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To the readers

The author brings to your attention the 3-rd edition of Tensor Trigonometry,
signi�cantly renovated and expanded by him, essentially in its applications.

Originated in antiquity the Trigonometry completed own development and
obtained its modern form at the end of the 18th century in the works of great
Leonard Euler. Meanwhile Geometry, from the historically initial Euclidean
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multi-dimensional and non-Euclidean tensor forms were discovered and studied.
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�Without exaggeration,

I put into this symphony

the whole of my soul ...�

P. I. Tchaikovsky

Introduction

The 3rd and last edition of this book from author-himself, with most full consequential
exposition of this new subject of mathematics and its various applications, has been prepared
by him with numerous updates and innovations aimed at improving presentation of its very
extensive contents, and also with the goal of making this math subject yet more accessible
to users including in the higher mathematical and physical education.

In Theory of Matrices such usual concepts as a singular matrix, its rank, eigenvalues,
eigenvectors or eigensubspaces, annuling polynomial, etc, have a sense only for exact matrices
and at exact computations. We distinguish in our mathworks, for instance, [15] and [17], the
exact theory of notions and the approximating theory of notions' estimates. Each of them
places its own important role. The notions connected with exact characteristics are used
not only for constructing and analysis of abstractions, but they are important for objects
from applied problems because the characteristics of objects are always exact and only their
various estimates are approximate. Such creative approach was most vividly confessed in
the works of the great mathematician, physicist and philosopher of science Henri Poincar�e.

The main two parts of the monograph, in twelve chapters, contain both the results of our
investigations in Theory of Exact Matrices (Part I, Chs. 1÷4) and developed on this platform
Tensor Trigonometry (Part II, chapters 5÷12). The latter is a constituent division of the
corresponding to it k-dimensional Geometry with a certain quadratic metric and a certain
re�ector tensor in the basis homogeneous and isotropic arithmetic and physical spaces.

The historical roots of Scalar Trigonometry, as a constituent part of two-dimensional
Geometry, refer to far-away times. So, yet in the Euclid's �Elements� some trigonometric
formulations were be found. Much later, in II age Claudius Ptolemy of Alexandria widely
used in "Almagest" sine-cosine invariant as a trigonometric equivalent of the Pythagorean
Theorem. Some spherical functions were used in IX�X ages by Arabian mathematicians.
It is of interest that the Trigonometry on a sphere became developed much earlier than
one on a plane. It was, due to the fact, that it was needed in the practical astronomy.
So, in 1603, Th. Harriot connected the angular excess of a spherical triangle with area and
radius. Though some trigonometric elements were introduced into the European science by
R. Wallingford yet in early XIY age. He used them in solving of a right triangle on a plane.

Hyperbolic functions were discovered by A. Moivre (1722) and obtained in complete set
by V. Riccati from a unity hyperbola (1757). First these functions were used really also
in geometry, but as if on the "hypothetical sphere of an imaginary radius" with hyperbolic
arcs�segments, by J. Lambert and F. Taurinus in their pioneer investigations. (Now we may
named this object as the top sheet of the Minkowski hyperboloid II � see this in Ch. 12.) So,
in 1763, J. Lambert, using the speci�c analogy between spherical and hyperbolic angles with
their functions, connected the angular defect of a hyperbolic triangle on this sphere with its
area and radius [36]. Later, in 1825, F. Taurinus inferred in �rst that a sum of angles in
the such hyperbolic triangle less π [38]. I. e., they did the pioneer steps in creation of the
non-Euclidean planimetry. The great creators of the hyperbolic non-Euclidean geometry,
as based on the holistic axiomatic system, N. Lobachevsky and J. Bolyai used such speci�c
analogy in the small with the spherical geometry as a mathematical instrument for inferences
of the hyperbolic geometry metric relations.
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In addition to the non-Euclidean geometry with a�ne topology, identi�ed descriptively
by H. Jancen [52] in 1909 on the Minkowski hyperboloid II, we revealed the hyperbolic-
elliptical non-Euclidean geometry with cylindrical topology on the Minkowski hyperboloid I,
which, as was proved, is one-step isometric to the geometry on the Beltrami pseudosphere!

These non-Euclidean geometries of spherical, hyperbolic and hyperbolic-elliptical types,
realized on own curvilinear hypersurfaces of the constant radius-parameter R and can be
embedded into their (n+ 1)D enveloping homogeneous and isotropic binary spaces ⟨Qn+1⟩
and ⟨Pn+1⟩, have such an essential feature. Each has a group of nD rotations limiting by one
degree of freedom from constancy of R around frame axes in these spaces, isomorphic with
a group nD motions on these hypersurfaces with non-Euclidean geometries. In the quasi-
Euclidean binary space ⟨Qn+1⟩, this hypersuface is real-valued (the Special hyperspheroid),
but in the pseudo-Euclidean binary space ⟨Pn+1⟩, this hypersurface is either real-valued at
imaginary R (the hyperboloid II) or it has one the imaginary dimension at real-valued R
(the hyperboloid I). As was established in our work, only such hypersurfaces have angular
metric forms and they may be represented by the angular Absolute Pythagorean theorems
with three principal di�erential arcs. For a systematic, we classi�ed such hypersurfaces of
the constant Gaussian curvature, but of constant radius-parameter with enveloping spaces
as "perfect surfaces and spaces". From here we infer next of the main our results, that the
rotational Tensor Trigonometry (i. e., with R = 1) � quasi-Euclidean and pseudo-Euclidean
is isometric with motions on such hypersurfaces with the exactness till factor R!!!

The term �Trigonometry� was raised thanks to Bartholomaus Pitiscus and appeared in
1595 in his book [2]. Within the framework of the term �Tensor Trigonometry� introduced by
the author of the book of 2004, we singled it out as a new and useful subject of Mathematics,
in which were presented both many new concepts, formulae and theorems and some of known
notions related to this area, but which have not yet been explicitly attributed to the subject.
Historically the modern perfect form of Scalar Trigonometry was given by L. Euler [1], who
realized also its complexi�cation. On the other hand, Geometry continued to develop and
essentially violently according to the appeared idea of a multi-dimensional space.

Multi-dimensional space was arisen apparently at the middle of XIX age in classical work
of H. Grassmann �Die lineale Ausdehnungslehre� [3]. H. Grassmann and, independently of
him, W. Hamilton laid the foundation of Vector Analysis in similar spaces. Before (in 1808)
J.-G. Garnier emits Analytical Geometry as the whole division of Geometry. Outstanding
contribution in justi�cation of such an algebraic approach to the Geometry of objects in
arithmetic spaces was realized by the famous �Cantor�Dedekind Axiom about Continuum�.

About of that time appearance of Linear Algebra and its following development in the
works of F. Frobenius, G. Cramer, L. Kronecker, A. Capelli, J. Sylvester, L. Hesse, C. Jordan,
Ch. Hermite and other mathematicians led, with time, to its larger �lling by geometric
content. That is why, Linear Algebra found e�ective applications in the theory of vector
Euclidean spaces and also, after the well-known works of H. Poincare and H. Minkowski, in
the theory of new pseudo-Euclidean spaces. This process was activated thanks to algebraic
de�nitions of notions connected with metric properties of arithmetic spaces and of their
geometric objects (the lengths of vectors and the values of scalar angles between them). For
the basic algebraic de�nitions of measures mathematicians used the Pythagorean Theorem
and the algebraic cosine Inequality of Cauchy or sine Inequality of Hadamard.

