic
bond with the physical tensor of momentum-energy. How does it lead to the 4D pseodo
Euelidean Pythaporean Theorem of three momenta and to the Law of momentum—energy

conservation in insulated systems? What is it a gravitational cosine? How and when does
it manifest in GHR effects?

21. Explain: why the interpretation of 4D observed space-time, i e either it i real one
(a8 positivist point of view) or it is mapping of real one lensed by gravitation, is associated
with the adoption or not of the Law of momentum—energy conservation in the Universe?



Literature List

1. Euler L. Introductio in anslisin infinitornm. Capuot 8 De guantitatibus transcendent ex
Circulo ortis. — Lausanna, Acad. lmper. Scientiarum Petropolitanm Socio, 1748, (In Latin)
2. Pitiseus B, Trigonometria: sine de solutione trianpuloram tract atus brevis et perspicuons.
— Heidelberg, 1595 (1o Latin)

3. Grassmann H.o G Die lineale Ausdebhnungslebre, dargestellt durch Anwendungen aof die
ibrigen Zweige der Mathematik. — Leipzig: Verlag von Otto Wigand, 1844, (ln German)

4. Lankaster P. Theory of Matrices. — Moscow: Naoka, 1969, (From English)

5. Gantmaher . R, The Theory of Matrices. — New York: Chelsea, 1960, (From Russian)
G. Lutkepobl H. Handbook of Matrices. — New York: Wiley, 1996,

7. Marcus M., Mine H. A Sorvey of Matrix. Theory and Matrix Inequalities. — Boston:

Allin and Bacon Ine., 1964

8 Strang G. Linear Alpebra and its Applications. — Pacific Grove: Brooks Cole, 2006.

9. Postnikov M. M. Lectures on Geometry. // 1 Analytic Geometry, [/ 2. Linear Alpebra.
— Moscow: Nauka, 1986, (Iln Hussian)

10, Wostrikin AL Introduction into Algebra. [/ Part 1 Bases of Algebra. /) Part 2. Linear
Alpebra. — Moscow: Fizmatlit, 2002, {In Ruossian)

11. Buldirev V. 5. Pavlov B. 5 Linear Algebra and Fonctions of many variables. -
Leningrad: LSU, 1985, (In Bussian)

12, Maor B, Trigonometric Delights. — Princeton, New Jersey: Princeton Univ. Press, 1998,
13, Mensnier.). B Mémoire sur la courbure des surfaces. ™ Mém. Mathém. Phys. Acad. Sei.
Paris, prés. par div. Savans, v 10, p. 477-510, 1785, (lu 1776).

14. Frenet J-F-F.“Sar les courbes & double courbure® — Thise de doctorat, Toulouse, 1947,
Abstract: Journal de Mathématiques Pures et Appliquées, 1852 n. 17, (1o French)

15, Ninul A S, Tensor Triponometry. Theory and applications. — Moscow: MIR, 2004 -
OCLC Number: 255128609, (In Hussian)

16. Ninul A. S Tensor Trigonometry. 2-nd edition. (1o English) — Moscow: Fizmatlie, 2021,
DO 10:32986 /978-5-04052- 278-2-320-01-2021.

17, Ninul A S Optimization of Objective Functions. Analysis. Nomber Methods. Design
of Experiment. — Moscow: Fizmatlit, 2009, (In Huossian)

18 Numerical Methods for Constrained Optimization. [/ Collection. Editors: Gill P. E_
Murray W. — Moscow: MIR, 1977, p. 196-206. (From English)

19, Viadimirov V. 5. Methods of Theory of functions in many complex wariables. — Moscow:
MNauks, 1964 (In Hussian)

20 CRC Concise Encyclopedia of Mathematics by Eric W. Weisstein., — Boea Haton,
Florida: CRC Press, 1999 - First Edition, p. 204-206 (Catenary), p. 18241825 (Tractrix).
21, korn G, korn 1. Mathematical Handbook. — Moscow: Naoka, 1978, (From English)
22, CRC Handbook of Mathematical Sciences. — Boea Baton, Florida: CRC Press, 2000,
23 Hardy G. H, Littlewood J. K, Pdlya G. lnequalities. — London, 1934,

24. Canchy A-L. "Sur les formules gqui résultent de Pemploie du signe et sur > oo < et sur
les movennes entre plusienrs quantités" | Cours " Analyse. — Paris, 1821, (In French)

25. Hadamard J. Resolution de une question relative aux determinants. [/ Bull. des sciences
math. (2}, 1893, v. 2. n. 17, p. 240-248 (1o French)

26. Tychonoff A N, "Aboot non-Correct Tasks of Linear Alpebra and Stable Methods of
their Solutions" [/ Doklady of Academii Naok of USSR, 1965, 0. 3, p. 591594, (1o Hussian)
27, Sourian J-M Une méthode pour la décomposition spectrale et inversion des matrices.
SO0 R Acad. Sein, Pards, 1948 v 227 po 1010-1011 (1o French)

28 Faddeev D, K. Lectures on Algebra — S-Petersburg, Lane, 2002, (In Bussian)

29 Faddeev D. K., Faddeeva V. N. Computational Methods of Linear Alpebra - San
Francisco — London: W. H. Freeman and Co., 1963, (From Bussian)



310 LITERATURE LIST

30, Gregory BT Krishnamuorthy BV, Methods and Applications of Error- Free Computa
tion. /) Part 3. Exact computation of generalized inverse matrices, — Moscow: MIR, 1988,
p. 124-147. (From English)

31 Moore E. "On the reciprocal of the general algebraic matrie” /) Buoll. Amer. Math.
Soc., 1920, v. 26, N O, p. 394305,

32 Penrose R "A peneralized inverse for matrices" /) Proc. Cambridge Philos. Soc. —
1955, v. 51, Nt 3, p. 406-413.

33 Decell H. "An application of the Cayley — Hamilton theorem to generalized matric
inversion." // SLAM Hev., 1965, v. 7, p. 526-528.