Besides, for the strict algebraic approach to the geometry in arithmetic spaces, it is
impossible to realize it completely without Theory of Exact Matrices. For example, E. Moore
and later R. Penrose proposed the general methods of quasi-inversion of singular matrices.
R. Courant developed the large parameter optimization method with penalty functions,
useful in such algebraic applications too. A. Tichonov gave the small parameter method
of regularization with the limit method for normal solving degenerated systems of linear
equations. Results of these investigations had also a big geometric importance and, to some
degree, served for initiating the present work.
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The main aims of this monograph were (as 1st) to develop with further applications
a number of algebraic and geometric notions in Theory of Exact Matrices (Part I, Chs. 1÷4),
and then (as 2nd) on the platform to work out the basic aspects of the Tensor Trigonometry
for binary tensor angles formed by two linear subspaces or formed by rotation of a linear
subspace in linear enveloping spaces (Part II, Chs. 5÷12). Since the Tensor Trigonometry
has a lot of applications in other mathematical and in some physical domains, the largest
examples of which are exposed in the book's Appendix.

First of all, the structure of matrix characteristic coe�cients in the explicit form was
installed by us with our special di�erential method (though historically els in early 1981).
They appeared in Theory of Exact Matrices in middle of XX age in the works of J.-M. Souriau
and D. K. Faddeev in addition to scalar characteristic coe�cients with their well-known
structure. The latters were used yet in XIX age by U. Le Verrier at his famous prediction of
Neptune. We express all eigenprojectors and quasi-inverse matrices in explicit form, in terms
of the scalar and matrix coe�cients. And the minimal annulling polynomial for n×n-matrix
in explicit form is identi�ed with the connections of all matrix singularity parameters.

In passing, the general inequality for all average values is inferred, and hierarchical
invariants for the spectrally positive matrix are installed for the justi�cation of the stated
geometric norms. The new global limit method for step by step calculating all roots of a
real algebraic equation is proposed, and the more strict necessary condition for all its roots
reality and positivity, than the classical Descartes condition, is gotten.

The particular (of order t) and general (of order r) quadratic norms are introduced for
the geometric objects lineors, determined by n× r-matrices A, where 1 ≤ r < n (at r = 1
they are vectors), and for the tensor angles between them or between their images in the
n-dimensional arithmetic spaces. In particular, at t = 1 they are Euclidean and Frobenius
norms (measures). The theoretical basis for these particular and general norms is the hier-
archical general inequality for all average positive values. Also the speci�c multiplications of
cosine and sine types are de�ned for a pair of these lineors with inferring the so-called general
cosine and general sine inequalities through the especial matrix trigonometric spectra with
a binary nature (as all the tensor angles too). Their elementary algebraic and trigonometric
cases are the cosine Inequality of Cauchy and the sine Inequality of Hadamard.

Tensor Trigonometry, as the main new content of this monograph, is exposed then with
two types of its tensor angles � projective and motive ones. Projective tensor angle acts in
the projective tensor trigonometric functions as their argument and in the di�erent eigen-
re�ectors � symmetrical and oblique, orthogonal and a�ne, spherical and hyperbolic. Motive
tensor angle acts in the motive rotational (sine�cosine) and deformational (tangent�secant)
tensor trigonometric functions as their argument. Both these types of principal tensor
angles are connected in one-to-one correspondence by clear matrix formulae. The principal
tensor angles are added by induced or free secondary orthospherical tensor angles, which we
reveal either by polar decomposition of general motions or through di�erentiation of vector
functions of motive angles. Thus, any general mixed rotations or motions are presented by
polar decomposition in matrix formulae in the principal and secondary orthospherical parts.

Under introducing a re�ector tensor to the a�ne (or arithmetic) homogeneous isotropic
space with a quadratic metric, all concepts above with two binary spaces are divided
into quasi-Euclidean and pseudo-Euclidean ones. Two pairs of rotations (spherical, ortho-
spherical), (hyperbolic, orthospherical) in these two binary spaces form two noncommutative
groups. The �rst is the new homogeneous group of quasi-Euclidean rotations. The second
is the well-known in the Theory of Relativity and the hyperbolic geometry homogeneous
group of pseudo-Euclidean motions or rotations (Lorentz group). The intersection of these
two groups in the so-called universal base is a subgroup of orthospherical rotations. So, in
the Minkowski space-time, it is a subgroup of Euclidean rotations of the external cavity of
dividing isotropic (light) cone (in each k-th Euclidean subspaces). The set of re�ections in
the same binary space is generated by the same re�ector tensor, and it is not a group.
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As a bright novelty, we gave solution of pseudo-Euclidean right triangles in a pseudoplane
with connections of complementary hyperbolic angles and proposed an updated concept of
the parallel angle in the hyperbolic non-Euclidean geometry, true in any admitted bases.

Our binary quasi-Euclidean space with its geometry �lled a previously unnoticed gap that
existed in the theory of homogeneous isotropic spaces. It is a natural and useful addition
to the Minkowski pseudo-Euclidean space. Though the latter with its Lorentz group was
introduced back in 1905 by Henry Poincar�e as the complex binary space of the Theory of
Relativity (named so later by Max Planck). In 1907 this binary space as the 4D space-time
was reali�cated by Herman Minkowski and added by his real-valued hyperboloids I and II. In
Chs. 7A and 10A, we use the Minkowski space-time with its unity trigonometric (at |R| = 1)
hyperboloids I and II for tensor trigonometric modeling geometric motions in hyperbolic and
hyperbolic�elliptical non-Euclidean geometries with a�ne and cylindrical topologies and
respectively in Theory of Relativity with the Minkowski space-time, in accordance with the
fundamental Mach Principle and the Higgs Theory, con�rmed this space-time in our time!

In Appendix (Chs. 1A÷10A) � see in the Preface to it, as the rather important case,
we considered tensor trigonometric transformations in the so-called elementary forms, i. e.,
with single principal and single orthospherical eigen angles of motions, and hence with single
frame axis for them. The new interesting possibilities are discovered for the very clear study
of various types of in all non-Euclidean geometries with the same re�ector tensor, but with
own quadratic metrics; in all non-Euclidean geometries of constant radius; and in Theory
of Relativity. The general law of summing non-collinear segments, principal spherical or
hyperbolic geometric motions or velocities in STR is established in the trigonometric matrix,
vector, scalar (tvs) forms with identi�cation of the orthospherical rotation. In non-Euclidean
geometries and STR, we gave this law for two-steps motions also in the noncommutative
biorthogonal form with the Big and Small Pythagorean theorems; and added to them the
General Law of polysteps motions summation in its hyperbolic and spherical kinds.

In the Kunstkammer of the book to end, the readers may test themselves in solving of
the suggested by the author questions and interest tasks near to this work's topics.

In conclusion, it is necessary to clarify the new subject name on the Titul. Why tensor?
We see that usual angles are binary as between two linear geometric objects. They and
their tensor functions are determined by square matrices how for any bivalent tensors. In
the presence of some from two quadratic metric, the tensors are orthogonal; in the absence
of metric, they are a�ne. This new math subject deals with orthogonal and a�ne tensors,
their projections and invariants. On a quasiplane these tensors are spherically orthogonal,
in a quasi-Euclidean space they are quasi-Euclidean orthogonal. On a pseudoplane they are
hyperbolically orthogonal, and in a pseudo-Euclidean space they are pseudo-Euclidean ortho-
gonal. In addition, they may be symmetric and anti-symmetric, real, imaginary and complex.
For tensor trigonometric functions of the binary tensor angles we use by analogy with scalar
ones, as most convenient here, the classical notations of J. Lagrange and K. Scher�er.

The date of the Tensor Trigonometry birth is October 4, 2004, when its �rst edition
exited in the world by the "MIR" Publisher [15] thanks to a bright review of the eminent and
encyclopedically versatile mathematician Postnikov M.M., well-known as author of a large
number of valuable monographs and textbooks in various mathematical �elds. In January
of 2021 the 2-nd, but English edition of Tensor Trigonometry was issued by "Fizmatlit"�[16].
This signi�cantly renovated, widen and optimized by design 3-rd edition is being released
with corrections of all found minor inaccuracies and typos, with new textual commentaries
and preservation of principal theorems, corollaries, formulae, pictures, and with presenting
of the most developed tensor di�erential trigonometry as one else mathematical subject.

New methods of Tensor Trigonometry can be used in the various domains of mathematics
and physics. The author hopes that readers will �nd a lot of interesting contents and of new
knowledge. I'll welcome, if somebody wishes to dare in this new direction for its following
development with surprising results! However I'll post adherents of plagiarisms on web-site.



Notations

1. Notations of matrices (Matrices alphabet)

A � rectangular n×m- or m× n-matrix, or n× r-lineor in a space (at r = 1 � n× 1-vector a),

A+ � spherically orthogonal quasi-inverse matrix of Moore�Penrose,

B � quadratic n× n-matrix or external multiplication B = A1A
′
2 of n× r-lineors A1, A2;

B− � a�ne or oblique (or hyperbolically orthogonal) quasi-inverse matrix,

BV � adjoint matrix for nonsingular B (B−1 = BV /detB),

Bi = B − µiI � i-th singular eigenmatrix for B,

B (as Bp) � null-prime singular matrix: ⟨ker B⟩ ∩ ⟨im B⟩ ≡ ⟨0⟩,

B (as Bm and Bn) � adequately and Hermitian null-normal matrices: ⟨ker B⟩⊥⟨im B⟩,

B (as Bc) � null-cell (two-block-diagonal) form of Bp, Bm, Bn,

−→
B (as

−→
Bp ) � a�ne or oblique eigenprojector into ⟨ker B⟩ parallel to ⟨im B⟩,

←−
B (as

←−
Bp ) � a�ne or oblique eigenprojector into ⟨im B⟩ parallel to ⟨ker B⟩,

←−
B (as

←−−
Bm) � spherically orthogonal eigenprojector into ⟨im B⟩ ≡ ⟨im B′⟩,

−→
B (as

−−→
Bm ) � spherically orthogonal eigenprojector into ⟨ker B⟩ ≡ ⟨ker B′⟩,

←−−
BB′ (as

←−−
Bm) � spherically orthogonal eigenprojector into ⟨im B⟩,

−−→
B′B (as

−−→
Bm ) � spherically orthogonal eigenprojector into ⟨ker B⟩,

C � free cellular matrix multiplier or internal multiplication C = A′
1A2 of these n× r-lineors,

Cµ(B) � basic (q-block-diagonal) form of the matrix B (q � quantity of the eigenvalues of B),

D � diagonal matrix,

Ẽk � certain unity coordinates base (frame of reference),

Ẽ1 � unity base of the diagonal cosine or universal base for the spherical-hyperbolic analogy,

F (. . . ) � matrix function of (. . . ),

{G+}(x), {G±}(u) and Ĝ, � metric tensors (positive, sign-inde�nite and mutual with G),

H = H∗ � Hermitean complex matrix, H⊕ � positively de�nite Hermitean complex matrix,

I � unity matrix, I+ and I− � metric re�ector tensors of Euclidean and anti-Euclidean spaces,

I±, I∓ or {R′
W I±RW } = {

√
I }S � re�ector tensors of quasi- and pseudo-Euclidean spaces,
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It� totally-unity matrix: all the elements of which are equal to 1,

Jµ (B) � canonic Jordan form of a matrix B,

K � anti-symmetric real or complex matrix,

KB(ϵ) � matrix characteristic polynomial of the parameter ε for a matrix B,

K1(B, t) and K2(B, t) � �rst matrix characteristic coe�cients for a matrix B of order t,

K2(B, t) and K2(B, t) � second matrix characteristic coe�cients for a matrix B of order t,

±Ref{B} � eigenre�ectors for matrices B (a�ne, oblique),

±Ref{Bm} � eigenre�ectors for matrices Bm (spherically orthogonal),

±Ref{Bp} � eigenre�ectors for matrices Bp (a�ne or oblique or hyperbolically orthogonal),

±Ref{AA′} � eigenre�ectors for a matrices AA′ (spherically orthogonal),

Lµ(B) � q-block-triangular form of a matrix B (q - quantity of eigenvalues of B),

M (MM ′ = M ′M) � normal (real-valued or adequately complex) normal matrix,

N (NN∗ = N∗N � Hermitean complex normal matrix,

O � nilpotent matrix,

P � prime matrix,

Q � anti-Hermitean complex matrix,

QB(ϵ) � reduced matrix characteristic polynomial of the parameter ε for a matrix B,

Q1(B, t) and Q2(B, t) � reduced matrix characteristic coe�cients for a matrix B of order t

R (RR′ = I) � orthogonal (real or adequately complex) matrix, Rq � quasi-orthogonal matrix,

RW � orthogonal modal matrix for transformation of a prime matrix P into its W -form,

S = S′ � symmetric real or complex matrix, S⊕ � positively de�nite symmetric real matrix,

T � matrix of the rotational trigonometric modal transformation (active or passive),

U (UU∗ = I) � unitary (Hermitean orthogonal) complex matrix,

V � matrix of the general linear modal transformation (active or passive),

W (P ) � mono-binary form of a prime matrix P ,

X � matrix argument,

Y � matrix function, connected one-to-one two spaces in their direct sum in a basis space,

Z � zero matrix.
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2. Notations of binary tensor angles and their functions

Φ̃ = Φ̃′ � principal tensor spherical projective angle between two planars and in re�ectors,

Φ = −Φ′ � principal tensor spherical motive angle in rotations and deformations,

Ξ̃ and Ξ � complementary tensor spherical angles till the tensor spherical right angle Π/2,

Γ̃ = −Γ̃′ � principal tensor hyperbolic projective angle between two planars and in re�ectors,

Γ = Γ′ � principal tensor hyperbolic motive angle in rotations and deformations,

Υ̃ and Υ � complementary tensor hyperbolic angles with angles Γ̃ and Γ till the right angle ∆,

Θ̃ = Θ̃′ � tensor orthospherical projective angle (additional to the angle Φ̃ or the angle Γ̃),

Θ = −Θ′ � tensor orthospherical motive angle (additional to the angle Φ or the angle Γ),

Ψ̃ = Φ̃ + iΓ̃, Ψ = Φ+ iΓ � complex adequate tensor projective and motive spherical angles,

H̃ = Φ̃ + iΓ̃ = H̃∗ � Hermitean tensor projective spherical angle, Φ̃ = Φ̃∗, Γ̃ = −Γ̃∗

H = Φ+ iΓ = −H∗ � skew-Hermitean tensor motive spherical angle, Φ = −Φ∗,Γ = Γ∗

(all the tensor angles correspond to the set re�ector tensor of the space � see in item 2),

Rot Φ and rot Φ � principal spherical rotation at the angle Φ (and elementary one),

Roth Γ and roth Γ � principal hyperbolic rotation at the angle Γ (and elementary one),

Rot Θ and rot Θ � secondary orthospherical rotation at the angle Θ (and elementary one),

Def Φ and def Φ � spherical deformation at the angle Φ (and elementary one),

Defh Γ and defh Γ � hyperbolic deformation at the angle Γ (and elementary one).