34 Gillies A "On the classification of matrix generalized inverses" [/ SIAM Rev ., 1970,
v. 12, p. AT3-57T6.

35 Saccheri G. Euclides ab omuoi naevo vindicatus: sive conatus geometricus quo stabili
untur prima ipsa universae peometriae principia. — Milano: 1733, (In Latin)

36, Lambert I H. Theorie der Parallellinien. — Leipzig: Leipriger Mag. anpg. Math | 1786,
(In German)

37 Schweilart F. K. Die Theorie der Parallellinien, nebst dem Vorschlag ihrer Verbanming
aus der Geometrie. — Leipzig und lena, 1807, (In German)

38 Taurinus F. A Theorie der Parallellinien. — Kolo: 1825 // Geometriae prima elementsa.
— Kiln, 1826, (In German)

39, Gauss C. F. Frapments of letters and drafts respecting to non-Eoclidean Geometrey, [/
ln Collection: About Foundation of Geometry, — Moscow: GTL 19500 (From German)

40, Lobachewvsky N. L About Elements of Geometry, — Kazan: Kazansky Vestnik, 1820-
18300 (1o Hussian)

41 Lobatschewsky N_ 1 Geometrische Untersuchunpgen zur Theorie der Parallellinien. —
Berlin: der F. Finckeschen Buchbandlung, 1840, 61 S, (In German)

42 Bolyai J. Appendix scientiam spatii absolute veram exhibens: a veritate ant falsitate
Axiomatis X1 Euclidei. — Maros-Visdarhely, 18320 (In Latin)

43. Minding F. " Uber die Biegung krummer Flichen." // ). Reine und Angewandte Math.,
1838, Bd. 18, 5. 365-36G8; 1839, Bd. 10, S 37T0-387; 1840, Bd. 20, 5. 323-327. (In German)
44 Beltrami K. "Sappio di loterpretazione della geometrica non-Foclidea " /) Giorn. mat.
Napoli, 1868, 3, p. 6. (In ltalian)

45 Beltrami E. Teoria fondamentale degli spazii di corvatura constante, Annoali. di Mat |
ser 11, 1868, 2, p. 232-255. (In Italian)

46, Dini U, "Sopra un problema che si presenta nella teoria generale delle rappresentazioni
geografice di una superficie su un’altra ™ /0 Ann. di Math | ser. 20 3 1869, p. 269-203.

A7 Cayley A "On the transcendent pd. 0", Philosophical Mapaeine. 4th Series. 24 (158):
p. 1921, 1862,

48 Klein F. Vorlesungen dber Nicht-Euklidische Geometrie. — Berlin: Springer, 1928,
(In German)

49, Coxeter H. 5. M. Noo-Euclidean Geometry, — Toronto University, 1942,

50. Blanusa D. " Uber die Einbettung hyperbolischer Rium in euklidische Rium." //
Monatsch. Math. 1955 Bd. 59, N 305217229, (In German)

51. Gudermann Ch. Theorie der Potenzial-oder cyklisch-hyperbolischen Functionen. -
Leipzig: Georg Heimer Verlag, 1833 (In German)

52, Jansen H. "Abbildung hyperbolische Geometrie aof ein zweischalipes Hyperboloid." //
Mitt. Math, Gesellschaft Hamburg, 1909, lssue 4, 5. 409440, (lon German)

53. Reynolds W. F. "Hyperbolic Geometry on a Hyperboloid." // Am. Math. Monthly,
1993, v. 100, n. 5, p. 442455,



LITERATURE LIST 311

54. Newton | Philosophise Naturalis Principia Mat hematica. — Londini: Heg. Soc. Promses,

1686. (o Latin)

55. Mach E. Die Mechanik in ithrer Entwickelung historisch-kritisch dargestellt. — Leipzig:

Fo A Brockhaus, 1904, (In German)

56. Want 1. Writik der reinen Vernunft, — Riga: 1781, (1o German)

57. Hegel G-W.F. Enevklopidie der philosophischen Wissenschaften im Grondrisse. -

Heidelberg Univ., 1817, (1o German)

5% Lorentz H. "Versuch einer Theorie der electrischen und optischen Erscheinungen in

bewegten Kirpern." [/ Brill, Leyden, 1895,

59. Lorentz H. "Electromagnetic phenomens in a system moving with any velocity smaller

than that of light" // Amster. Proc. — 1904, v, 6, p. 809; v. 12, p. 986,

G0. Poincard H. La Science et UHypothise. — Paris: 1902, (In French)

61. Poincaréd H. La Science et methode.  Livee Premier:  Le savant et la science. — Paris:

1908, (In French)

62. Poincaréd H "La théorie de Lorentz et le Principe de réaction" [/ Archieves

Néerlandaises des sciences exactes et naturelles, 1900, v 5, p. 252-278. (In French)

63, Poincaré H. Note “Sur la dynamigue de Uélectron” /) Comptes Henduos de I Académie

des Sciences, Paris, v. 140, pub. 5 juin 1905, po 1504-1508. (1o French)

G4, Poincaré H. "Sur la dynamique de Pélectron.” (res. 23 July, 1905) // Hendiconti del

Circolo Matematico di Palermo, 1906, v. XX1, p. 129, (1o French)

65, Minkowski H. "Rionm und Zeit" [/ Phys, Ztsche, 1909 Bd. 10, 5. 104, (In German)

G66. Minkowski H. "Die Grundgleichungen fir die elektromapnetischen Vorgiinge in bewegten

Korpern." [/ Gottingen Nachrichten, 1908 5. 53-111 {In German)

67, Einstein A "Zur Elektrodynamik beweter Woper." (res. 30 June, 1905) // Anne der

Phys., 1905, Bd. 17, 5 891921, (Iln German)

G8. Finstein A "Ist die Triigheit eines Wirpers von seinem Energienhalt aboingip?" // Ann.

der Phys 1905, Bd. 18, 5. 639, (1o German)

69. Finstein A "Die Grundlagen der allgemeinen Relativitits-theorie" [/ Ann. der Phys

1916, Bd. 49, S 769, (In German)

700 Hilbert D, "Die Grundlapen der Physik" /) Gittingen Nachrichten, 19150 5. 395,

(In German)

71 Hilbert D. /) Gittingen Nachrichten, 1917, 5. 21, (lon German)

72, Einstein A, "Frklirung der Perihelbewegung des Merkur aons der allpemeinen Hela

tivititstheorie” [/ Siteunpsber. . Akad. Wiss, Berlin., 1915, 5. 831-839. (Iln German)

73. Einstein A. " Uber das Relativititsprinzip und die ans demselben gezogenen Folger

ungens." [/ Jabrbuch der Radioaktivitit und Elektronik, 1907, o, 4, 5 411462,

74, Born M. Einstein's Theory of Relativity, — New-York: Dover Publisher Ilne., 1962,

75, Miiller C. The Theory of Relativity. — Oxford: The Clarendon Press, 1955.

T6. Pauli W. Helativitits-theorie. — Moscow: Naoka, 1983 (From German).

77. Fock V. A The Theory of Space, Tine and Gravitation. — Oxford - London - New-York
Paris: Pergamon Press, 1964 (From Russian).

T8 Hosen N "General Relativity and Flat Space.” [/ Physical Beview, 1940, v. 57, n. 2.

79. Soldner J. "Uber die Ablenkung eines Lichtstrahls von seiner geradlinigen Bewegung

durch die Anziehung eines Himmelskirpers, an dem er fast vorbeigeht " [/ Berliner Astrono

misches Jabhrbuchm, 1804, 5 161-172. // Anne der Phys. 1921, Bd. 65, 5. 593, (In German)

80. Voigt V. " Uber das Dopplersche Prinzip." — Gittingen Nachr., 1887, S. 41. (In German)

81, Montgomery C., Orchiston W., Whittingham 1 "Michell | Laplace and the origin of the

Black Hole Concept” /7). of Astronomical History and Heritage, 2000, v, 12(2) p. 90-96.

82, Higps P. "Broken Symmetries and the Masses of Gauge Bosons." /) Physical Review

Letters, 1964, v. 13(16), p. 508-509. // doi:10.1103 /PhysHevLett 13 508



312 LITERATURE LIST

83 Born M. /) Ann. der Phys. 1909, Bd. 30, S 1. (In German)

84 Herglotz G // Aon. der Phys., 1911, Bd. 36, 5. 497, (lo German)

85 Langevin P "Lévolution de Pespace et du temps" /) Scientia, 1911, v 10, p. 31-54.
(In French)

86. Sommerfeld A " Uber die Zusammensetzung der Geschwindighkeiten in der Relativ
theorie." // Phys Ztschre, 1909 Bd. 10, 5. 826-829. (1o German)

87 Varitak V. "Die Relativtheorie und die Lobatschefkijsche Geometrie" [/ Phys, Ztschr
1910, Bd. 11, 5. 93-96. (1o German)

88 Lewis (. N. "Hevision of the Fundamental Laws of Matter and Energy" [/ Phil. Mag_
1908, v. 16, p. TO5-T17.

80 FitzGerald G "The Ether and the Earth’s Atmosphere” [/ Science, 1889 v 13, p. 390,
90. Borel . "La théorie de la relativité et la cindmatique.” // Comptes Rendus des séances
de "Académie des Sciences, 1913, v, 156, p. 215, (1o French)

91 Foppl L., Daniell P. "Zur Kinematik des Born’schen starren Korpers" /) Gittingen
Nachrichten, 1913, 5. 519-529. {In German)

92 Silberstein L. The Theory of Relativity, — London: MacMillan, 1914

93 Thomas L. H. "Motion of the spinning electron.™ [/ Nature, 1926, v. 117, p. 514,

94 Wigner K. P "On upitary representations of the ioshomopeneons Lorentz group” [/
Annals of Mathematics, 1939, v 40 (1), p. 149-204.

95 Belloni L., Reina C. "Sommerfeld’s way to the Thomas precession” /) Europ. J. Phys_|
198G, v. 7, p. 5561,

96, Pound K., Bebka Jr. Go A "Gravitational Hed-Shift in Nuclear Besonance" [/ Physical
Heview Letter, v. 3, o 9, po 4309 441,

a7, Bloch PV, Minskov A A Gravitational Lenses. — Kiev: Naonkova Dumba, 1989, (In
Hussian)

98 Penrose R. The Road to Reality: A Complete Guide to the Laws of the Universe. —
London: Handom House, 2004, po 457

99 Gerber P "Fortpflanzunpgspeschwindigheit der Gravitation” Stargard, 1902 (In German)
100. Schwarzschild K. " Uber das Gravitationsfeld einer Massenpunktes nach der Einstein
schen Theorie ™ /) Sitzunpgsber. o Akad. Wiss, Berling, 1916, 5. 189-196. (Iln German)
101, Dirae P "The Quantum Theory of Electron.” /) Proe. Royal Soc. 1928 A117, p. 610.
102 Noether E. "lopvariante Variationsprobleme" [/ Gittingen Nachrichten, 1918, 5. 235
257, (In German)

103. Renand De la Taille *Relativité Poincaré a précédé Einstein”. — Science et Vie, n. 931,
p. 114119, 1995, (In French)

1. Logunov A AL Relativistic theory of pravity. — New York: Nova Science Publ., 1998,
105, Logunov A AL Lectures on Helativity Theory, — Moscow: Nauka, 2002, (In Hussian)
106. Whittaker . A history of the theories of aether and electricity. // Vol. 2. The modern
theories 1900 — 1926, // Reprint. — London: Thomas Nelson, 1953,

107, Paston 5. A "Gravity as a field theory in flat space—time " /) TME, 2011, v. 169, n. 2,
p. 285-206G.