3. Notations of spaces and sub-spaces

⟨An⟩ � arithmetic a�ne n-dimensional space,

⟨En⟩ � Euclidean n-dimensional space, ⟨Cn⟩ � Euclidean cylindrical n-dimensional space,

⟨En+q⟩ � complex binary Euclidean (n+ q)-dimensional space of the index q (q ≤ n),

⟨Qn+q⟩ � real binary quasi-Euclidean (n+ q)-dimensional space of the index q (q ≤ n),

⟨Pn+q⟩ � real binary pseudo-Euclidean (n+ q)-dimensional space of the index q (q ≤ n),

⟨Qn+q⟩c � complex binary quasi-Euclidean (n+ q)-dimensional space of the index q (q ≤ n),

⟨⟨En⟩⟩ � projective �at hyperplane, ⟨⟨Cn⟩⟩ � projective cylindrical hyperplane),

⟨En⟩(k), ⟨Eq⟩(k) � Euclidean subspaces in ⟨Qn+q⟩ or ⟨Pn+q⟩ with respect to the base Ẽk,

⟨Pi⟩, ⟨Pij⟩ � trigonometric subspaces of the tensor angle.
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4. Other notations

a, b, ... and a, b, ... � scalar and n× 1-vector elements, ||a||E � Euclidean norm for a,

||A||F = ||A||1 � Frobenius norm (�rst order's quadratic norm) for the n×m-matrix A,

||A||t � particular quadratic of order t norms for the n×m-matrix or n× r-lineor A,

||A||t � trimmed particular quadratic of order t or algebraic norms (algebraic medians),

||A||r � general quadratic of order r or geometric norm (geometric median),

Ct
n � binomial Newtonian coe�cients, det B � determinant of the matrix B,

d(x) � residual of the linear algebraic equation of x,

Dl(r)B � dianal of the singular n× n-matrix B, i. e. the full sum of its basis principal minors,

⟨im A⟩ or ⟨im B⟩ � image of the matrix A or of the matrix B,

⟨ker A′⟩ and ⟨ker B⟩ � kernel of the matrix A′ or of the matrix B,

kB(ϵ) = det(B + ϵI) � scalar characteristic polynomial of parameter ϵ for the matrix B,

kB(−µ) = det(B − µiI) = 0 � secular equation for the matrix B,

k(B, t) � scalar characteristic coe�cient for the matrix B of order t,

l � Euclidean and quasi-Euclidean length, λ � pseudo-Euclidean length,

mt � algebraic mean (small median) of order t, Mθ � power mean (large median) of order θ,

Mt(r)A � minorant of singular A (the square root of the full sum of quadric basis minors A),

n � dimension of the space,

q � index of the quasi- or pseudo-Euclidean space,

qB(ϵ) � reduced scalar characteristic polynomial of parameter ϵ for the matrix B,

qB(−µ) = 0 � reduced secular equation for the matrix B,

q(B, t) � reduced scalar characteristic coe�cient of the matrix B of order t,

r = rankB (r = rankA) � rank of the matrix,

r′ � 1st rock of the singular matrix B, i. e. maximal order of non-zero k(B, t),

r′′ � 2sd rock of the singular matrix B, i. e. maximal order of non-zero K(B, t),

s and s′ � geometric and algebraic multiplicities of the zero eigenvalue of a singular matrix B,

s0i = r′′i − r′i + 1 � annulling multiplicity of the i-th eigenvalue of a quadratic matrix B,

t � order of matrices characteristics, dimension of submatrices and minors,
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trB � trace of the matrix B,

vt � reversive algebraic mean (reversive small median) of order t,

Vθ � reversive power mean (reversive large median) of order θ,

x, y � real-number vectorial arguments (variables),

z and z � complex-number vectorial arguments (conjugate variables),

sin, sinh, cos, cosh, tan, tanh, sec, sech, cot, coth, cosec, csch � trigonometric functions,
arcsin, arsinh, arccos, arcosh, arctan, artanh, arcsec, arsech � reverse to them functions.

Greek some notations :

φ � principal scalar spherical angle, γ � principal scalar hyperbolic angle,

θ � secondary scalar orthospherical angle (respectively to the principal angles φ or γ).

ξ � complementary spherical angle with φ (relatively to the right spherical angle π/2),

υ � complementary hyperbolic angle with γ in some right pseudo-Euclidean triangle,

δ � in�nite hyperbolic angle in some right pseudo-Euclidean triangle,

η � scalar Hermitean spherical angle,

π � Archimedes Number and an open spherical angle,

ω = arsh 1 � especial hyperbolic angle (and number) as analog of the spherical angle π/4

µi � i-th eigenvalue of a quadratic matrix with its quantity qi,

σj � j-th eigenvalue of multiplicative matrices AA′ and A′A,

2τ � trigonometric rank of the binary tensor angle of projective or motive type,

ν′ � dimension of the sub-space of the intersection ⟨im A1⟩ and ⟨im A2⟩ (i. e., of zero sine),

ν′′ � dimension of the sub-space of the intersection ⟨im A1⟩ and ⟨ker A′
2⟩ (i. e., of zero cosine).

5. Using symbols

′ � mark of simple transposing, ∗ � mark of Hermitean transposing,

. . .⊂ . . . � set . . . belong to set . . . , . . .⊆ . . . � set . . . belong or is identical to set . . . ,

. . .∈ . . . � element . . . belong to set . . . , . . . /∈ . . . � element . . . no belong to set . . . ,

. . .∪ . . . � mark of summing (joining) two sets, . . .∩ . . . � mark of intersecting two sets,

. . .≡ . . . � mark for the identity of the two sets,

. . .⊕ . . . � mark of direct summing two sets, . . .⊞ . . . and . . .⊠ . . . � marks of spherical and
hyperbolic orthogonal direct summing two sets, . . .⊎ . . . � mark of geometric summing two angles,

∠
Φ and

∠
Γ � mark over the summarized tensor angles in the case of reverse order of two- or

multistep rotations (particular motions), and in the case of reverse angular shifting.



Part I

Theory of Exact Matrices: some of general questions

The main aims of this monograph in 2004 [15] were, in �rst, to develop in necessary
us degree a number of algebraic and geometric notions in the Theory of Exact Matrices in
Part I (Chs. 1÷4), and then, in Part II, on such platform to work out the fundamental of
the new mathematical subject under general name �Tensor Trigonometry� with its following
numerous applications in mathematical�physical �elds, mainly in the big Appendix.