107, Paston 5. A "Gravity as a field theory in flat space—time " /) TME, 2011, v. 169, n. 2,
p. 285-206G.

108, Cartan 1.0 "Sur la possibilité de plonger un espace riemannien donné dans un espace
enclidien // Aon. Soc. Polon. Math. 1927 v, 6, p. 1.7, (1o French)

108, Friedman A, "Local isometric imbedding of Riemannian manifolds with indefinite
metrics." /000 Math, Mech. 1961, v. 10, p. 625-G49.

110, Arpol’d V. 1. Underrated Poincaré. — J. *Advances in mathematical sciences”, Moscow,
2006, v. 61, s 1 (367), p. 9. // DOL 104213 /rm 1714 (In Buossian)

111. Lockwood E. H. "The Tractrix and Catenary” in Book of Corves. Ch. 13, — Cambridge
University Press, 1061, p. 118-124.

112, Singer B Mechanik der Photonen Strahlantriebe. — Minchen, 1956, (lo German)



Name Index

Arapgo ¥, 305
Arnol’™d V. L {Apronen B 1) 303, 312

Belloni L. 312

Beltrami K. G, 59, 151, 155, 156, 161,
1G4, 207-209, 211, 212, 308, 310
Binet 1. 49

Blanusa 1. 155, 310

Bloch PV, (bBoox 11 B 312

Bohr M. 200, 241, 264, 280, 281
Bolyai .3, 7, 59, 109, 151, 161, 174,
211-213, 216, 219, 253, 310

Bonnet (. 148, 226, 249

Borel 1. 215, 312

Born M. 196, 262, 308, 312

Bradley J. 222

Buldirev V. 5. (bynaepes B. C.) 300

Cantor G 8, G4

Capelli A8 50, 53, 61

Cardano G. 280, 289, 305

Carroll L. 280

Clartan 1. ). 258, 312

Canchy A-L.8 9 19 32 49 54 61,
122, 123, 126, 130, 135, 309

Cayley A28 32 37 38, 150-154, 171,
189, 230-232, 237, 297, 310

Coriolis G-Gro 164, 242

Courant K. 8, 55

Cimeeter H. S0 ML 111, 310

Cramer (. 8, 48

Cristoffel 2. 139, 258

" Alembert J. L. 59, G0

Daniell P. 215, 241, 312

De Broglie L. 202, 262, 263
Dedekind K. 8, 64

Deseartes B9, 26

Dessell H. 46, 310

Diendonné 1. 268

Dini U, 156G, 310

Dirac P. A M. 173, 215, 265, 312
Doppler Ch. 227, 263

Finstein A3, 161163, 165, 171-173, 176,
180, 181, 184, 191, 216, 217, 222, 233,
239, 254-2609, 285, 307, 311

LEitwviis Lo 255

EFuclid 7, 39, 161, 162, 253

Fuler L. 2, 3, 59, G0, 90, 107, 216, 302, 309

Fuddeey D W {@apmees [ K0 017, 28, 300
Feinberg . 280

Ferrari L. 305

Fitzgerald G. 188, 312

Fock V. A (Dox B, A 242, 265, 286, 311
Foppl L. 215, 241, 312

Frenet J.-F -F. 2, 268, 270, 271, 274, 276, 277,
279, 281, 284, 286G, 288, 300, 302, 308, 309
Friedman A, 259, 312

Friedmann A, 267

Frobenins F. 8, 19, 47, 127-129, 131

Cralilei Galileo 160, 161, 168-171, 175,
254267

Gamow George 171 255

Gantmaher Fo (Tanraaxep @ P 309
Crarnier J.-(z. 8

Gramss O F. 148, 150, 155, 161, 207, 212,
217, 226G, 249, 258, 2068, 307, 310
Crerber P. 264, 312

Gill P 309

Grillies A 310

Giidel k. 267

Crrassmann H. 8, 309

Crram J. 45, 49, 50, 51

Grreffe K. 24

Gregory K. 310

Crudermann Che 103, 109, 310

Hadamard J. 8,9, 50, 52, 54, 61, 126, 135,
189, 190, 309

Hamilton W. 8, 28 32, 37, 38, 202, 303
Hahn (). 239

Hardy G, 309

Harriot Th. 7, 109, 164, 249

Hepel G-W.F. 266, 311

Heisenberg W. k. 61

Herpglote G0 178, 187, 233, 274, 278 312
Hermite Ch. 8, 18, 24_ 43, 56, 61, 134, 135
Hesse Lo 8, 20-22 55, G0

Higes P. 203, 10, 165, 171, 254 267, 200, 303,
311

Hilbert D, 155, 242, 264, 286, 311
Hilder L. 19

Hubble . 227, 267

Huygens Ch. 207

Jacobi K. 54, G0, 258
Jancen H. 155, 310
Jordan M-E-C) 8, 27, 32, 34-36, 42, 43



314

NAME INDEX

kant 1. 266G, 311

Killing W. 265

Klein F. 150, 151, 153-155, 161, 232, 253,
3110

Kopernik N 265

korn G AL 309

korn T M. 309

Kostrikin A (Kocrpukns A 1) 309
Krishnamuort by 1. 310

Kronecker L. 8, 50, 53, 61

Lagrange J. G, 10, 43, 54, 55, G1, 133, 135,
LG0, 161, 163, 164, 168, 170, 235, 263, 276

Lambert ). H. 7, 103, 108, 109, 151, 153, 155,

161, 164, 166G, 211, 216, 217, 225 228, 244,
246G, 247, 253, 2T5, 280, 310

Langevin P 204, 312

Lankaster P. 309

Laplace P. G0, 266, 311

Lee Werrier L0 00 17, 18, 23, 25, 28, 31, 32,
128, 305

Lewis (3. N. 201, 239, 312

Littlewood . 309

Lobachevsky N1 (Jlodaqescenit H ) 3, 7,
24, 59, 109, 111, 151, 152, 161, 163, 167,
174176, 211-213, 216, 210, 253, 308, 310
Lockwood K. 312