In Chapter 1, structures and properties of the scalar and matrix characteristic coe�cients
of n×n-matrix B are found and studied. The fundamental relation and inequality for basic
parameters of singularity for the matrix B are established. As additional result, from the
highest orders r′, r′′ of these scalar and matrix characteristic coe�cients for eigenmatrices Bi

a minimal annulling polynomial of the matrix B is identi�ed in its explicit form. The general
inequality for average values (means) is formulated and proved in a whole form, including
the chain of particular inequalities for algebraic means as a basis of hierarchical algebraic
norms entered subsequently. Its opportunities are shown in the theory and technique for
solutions of real algebraic equations, in that number, of secular ones. In the case of equation's
positive roots (e. g., of the eigenvalues for positively de�nite matrices), the limit method and
formulae for calculating of maximal and minimal roots are gotten in terms of the equation
coe�cients (with following sequential calculation of all the roots). (Note the fact of inferring
here the classic Theorem of Hamilton�Cayley in one line, and many of interesting other.)

In Chapter 2, the explicit formulae for two characteristic eigenprojectors and the quasi-
inverse matrix for a null-prime singular n × n-matrix B in terms of its matrix and scalar
characteristic coe�cients of the highest order r = rankB are established. (The simplest
case of null-prime matrices is a n × n-matrix B consisting from r of basis columns and
n− r of zero columns.) As a very important especial case, the null-normal singular n× n-
matrices B, whose image and kernel form a direct orthogonal sum, are entered and studied.
(Their considered separately important particular cases are symmetric S and multiplicative
matrices AA′, A′A.) Besides, the modal matrices for transformations of these null-prime
and null-normal matrices into the two-cell block-diagonal canonic form are gotten. And
as additional applications of the eigenprojectors and quasi-inverse matrices, the general
formulae for solutions of vector and matrix linear equations are gotten.

In Chapter 3, the more general linear geometric objects in linear spaces than n×1-vectors
and lines are entered additionally into consideration, as n×m-lineors A and planars ⟨im A⟩
and ⟨ker A′⟩, i. e., given by the matrix A, where 1 ≤ m ≤ n (in particular, if m = 1 they are
vector a, lines ⟨im a⟩ and hyperspace ⟨ker a′⟩). The scalar invariant relations for matrices
or matrix geometric objects with corresponding to them inequalities having cosine or sine
nature (relations generalizing the well-known algebraic norms for a cosine and a sine of an
angle between vectors or lines in Euclidean spaces) are de�ned. As an additional result,
the limit explicit formulae for the eigenprojectors and quasi-inverse matrices are gotten by
algebraic and functional manners. (Note the fact of inferring here the classic Theorem of
Kronecker�Capelli in one line, and also many of interesting other.)

In Chapter 4, the main alternative complexi�cation's variants of di�erent mathematical
notions are considered upon transition from the initial real arithmetic spaces into various
complex ones. It is important, in particular, for following constructing similar complex
variants of the new concepts of Tensor Trigonometry in all its kinds. A number of the
speci�c complexi�cation's examples in di�erent mathematical regions, including arithmetic,
algebraic, geometric and functional ones, are given.



Chapter 1

Coe�cients of characteristic polynomials

1.1 Simultaneous de�nition of scalar and matrix coe�cients

In Theory of Exact Matrices, especial attention is paid to characteristic polynomials. They
are studied from algebraic and geometric points of view. Detailed analysis of the question
is necessary for further construction of Tensor Trigonometry foundation.

As it is known, for each n × n-matrix there is its own secular equation determined by
the scalar characteristic polynomial (a polynomial with scalar coe�cients) depending on a
certain parameter µ. The roots µi of this polynomial (the roots of the secular equation)
for a given square matrix B are the eigenvalues of the matrix. The matrix B has also the
matrix characteristic polynomial (a polynomial with matrix coe�cients).

For the next, introduce simultaneously two kinds of the characteristic polynomials and
their coe�cients, following mainly to D. K. Faddeev [29, p. 311�316]. Consider a nonzero
n× n-matrix B of rank r with the unity matrix I. The resolvent of B is transformation of
the type:

(B + ϵI)−1 =
(B + ϵI)V

det(B + ϵI)
=
KB(ϵ)

kB(ϵ)
. (1)

In fact, it is the usual formula for the inverse matrix of (B + ϵI): the numerator is the
adjoint matrix, the denominator is its determinant, ϵ is an arbitrary scalar parameter.
This operation determines two characteristic polynomials: scalar one of order n as the
denominator and matrix one of order n− 1 as the numerator of the fraction:

KB(ϵ) =

n−1∑
t=0

K1(B, t) · ϵn−t−1 = ϵn−1 +K1(B, 1) · ϵn−2 + · · ·+K1(B,n− 1),

kB(ϵ) =

n∑
t=0

k(B, t) · ϵn−t = ϵn+k(B, 1) · ϵn−1+ · · ·+k(B,n) = ϵn+ tr B · ϵn−1+ · · ·+det B.

The formulae of the polynomials contain so-called the scalar characteristic coe�cients k(B, t)
and the matrix characteristic coe�cients of 1-st kind K1(B, t), where we have K1(B, 0) = I,
K1(B,n) = Z (see in sect. 1.4), coe�cient of the 2-nd kind K2(B, t) will be de�ned later.
The sequential-increasing number t is the order of such scalar and matrix coe�cients.

In this book, we consider both characteristic polynomials of B with all their coe�cients,
as a rule, in the sign-constant form as polynomials with the scalar parameter ϵ = −µ. The
opposite parameters µ = −ϵ are the eigenvalues µ of the matrix B. The scalar polynomial
of µ is zero and determines the sign-alternating secular algebraic equation for matrices B:

kB(−µ) = (−µ)n + k1 · (−µ)n−1 + · · ·+ kn = (−µ)n + tr B · (−µ)n−1 + · · ·+ det B = 0.

Thus the scalar coe�cients of order t are the Vi�ete sums of µi and the sums of all
principal t× t-minors, but with the summands of constant sign. They may be computed by
Le Verrier's method [27, 29] with use of the recurrent Waring formula [21, p. 38], where the
Vi�ete sums are changed by the scalar characteristic coe�cients, and the Waring sums are
replaced by the characteristic traces (of the same order t):

k(B, t) =
1

t
·

t∑
θ=1

(−1)θ−1k(B, t− θ) · tr Bθ. (2)
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It is the recurrent Waring�Le Verrier direct formula. Note, that the equivalent explicit
expressions

k(B, t) =
1

t!
· det


tr B 1 0 · · · 0
tr B2 tr B 2 · · · 0
· · · · · · · · · · · · · · ·
tr Bt−1 tr Bt−2 tr Bt−3 · · · t− 1
tr Bt tr Bt−1 tr Bt−2 · · · tr B

 (3)

are of more theoretical interest [21, p. 38]. Formulae (2) and (3) are obtained from the
Newton system of linear equations for n unknown coe�cients with n given roots as the result
of the change described above. The sequence of the scalar coe�cients (the Vi�ete sums) is,
due to the Newton system of equations, in the one-to-one correspondence with the sequence
of the characteristic traces (the Waring sums) up to the special order, what has the following
property

t = r′ = min{rankBh} ≤ r

and all the scalar coe�cients of greater orders are equal to 0. Here the number r′ is called
the 1-st rock of the matrix B (the 2-nd rock r′′ is the greatest order of the nonzero matrix
characteristic coe�cients). All problems concerning the scalar coe�cients for equations may
be expressed in terms of the Waring sums, and ones for the matrices may be analyzed in
terms of the characteristic traces.

1.2 The general inequality of means (average values)

In main part II, we often deal with the positively (semi)de�nite symmetric and Hermitian
matrices of �xed rank and their scalar invariants. Suppose that B is such a matrix. Consider
the secular equation for B in the usual sign-alternating form and its scalar coe�cients. All
these coe�cients of orders up to r′ = r = rankB are positive real numbers. Moreover, all
the roots µi of the secular equation (the eigenvalues of the matrix B) are nonnegative real
numbers.

Let µi be n nonnegative numbers and exactly r of them (r ≤ n) are nonzero. Special
characteristics of the set ⟨µi⟩, the small medians m1,mt (the algebraic means) and the large
medians M1,Mθ (the power means), are de�ned as follows:

m1 =M1 =

n∑
i=1

µi

n
, (4)

mt =
t
√
st(µi)/Ct

n = t
√
k(B, t)/Ct

n, (5)

Mθ = θ
√
Sθ(µi)/n = θ

√
tr Bθ/n, (6)

where st(µi) are the Vi�ete sums, Sθ(µi) are the Waring sums, n is the size of the set ⟨µi⟩ or
of the quadratic matrix, t and θ are orders of the corresponding means, Ct

n are the Newton
binomial coe�cients. (The arithmetic mean m1 = M1 is the intersection of the set of all
small medians and the set of all large ones.) Therefore formulae (5) express the algebraic
medians not only in terms of the Vi�ete sums, but also in terms of the equation coe�cients,
and formula (6) represents the power medians in terms of the Waring sums as well as in
terms of the matrix traces. If there are zeros among µi and t > r, then mt = 0.
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Otherwise the analogous reverse medians are de�ned as follows:

v1 = V1 =

(
n∑

i=1

µ−1
i

n

)−1

, (7)

vt =
−t

√
st(µ

−1
i )/Ct

n = −t
√
k(B−1, t)/Ct

n, (8)

Vθ = −θ

√
Sθ(µ

−1
i )/n = −θ

√
tr B−θ)/n. (9)

They too play the role of average values, i. e., the reverse means of the numbers 1/µi.
Notice that the geometric mean mn = vn is the intersection of the set of all small medians
and the set of all their reverse analogs; but v1 = V1 is the harmonic mean.

For a set of n positive real numbers ⟨µi⟩ containing at least two distinct ones, the following
general inequality of means does hold on all the interval in R containing ⟨µi⟩:

max⟨µi⟩ =M∞ > · · · > Mθ > · · · > M1 = (10)

= m1 > · · · > mt > · · · > mn = (11)

= vn > · · · > vt > · · · > v1 = (12)

= V1 > · · · > Vθ > · · · > V∞ = min⟨µi⟩ (13)

(t = 1, . . . , n; θ = 1, . . . ,∞).

The equality for all the means simultaneously does hold i� µ1 = · · · = µn. If there are
exactly n− r zeros among µi, then m1 · · ·mr ̸= 0 and mt = 0 for all t > r. Moreover, if
under this condition all nonzero µi are equal, then the medians are expressed as the functions

mt = µ · t
√
Ct

r/C
t
n, Mθ = µ · θ

√
r/n.

Note, that in the general inequality middle chains (11) and (12) of means are connected by
one-to-one functional bound. The same relates to any continuous chains of it from n means
i� all the original n numbers are di�erent. This bond is interpreted obviously as direct and
back n-vector-function of n-vector-argument. The fact will be used in the next section.

Special cases of the general inequality are the Cauchy inequality for arithmetic and
geometric means and its reverse analog for harmonic and geometric means, the Maclaurin
inequality for algebraic means and its reverse analog, the H�older inequality for power means
and its reverse analog [23]. Suppose B is a spectrally positive (all µi > 0) matrix. The
arithmetic, geometric, and harmonic medians are de�ned as follows:

m1 = tr B/n =M1, (14)

mn =
n
√
det B = vn, (15)

v1 =
(
tr B−1/n

)−1
= V1. (16)

Let A be an m× n-matrix (in particular, A = a may be an n× 1-vector), B = AA′. Then
the arithmetic median is expressed in terms of the Frobenius and Euclidean norms:

n ·m1(B) = tr B =

{
||A||2F ,
||a||2E .
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Since B is a spectral-positive matrix, the chain of simplest inequalities�estimations

max⟨µn
i ⟩ ≥ tr Bn/n ≥ (tr B/n)n ≥ det B ≥

≥
(
tr (B−1)/n

)−n ≥
(
tr (B−n)/n

)−1 ≥ min⟨µn
i ⟩ (17)

follows from (10)�(13). Closer to each other are the eigenvalues, less are all the defects in
(17). The equality holds i� the matrix B is proportional to the unit matrix I.

Clearly, the limit medians for B in the general inequality are the extremal eigenvalues
of B:

max⟨µn
i ⟩ = lim

n→∞
Mn, (18)

min⟨µn
i ⟩ = lim

n→∞
Vn. (19)

Further we prove the general inequality and analyze it with use of di�erentiation to
explore extrema.

Consider n positive numbers xi as the vector x = (x1, . . . , xn) in the 1-st quadrant (the
basis is standard) and the scalar functions expressing the di�erences and the ratios of the
corresponding means:

r

[
t

t+ 1

]
(x) = mt(x)−mt+1(x),

r

[
1
n

]
(x) = m1(x)−mn(x),

f

[
t

t+ 1

]
(x) = mt(x)/mt+1(x),

f

[
1
n

]
(x) = m1(x)/mn(x),

R

[
θ + 1
θ

]
(x) =Mθ+1(x)−Mθ(x),

R

[
θ
1

]
(x) =Mθ(x)−M1(x),

F

[
θ + 1
θ

]
(x) =Mθ+1(x)/Mθ(x),

F

[
θ
1

]
(x) =Mθ(x)/M1(x).

Each of the functions r,R, and f, F has the only and common stationary value corres-
ponding to x = b, where b is the bisectrix of the 1-st quadrant. These functions have the
zero gradients at all points of b. Therefore,

r′(b) = R′(b) = f ′(b) = F ′(b) = 0, x1 = · · ·xn = b,

r(b) = R(b) = 0, f(b) = F (b) = 1,

and b is the region of minimum. This is true because the corresponding Hesse matrices are
positively semi-de�nite.
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Their rank is n− 1):

r′′
[

1
n

]
(b) = (n− 1)r′′

[
t

t+ 1

]
(b) =

= bf ′′
[

1
n

]
(b) = b(n− 1)f ′′

[
t

t+ 1

]
(b) =

= R′′
[
θ + 1
θ

]
(b) =

1

θ − 1
R′′
[
θ
1

]
(b) =

= bF ′′
[
θ + 1
θ

]
(b) =

b

θ − 1
F ′′
[
θ
1

]
(b) =

nI − It
n2b

= G,

where It is the totally-unity matrix, all its elements are equal to 1. The matrix G has the
positive principal minors of orders r, r < n, they are equal to(

1

nb

)r

· n− r
n

.

The Hesse matrix is degenerated at all points of the bisectrix, the one-dimensional linear
subspace. The stationary values computed above lead to the following equalities

r′′
[

t
t+m

]
(b) = mr′′

[
t

t+ 1

]
(b),

f ′′
[

t
t+m

]
(b) = mf ′′

[
t

t+ 1

]
(b),

R′′
[

θ +m
θ

]
(b) = mR′′

[
θ + 1
θ

]
(b),

F ′′
[

θ +m
θ

]
(b) = mF ′′

[
θ + 1
θ

]
(b).