Logunov A. A (Jloryeos A A ) 258 312
Lorentz H. 35,9, 10, 106, 140, 142, 145, 147,
154, 155, 158, 160-16G2, 164, 170, 177, 180,
181, 183-100, 1062, 203, 222, 230, 231, 233,
240-242, 254, 255, 264, 275, 285, 311
Lutkepohl H. 309

Mach . 205, 242, 254-256, 265-267, 303,
311

Maclaurin C. 19, 23

Maor . 300

Muarcus M. 309

Mazewell J. CL 170, 172, 188

Meitner L. 239

Mendeleev D L { Mesgenees [ 1) 254
Meuspier J. 199, 200, 211, 212, 219, 309
Michell J. 262, 266, 281, 286, 311
Michelson A. 170, 180, 188

Minakov A A (Musaros A A) 312
Mine H. 309

Minding F. GG, 155, 207, 211, 310

Minkowski H. 2, 6-8, 10, 59, 93, 145, 149, 154,
161, 163165, 168, 171177, 180, 182194,
215, 235, 253 255, 266-270, 285287, 304, 311

Moivee A7, 00, 107, 133

Miller C. 311
Mont gomery (. 311
Moore . B, 4G, 48, 70, 310
Morley E. 170, 180, 188
Mosshaner R, L. 262
Murrey W. 309

Newton L 18, 23, 128, 160, 195, 197, 201,
242 254-266, 274, 281, 311

Nicolans Cusanus 256

Noether 20203, 173, 242, 254, 264, 266, 286,
a0z, 303, 312

Olbers H. W, 266
Orehiston W. 311

Pauli W. 311

Pavlov B. 5. (Hasnos b. C) 309

Paston 1. A (Hacron KAL) 312

Penrose H.o 8, 46-48, 70, 190, 265, 308, 312
Pitisens 3. 8, 309

Planck M. 10, 162, 260, 262

Poinearé H. 2, 5, 8, 10, 101, 137, 140, 149,
151, 1G0-163, 167, 170-173, 176-181, 191,
201-203, 205, 206G, 217, 222, 230, 2410,
254256, 262-270, 274, 285287, 303, 304, 311
Palya GG 309

Postnikov M. M. {Hocrenkos M. M) 10, 309
Pound K. 262, 312

Prolemy Clandius 7, 68, 86, 172, 265
Pythagoras 10, 201, 203, 209, 212, 218, 219,
221, 232-234, 238, 240, 242, 246, 247, 250,
261, 2609, 273, 274, 276G, 277, 280- 286,
2032946, 304

Rebka Jr. Go AL 262, 312

Reina C. 312

Renand De la Taille 312

Reynolds W, F_310

Ricoeati V. 7

Ricer €. 156, 258

Riemann G, 62, 138, 155, 162, 165, 258, 269
Rosen N 165, 172, 255, 258, 266, 267, 311
Rosendorn . R (Posennopu 3. P 155



NAME INDEX 315

Saccheri G 155, 176, 310

Shnger 15203, 312

Scherffer K. 10

Schmide 1. 45, 51

Schridinger 1. 172

Schwarzschild K. 264, 266, 281, 312
Schweikart F. 155, 161, 310

Serret ). 2, 268, 270, 271, 274, 276, 277,

270281, 282, 288, 300, 302, 308
Shukhov V. G. (Wyxos B. 1) 220
Silberstein L. 215, 312
Soellins W. 261, 265
Soldner J. 258, 261, 311
Sommerfeld A 161, 191, 196, 224, 312
Sourian J-M. 9, 28, 29, 32, 33, 37, 38,

46, 309
Stoletov A, G (Cromeros AL 1) 261
Strang (3. 309
Strassmann Fo 239
Sturm J.-Ch. 23, 24, 26
Sylvester 1. 8, 26, 33

Taurinus F. A, 7, 155, 161, 310

Terrell J. 190

Thomas L. 148, 164, 166, 213, 215, 224227,
231, 241, 242, 263, 264, 275, 280, 285, 312
Tychonoff AN (Tuxonos A H.) 8, 54, 309

Varicak V. 161, 312

Viete FoO17, 18, 23, 27, 32, 51, 127
Viadimirov V. 5. ( Boagwanpos B, C) 309
Voigt V. 183, 311

Wallingford K. 7

Waring 15 17, 18, 23, 25, 31, 128
Weisstein 1. 309

Weyl H. G4, 121

Whittingham 1. 311

Wigner 5. 213, 312

Whittaker E. 162, 312

Leeman P 242

Lolkovsky K. B (Huponkoscsnii K. 3.) 164,
203, 304

fwicky F. 267



Subject Index

For Parts I and I

algebraic equations {usual, secular) 17, 23
sipn-alternating form 17

original serial limit method for solution 23

original limit formulae for roots 25
original symptoms of roots positivity 26
vector and matrix — exact solutions 47, 48
analogy spherical-hy perbolic
abstract 100
specific covariant 102, 103, 109,
sine-tangent 102, 103, 109, 111
in gquart circle of matrices 103
tangent-tanpent and all 109
specific conntervariant 102, 103, 109-111
angle projective 66, 68, T2, 80, 88, 101, 105
angle motive 85, 86, 88,9196, 99, 100, 105