Therefore, on the bisectrix b, these facts give us the following logical corollaries.
1. The Hesse matrices of the adjacent means ratio do not depend on their orders.
2. These matrices vary as additive functions of the di�erence between the orders.
3. The Hesse matrices for all adjacent power means ratios are equal to the Hesse matrix

for the ratio of the arithmetic and geometric means.
4. The Hesse matrices for all adjacent algebraic means ratios consist of n − 1 identical

parts of the matrix from Corollary 3.
But two next corollaries seem surprising and paradoxical. Namely:
5. The Hesse matrix for the ratio of the power and arithmetic means is unlimited at all

points of the bisectrix, it increases as proportional to θ. Though the same function F , in
accordance to (18), tends to xmax/M1 as θ → ∞, it is continuous and takes the minimal
value 1 at all points of the bisectrix.

6. The Hesse matrix for the adjacent power means ratio is constant at all points of the
bisectrix even as θ → ∞. Though, according to (18), the same function F tends to 1 at all
points of the bisectrix, its limit value is the constant for which the gradient and the Hesse
matrix are zero.

These conclusions seem contradictory, but they can be explained by correlation between
the in�nitely small deviation of x from the bisectrix and the in�nitely large parameter θ.
The Hesse matrix is discontinuous and becomes zero in the neighborhood of the bisectrix.
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The function F

[
θ
1

]
(x), in its turn, tends to 1 as θ → ∞, but it depends up to

in�nitesimal on x and takes the minimal value 1 at points of b. Contrary, the function

F

[
θ + 1
θ

]
(x) takes the value 1 there at once.

Interpret these facts on the model functions of one scalar variable:

F1

[
θ + 1
θ

]
(x) =

θ+1

√
1 + xθ+1

2

/
θ

√
1 + xθ

2
,

F2

[
θ
1

]
(x) =

θ

√
1 + xθ

2

/
1 + x

2
, (x > 0, θ ≥ 2).

Suppose, for certain conditions of the task, that x ≥ 1, then it is the greatest element of the
model set ⟨1, x⟩.

If θ is �nite, then

F1(1) = F2(1) = 1 = min, 1 < F1(x) < F2(x);

dF1

dx
(1) =

dF2

dx
(1) = 0;

d2F1

dx2
(1) =

1

4
,
d2F2

dx2
(1) =

θ − 1

4
,
d2F2

dx2
(x) ≥ d2F1

dx2
(x) > 0.

If θ is in�nite, then

F1(x) = 1 + β(x), β(x)→ 0, β(1) = 0, F2(1) = 1 = min,

F2(x) =

{
2x/(1 + x) if x > 1,
2/(1 + x) if x < 1,

dF1

dx
(x) =

dF2

dx
(1) = 0,

dF2

dx
(1± α) = ±1

2
(α→ 0);

d2F1

dx2
(1) =

1

4
,

d2F1

dx2
(x) = 0 provided that x ̸= 1,

d2F2

dx2
(1) =

θ − 1

4
→∞, d2F2

dx2
(1± α) = 0 (α→ 0).

The Hesse matrix is also discontinuous in the neighborhood of ⟨b⟩, that is why the tri-
valent symmetric matrix of third derivatives tends to in�nite one as θ →∞ and is negatively
semi-de�nite at all points of the bisectrix. Notice that for the analogous functions of the
reverse means, all these facts do hold, the only di�erence is that the Hesse matrix changes
the sign. The same transformation of the Hesse matrix takes place under inverting the ratios.

These arguments as well as limit formulae (18) and (19) complete our proof and analysis
of the general inequality of means (or average values). Now we consider some applications
of the general inequality in the theory and techniques for solving algebraic equations, par-
ticularly, secular ones. smallskip
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1.3 Serial method of solving algebraic equations with real roots

The small and large medians are connected by the system of modi�ed Newton equations
and the modi�ed Waring�Le Verrier formulae, for example, of the direct type. These direct
formulae are similar to (2) provided that t > r and mt = 0:

Ct−1
n−1(mt)

t = Ct−1
n (mt−1)

t−1(M1)
1 − Ct−2

n (mt−2)
t−2(M2)

2 + · · ·+

+(−1)t−2C1
n(m1)

1(Mt−1)
t−1 + (−1)t−1(Mt)

t.

If all the coe�cients of a secular equation are the same, then the well known particular
formula for binomial coe�cients

Ct−1
n−1 = Ct−1

n − Ct−2
n + · · ·+ (−1)t−2C1

n + (−1)t−1

follows from one above.

Limit formulae (18) and (19) allow one to compute consequently all the roots of an
algebraic equation provided that all its roots are real numbers. Multiplicity of the roots
may be found in the process of reducing, but it is worth to separate the roots before solving
with use of the 1-st derivative and Euclidean algorithm. Sturm's method [28, p. 225�229]
and the prior boundaries of the roots (∓∞) ensure one that the roots are real numbers.
Other useful criterions for identi�cation of the roots reality follow from the inequalities for
the real roots of an algebraic equation presented here in its sign-alternating form [21, p. 40]:

−1− h1

√
−min kj = ∆(−) < µi < ∆(+) = 1 + h2

√
−min(−1)jkj ,

where ∆(−) and ∆(+) are the boundaries of the negative and positive real roots, h1 and h2
are the indexes of the �rst negative coe�cients, respectively kj and (−1)jkj . Maclaurin's
Theorem is used for inferring these inequalities [28, p. 223].

The serial limit method for solving an algebraic (may be secular) equation is the following

It is supposed to be already known that all the equation roots are real nonnegative
numbers, in particular, they may be the eigenvalues of a nonnegatively de�nite matrix AA′

or A′A.
The �rst step is computing the Vi�ete sums and the Waring sums up to order r. For

example, the Waring�Le Verrier recurrent formula of the direct type (such as (2)) is used
for matrices, and the following Waring�Le Verrier recurrent formula of the reverse type [16,
p. 38] is used for an arbitrary algebraic (polynomial) equation:

Sθ = s1Sθ−1 − s2Sθ−2 + · · ·+ (−1)r−2sr−1Sθ−r+1 + (−1)r−1srSθ−r =

= Fθ(S1, . . . , Sr) = fθ(s1, . . . , sr), θ = r + 1, r + 2, . . . .

Next step is consequent computing the power medians

Mθ = θ
√
sθ/r.

Due to (10), the sequence of the �xed root approximations increases. Clearly, more
di�erent are the roots, faster is the process. The recurrent formula with limit value (18),
being divided by xθ−n, is the original equation as an identity. Hence on a certain it-
eration computing should be �nished in order to avoid a round-o� error for the maximal root.
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The minimal root may be found according to (19) by the similar way with use of the
equation inverse form in (−1/x) obtained by dividing original equation y(−x) = kB(−x) = 0
(where x = −µ) by (−x)n and by the highest coe�cient kn. (For matrices B: kn = det B.)

Approximate computing a rational root induces a periodic sequence starting with some
signi�cant digit, that is why the precise value of this root should be checked in the original
equation. Irrational roots are computed up to a given precision. Thus the algorithm results
in all the real roots of an algebraic equation. This method has the common limit idea with
classic Lobachevsky�Gre�e's method (1834) [21, p. 657] (see detailed comparison of both
these methods in other our monograph [17, p. 162�163]).

If all the equation roots are real numbers of arbitrary signs, then its variable x should
be substituted for x + C, where the constant C > 0 shifts the variable into the positive
semi-axis. In order to faster convergence, this shift should be as small as possible.