111

105, 158

deformational matrix function
spherical 86, 91-93, 99
byperbolic 100, 103-105, 112, 179, 186-190

eigen angle binary — primary, mutual 75,
B, 98, 100, 103, 133, 274, 278

eigen projectors mutual 40, 46, 94-96, 107
affine or obligue 40

orthogonal (spherical, hyperbaolic) 46, 107

eigen reflectors (mutual) G7, 68, 72, 79
affine or obligue or hyperbolic 72, 79, 101
orthogonal (spherical, hyperbolic) 67, 68,
78, 10

eigenvectors and eigen subspaces 35, 42, 75

annulling minimal polynomial explicit 32, 33 groups of motions (rotations)

anticommutativity of matrices 114-117

biases

quasi- and psendo Cartesian 106
complescvalued 88100, 133, 136, 138
trigonometric of the diagonal cosine 77, T8,
B2, 8T, 100

of E-forms with frame axis 96, 112

of W-form of prime matrices 82

of cross projecting 93, 185, 198, 206, 207
umiversal 102, 106, 111, 112, 141

binary spaces 85, 100, 106, 136

coaxially oriented 138, 139

quasi- Eoclidean 85, 96, 106, 107
complex 101

psendo Boclidean 100, 106, 112, 138, 149
complesx 100

orthogonal decomposition 140, 150, 243, 280

characteristic polinomials of n x n- matrix 17
characteristic coefficients
sealar 17, 18, 27, 40
matriz of 1-st and 2-nd kinds 17, 27, 40
structures and properties 27-32
calenlation
by Sourian algorithm 28
by Special differential formula 20-31
complexificat ion
adegquate 58, 59, 133
psendoization 58, 60, 88 80136, 137
Hermitian 58, G1, 62, 134, 135

affine Eoclidean Galilei group 160,
168170
quasi- Buclidean Special gronp 85, 106
psewndo-Boclidean Lorentz group 106, 139
their orthospherical subgroup 85, 106
hyperboloids of Minkowski 1 and 11 150,
2109, 228 236
trigonomet ric- projective models 150
kinds of their geometries 151-155
three sheets hyperbolic-elliptical geometry
154, 304
trigonometric invariants 157, 228-230
hyperspheroid 85, 97, 150, 243
trigonomet ric invarint 251

identity of Lagranpe alpebraic 54
inequalities

general inequality of means 19

for main singularity parsmeters 31

for ranks of Sylvester with peneral form 33
for sgquare matrix of Hadamard 55, 59, 135
cosine for two vectors and lineors 54

sine for two vectors 50 and lineors 53
invariants ortho-projective in tensor forms
sine-cosinge 68, 101

quasi invariants obligue-projective 71, 101
invariants rotational in tensor forms
sine-cosine 82, 86, 98, 100, 111, 157, 210
cotangent-cosecant 111, 157, 200, 2110
quasi invariants deformational 91, 99, 100,

111, 157, 186G, 188



SUBJECT INDEX 317

n ® r-lineors 51-54, 64-66, 72-74, 131, 132
equirank T3, 81, 132

multiplications external, internal 49, 72
coplanar and colplanar 74, 132
orthogonal 74

quasi-polar QR-decomposition 51

matrices square and rectanpular
decompositions 24, 274143, 51, 143
inverse and guasiinverse
affine 41
orthogonal of Moore—Penrose 46
explicit formula 48
lirnit formmulae 41, 54
inversion by Sourian alporithm 28
minorant and dianal, properties 49, 53
nilpotent matrix 27, 35, 42
normal adequately matriz 12, 56, 58, 133
null-defective matrix 35
null-indifferent 36
nll-normal matrix 44
noll-prime matrix 35
trigonometric spectra 119
prime matrix W-form 81
resolvent with properties 17, 27, 28 30
singularity parameters
rank r,rock ' rock " 18, 20 32
multiplicities s, &/, 57 33
connections 32-37
square roots of {I} theory 85
symmetric adequately matrix 12, 56, 133
totally unity matrix 21
mensures in non-Eoclidean peoametries
anpular of Lambert 108, 151, 216, 244
natural Euclidean [ 151, 211, 211, 244
matural psendo-Euclidean A 151
projective trigonometric
sine 247
tangent and cotangent 151-153

norms guadratic 127

parametric and hierarchical 127

of the order r general 128

of the order t particular 129-131

of the 1st order (Frobenins) 128 131
absolute and relative 129, 130

ort hogonalization by Gram-Schmidt 45, 51

planars 64-6G7
parallel and orthogonal 64, 74
principles of binarity and unarity 81

psewndo- Boclidean right trisngle solution 111

reflector tensor of binary spaces 85, 96,
100, 106, 1359, 284, 201
as middle reflector 83-85, 101
as metrie tensor 100, 101, 138, 139, 196
at index g1/ 96, 112, 149
symmetric Ref or {St} 85, 130, 196
simple unity {I*} and {I¥} 139
simplest unity at index g1 96, 149
of anti-Eoclidean space {—1} 99
rotational matrix functions
pure spherical 81, 82, 85, 86, 106
at complementary angle 86, 98, 247
principal {"hoost") 85, 106, 143, 243
pure hyperbolic 100, 105, 106
at complementary angle 112 156, 210
principal {"boost") 105, 106, 143, 213
polysteps rotations summation 146
producing by two mutual reflections 82, 104
orthospherical 85, 105, 106, 143, 159
quasi-Buclidean as motion tensor 96
polar representation 245 252
psendo-Euclidean as motion tensor 112, 179
polar representation 143, 214 231
Rules trigonometrie 1-5 / 71, 84 86, 88,
91, 104, 112, 157

tensor angles and their functions
projective G6-65, T0-72, 101
motive 82, 86, 87, 91, 100
Moivre's and Euler's formulae 90
connection of these two types 81-83, 88, 104
complementary 67, 86, 103, 110-112, 156
imaginary 8800, 153137
tensors of motion 96, 112, 179, 202
tensors of deformation 99, 112, 179, 185
tensor trigunometry
Enelidean and anti-Eaclidean 64, G5, 99
complex adequate 133
psendoizide 88 89 136
complex Hermitian 134, 135
quasi-Eoclidean 85, 106, 243-253
complex 101, 137, 138
psendo-Eoclidean 100-112, 138149, 213
complex 100
trigonomet ric models of hyperbolic
Beommet ries
flat tangent inside Cayley oval 151, 152
flat cotangent outside Cayley oval 152, 153
eylindrical tangent 153, 154
trigonomet ric ratios and inequalities
for matrices
of cosine type 53, 54, 120-123
of sine type 50, 53, 54, 125, 126



318

SUBJECT INDEX

For Appendix

absolute space-time motions 160, 243, 269
two-steps 213-227 243.250, 202-207
orthogonal increments 221, 271-278, 296
polysteps 230, 231, 252, 253, 203
intepral 192-198 235-241, 247
uniform hyperbolic 195-198, 205, 259
on catenary 198200, 205
as cosmic reverse travel 203-205
on tractrix 208-210
invariant, gquasi-invariant 197, 199, 210
uniform serewed 259, 282-287
angle (motive) of motion or rotation
complementary 150, 157, 200, 220, 247
principal 150, 213, 243
Lobachevsky of parallelism 109, 175, 176
covariant and universal 175, 176
spherical 243-245
hyperbolic 173, 180, 186, 191, 213, 268
intrinsic and infinite 110, 157
orthospherical 213-215, 223.227, 242.245
Harriot exeess 7, 1089, 249
Lambert defect 7, 109, 110, 226, 249

collinear vectors 191
Coriolis acceleration hyperbolic 242

geometry i spaces and hypersurfaces
affine- Enclidean 160, 168-170
non-Fuclidean hyperbolic 213-234
of hyperboloid 11 213-228 202203
of hyperboloid 1 219, 229 293 294
three sheets peometry 154, 155, 280
spherical on hyperspheroid 150, 243253
of world lines in space-time 268- 288
with movable hyperboloids 1L 273
with movable hyperboloids 1 278
angular metric forms 219, 220, 273, 278
tangent 260, 271, 278, 281
psendonormal 270-273, 277, 281
hyperbolic curvature 270-273
sine binormal 273, 282, 283, 285
sine normal ecurvatare 273, 282, 285
cosine binormal 277, 281, 283
cosinge normal curvature 277, 281, 283
complete curvature 273, 277, 281, 289
three movable trihedrons 278, 286, 291
movable tetrahedron 278, 290, 291
orthoprocession hyperbolic 281
ortheprocession ort hospherical 282
psendoscrew and screw 282280
double screw and helix 289

homothetic objects of one parameter B
hyperbola, hyperboloids 1, 11 196, 219, 220
catenary, catenoids L 11 198200, 205

parametric hyperbolic equations 198-200
tractrix, tractricoid 1, 11 207-212

parametric hyperbolic equations 208-212

1st anpular metric forms 199, 200, 210-212
hyperbolic invariants

cosine-sine 157, 228, 229
cotangent-cosecant 157, 230

hyperbolic quasi-invariant 111, 157, 186
hyperboloid of Minkowski 11 219, 228 237
trigonometric object (at B =1) 150, 228
of 3 and 4-velocity, 3- and 4-acceleration
232, 273, 274

summing motions 21.3-218, 202

cosine scalar 216, 218

sine scalar 217, 218

sine vector 221

sine differential summing 237

tangent scalar 217, 218

tangent vector 221, 232

tangent differential summing 237
tangent model (velocity) 151, 232
hyperboloid of Minkowski 1 219, 229, 236
trigonometric object (at B = £1) 150, 229
summing motions 203205

sine sealar 205

cosing scalar and vector 206

cotangent scalar and vector 296

cosine differential summing 236
cotangent ring model (supervelocity) 152
tangent cylindrical model 153
hyperspheroid 150, 212, 243 244 298

as trigponometric object (R =1) 150, 251
summation of segments 244-248 208 200
1-st anpular metric forms 212, 300
hypersurfaces projective

flat 151, 152

ring and cylindrical 153

isometry

in the large and small 152-155, 207, 211
polysteps 152, 153, 155, 212

ome-step 165, 207, 211

Law of Hubble in ancestral form 227, 267

Law of momentum—energy conservation 303
Liaws of Newtonian mechanics 195, 201, 256
Law of Snellins in the gravity field 261, 265
Looking Glass of Relativity Theory 280-283



SUBJECT INDEX 319

Principle of Correspondence of Bohr 200, 264, Lorentzian contraction 181, 184188
2800, 281 spherical quasi-invariant 185, 186
Principle { Postulate) of Relativity Terrel-Penrose quasi-spherical rotation 190
mathematical 160, 171 orthoprocession on frame axis 281, 282, 286
physical by Galilei-Poincard 160, 170, 267 supervelocity of rods contacts 188
with a field of pravitation 262 Thomas precession 226, 227, 241, 264
Pythagorean Theorems in binary spaces simplest triponometric formula 241, 280
and on hyperspheroid and hyperboloids 1 11 result of energetic rebound 242, 264
Absolute Fuclidean 219, 227 250, 273, 301 result of hyperbolic Coriolis acceleration 242
Absolute pseudo-Euclidean 201, 220, 240, normial relations to it 240, 249, 275, 278
278, 281, 302 GR-effects triponometric explanation
for p:n*.udm:ur'.'ature, normal curvature 281 Finstein gm-.-itmiuml time dilation 259, 260
for psendoscrew, screw with torsion and pravitational cosine 259, 263
orthoprocession 282285 280 pravitational refraction of lipht 261, 262, 264
for three momenta 201, 240, 304 pravitational bend of a lipht ray 261, 262
Relative Enclidean 273, 277, 301 Mercury perihelion relativistic shift 198, 263
Big & Small 218 221 222 232 234, 246 Michel Black Holes 266G, 280, 286
infinitesimal 152, 218, 226, 249, 250

perfect and imperfect surfaces, spaces — 212
rotations | motions)

hyperbolic 174, 179, 180, 191, 213 relation B = me® by Poincaré {1900) 239
complementary 156, 220 QM red shift of Sun radiation spectrom 262
on the hyperboloid 11 213, 229 237, 202 relativistified Ziolkovsky cosmic formula 203
on the hyperboloid 1213, 230, 236, 293 relativistic velocities
two and polysteps summation 214, 231 angular hyperbolic 7, 197, 242, 272, 277, 281
orthospherical shift 214, 227231, 240 angular spherical wy, 288
polar decomposition 214, 231, 244 252 angular orthospherical wy 238, 241, 273, 277
spherical in (@) 243245 dovelocity by Poincaré ¢ = -1 201, 240, 269
on the hyperspheroid 243, 251253 coordinate v = ¢- tanh~ 183, 194, 238 269
complementary 247 summation 217, 221, 222, 232
as model of the Globe 252 antivelocity —v 186
two and polysteps summation 244, 245, 252 proper v* = ¢-sinhy 183, 194, 238 269
orthospherical 159, 223237 244 248253 summation 217, 221
incuesd 214, 227, 241, 244, 249, 279 coordinate (super) s=c-coth~y 188 200
phase of de Broglie 202
space-time and other binary spaces proper (super) % =e-cschy 200
of Laprange, parallel rotations 160, 168170 of time stream o* = ¢ - coshy 269, 277
of Minkowski 170-172, 213, 268-270 relativistic accelerations
Special quasi- Euclidean binary spaces 243 inner — tangential, normal, general 195, 238
with catenary, catenoid 1) 11199, 206, 207 coordinate in By — tanpential, normal 238
with tractrix, tractricoid 1, 11 207, 210, 211  4-acceleration with decomposition 273, 278

Beltrami pseudosphers 207, 211 sine and cosine 3-accelerations 273, 277
one-step isometry with hyperboloid 1211

STR-effects trippnometric explanation tensor trigonometric transformat ions

aberration with general formulae 222 223 affine Foclidean by Galilei 168, 169
angular radius of aberration 222, 223 pseudo-Euclidean by Lorentz 177, 213, 231
orthospherical shift in its trianple 235 quasi-Euclidean Special 244, 245, 252
avcelerational cosine 198, 204, 206, 259, 263 tensors of motion hyperbolic 179, 202, 231
dilation of proper time Minkowski 180182 conserving tensor of momentum 2035, 301
paradoe of twins 183, 204, 205, 260 tensor of deformation hyperbolic 179, 190
flight as if outstriped the light 204, 205 tensor of motion spherical 190, 244, 252

dilations of time and space axes 150, 160 tvs and vs forms of Lost metric forms 199,
Doppler effects (relativistic) 227 207, 200, 273, 278



320

Seientific Publication

Ninil Anatoly Sergeevich
FITENSOR TRIGONOMETRY™
The third edition {in English)

ISBN-13: 978 5-89155-420-0 (for this paper book)
(lts electronic form has ISBN-13: 978 5 80155-430-6)
Layout in La TEX by Ninul 4. 8.

Design of the color cover by Lunin 4. 5
TEX format B5: 70 x 100/16 (176 x 250 mm)
IS0 216 B (GOST 5773-90)

with hard cover of the type "TBC", GOST 22240-76

Wiparenserso OO0 “Ousmarkanra”
Publisher “Fizmat kniga Ltd”
Un. pemakrop Posanos Anexceil KonetanTusosmg
Ch. editor Rosanov Alexey Konstantinovich
Anpec: 141701, Pocens, Movkosckas odon., r. Qonronpynaeit, yn. Hepsouaitckas, 10 5.
Address: 141701, Bussia, Moscow region, Dolgopradony city, Pervomayskya st b 5
Tel. +7-499-3905138, email: fizmatknigafimail ro

Signed to print 17.11.2024.

Printed in the typography of Publisher *Trinmph™ 31.12.2024.
Anpec: 141701, Pocens, Mocksa, yin. Muxaitnosceas, 1. 638, crpoesme 3
Address: 141701 Russia, Moscow, st. Mikhalkovskaya, b 638, building 3.

Tel. +7-499-4040781, e mail: books@trinmphorn | fzd trinmph@gmail com



”...The manuscript contains
many of fresh ideas,
which open new posibilities!...” -
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« general inequality for all averages of positive numbers set

« minimal annulling polynomial of a square matrix in its explicit form

» all orthogonal and oblique projectors and reflectors from singular matrices

« tensor octahedron with eight eigenprojectors from a real-valued nullprime matrix
« quasi-Euclidean and pseudo-Euclidean spaces and their tensor trigonometry (TT)

« projective and motive binary tensor angles and their functions in metric spaces

« spherical and hyperbolic bivalent tensors of rotations (motions) and deformations
= polar representations of polysteps or mixed tensors of rotations (motions)

« null-prime singular matrix and its general cosine relation and inequality

* nxrdineors and for their pair its cosine and sine relations and inequalities

* hierarchical quadratic norms of matrices from the first order up to general one

* Harriot and Lambert angular deviations as a result of induced orthospherical shifts
* simplest general cosine formulae for deviations above and the Thomas precession
* geometry of Minkowski hyperboloids as TT of enveloping pseudo-Euclidean space
* geometry of an oriented hyperspheroid as TT of enveloping quasi-Euclidean space
* Special group of the quasi-Euclidean space and of its oriented hyperspheroid
*trigonometric projective models in the whole of all nonEuclidean geometries

* Absolute and Relative Pythagorean Theorems in geometries above and STR

* parametric vs equations of catenaries and tractrices in only R-parameter

* parametric vs equations of catenoids and tractricoids and their metric forms

* Laws of summing rotations and motions (velocities) with polar representations

* Looking Glass of the Theory of Relativity in the entire 4D Minkowski space-time

* relativistic transformations in Minkowski space-time with gravity and Higgs fields

* trigonometric explanations of all well-known and new STR and GR relativistic effects
* differential trigopnometry of world lines and curves in pseudo-, quasiEuclidean spaces

(10

Y
C sinh y - sinh u = 1 A
(with Einsteinian rays in exterior right triangle)
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