It is known that all the eigenvalues of real symmetric matrices S = S′ and imaginary
anti-symmetric ones (iK)′ = −iK, whereK = −K ′ is a real matrix, are real valued numbers.
In particular, these matrices are characteristic ones for a real-valued matrix B:

S = (B +B′)/2, K = (B −B′)/2 → B = S +K.

Here condition of the commutativity SK = KS means that B ∈ ⟨M⟩ is a real-valued normal
matrix, which has some double complex conjugated roots. These matrices may be trans-
formed into their diagonal forms simultaneously. Then the double complex eigenvalues of
such a normal matrix B are the sums of the summand matrices eigenvalues. Thus separated
solving the secular equations for S and −iK (the secular equation for −iK is biquadratic)
result in the real and imaginary parts of the normal matrix B complex eigenvalues. Further,
the values obtained should be paired by checking in the secular equation for B.

This approach may be extended on complex matrices by use of the Hermitean and skew-
Hermitean conjugations. All eigenvalues of Hermitean matrices are real numbers. Take
advantage of the following complex Hermitean normal matrix decomposition:

H = (B +B∗)/2, Q = (B −B∗)/2 → B = H +Q = H + iHQ,

HQ = QH ⇔ HHQ = HQH ⇔ B ∈ ⟨N⟩, where NN∗ = N∗N,

and so on.
Thus the serial method represented here is also applicable to real-valued normal matrices

and complex Hermitean normal ones.
Suppose that all the roots of the secular equation for a some matrix are real numbers

and shifting described above is used. Then, for the equation in alternating-sign form, the
lower boundary of the negative roots satis�es the following inequality:

min⟨µi⟩ > ∆(−) = −1− h1

√
−min kj .

Substitution x = y+∆(−) results in the equation with the positive coe�cients and roots, this
may be checked by Sturm's method on (0;+∞). This shift leads to the matrix transformation
B → (B −∆(−)I).

There exists another way as alternative to shifting. If all the eigenvalues of a some
matrix B are real numbers of arbitrary signs, then the following sequence of actions may
be performed instead of shifting:

1) squaring B,

2) computing the squared eigenvalues,

3) choosing the signs of the eigenvalues by checking in the equation.
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If all the roots of an algebraic equation are real positive numbers, then the theoretical
value of its greatest root is in the explicit form.

Below, in the most general matrix form, we obtain maximal and minimal roots of an
algebraic equation of any extent as limits.

max⟨µi⟩ = lim
θ→∞

θ

√
det K(1)/r, (20)

where K(1) is the following (r + θ)× (r + θ)-matrix of the equation coe�cients:

K(1) =

=



k1 −1 0 . . . 0 0 . . . 0 0
−2k2 k1 −1 . . . 0 0 . . . 0 0
3k3 −k2 k1 . . . 0 0 . . . 0 0

...
...

... . . .
...

...
...

...
...

(−1)r−1rkr (−1)r−2kr−1 (−1)r−3kr−2 . . . . . . . . . . . . 0 0
0 (−1)r−1kr (−1)r−2kr−1 . . . . . . . . . . . . 0 0
0 0 (−1)r−1kr . . . . . . . . . . . . 0 0
...

...
...

...
...

...
...

...
...

0 0 0 . . . (−1)r−2kr−1 (−1)r−3kr−2 . . . −1 0
0 0 0 . . . (−1)r−1kr (−1)r−2kr−1 . . . k1 −1
0 0 0 . . . 0 (−1)r−1kr . . . −k2 k1

.



All zero elements of the matrix are only in the two triangles of sizes θ and n+θ−2, i. e.,
for lower and upper ones, other elements are nonzero. Here det K(1) = Sθ is the Waring
sum of order θ (see above), according Waring�Le Verrier reverse explicit formula [21, p. 38].

By similar arguments and due to (9),

min⟨µi⟩ = lim
θ→∞

−θ

√
det (K(2)/kn)/r,

whereK(2) is the following (r+θ)×(r+θ)-matrix of the same equation coe�cients considered
in the inverse form:

K(2) =

=



kr−1 −kr 0 . . . 0 0 . . . 0 0
−2kr−2 kr−1 −kr . . . 0 0 . . . 0 0
3kr−3 −kr−2 kr−1 . . . 0 0 . . . 0 0

...
...

...
...

...
...

...
...

...
(−1)r−1r (−1)r−2k1 (−1)r−3k2 . . . . . . . . . . . . 0 0

0 (−1)r−1 (−1)r−2k1 . . . . . . . . . . . . 0 0
0 0 (−1)r−1 . . . . . . . . . . . . 0 0
...

...
...

...
...

...
...

...
...

0 0 0 . . . (−1)r−2k1 (−1)r−3k2 . . . −kr 0
0 0 0 . . . (−1)r−1 (−1)r−2k1 . . . kr−1 −kr
0 0 0 . . . 0 (−1)r−1 . . . −kr−2 kr−1

.
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By Sylvester's criterion, a symmetric or Hermitian matrix is positively de�nite i� all
its principal minors are positive. The minor of the highest order is the determinant, so
Sylvester's condition also means that the matrix is nonsingular. Besides, a singular sym-
metric or Hermitian matrix is positively semi-de�nite i� all its sign-alternating secular equa-
tion's coe�cients up to order r are positive, and ones of orders t > r are equal to 0, as all
the roots here are real numbers. Thus the elements of normal matrices contain su�cient
information for �nding all the eigenvalues provided that all the roots of the secular equation
are real numbers, and then the serial method is applicable.

Solvability of the same problem for more general matrices as well as the similar one for
an arbitrary algebraic equation of degree n > 4 depends on the answer to the question:
whether a given algebraic equation has complex conjugate roots? We showed above that the
answer can be found by Sturm's method. However this method does not give necessary and
su�cient conditions on the equation coe�cients under which all the roots are real numbers
and, due to shifting, positive.

One well known necessary condition follows from the Descartes sign Rule [21, p. 40]: all
the coe�cients of an equation in the sign-alternating form must be positive. Unfortunately
even under this condition pairs of conjugate complex roots are possible. If the shift parameter
is greater than noted above, for example, it is equal to 1+max |kj |, then only the real parts
of the roots are necessarily positive [21, p. 39].

Inequalities (11) have the following corollary.

If all the roots of an algebraic equation are real positive numbers, then all its medians in
(10)− (13) are equal to each other i� the equation has the binomial form

(x− µ)n = 0.

This means also that mt = µ.
If an equation in the sign-alternating form has at least two distinct roots, then its coef-

�cients do not form the binomial sequence and then inequalities (11) do hold. For example,
if there exist two adjacent medians equal to each other or some of the equation coe�cients
of order less than r are equal to zero, or the median hierarchy is violated, then there exist
complex conjugate roots.

The following conditions are necessary and stronger than Descartes' one given above.
For all n the roots of an algebraic equation of degree n represented in the sign-alternating

form to be positive real numbers it is necessary that all the equation coe�cients-medians (5)
satisfy the following two conditions:

(i) they are positive real numbers
(according to the Descartes sign Rule),

(ii) all of n inequalities (11) do hold.

For an n × n-matrix to be positively de�nite it is necessary that all the matrix traces-
medians (6) of orders 1, 2, . . . , n satisfy two conditions:

(i) they are positive real numbers,
(ii′) �rst n inequalities (10) do hold.

For any real algebraic equation and any real quadratic matrix condition (i) may be
satis�ed by use of shifting. For real symmetric or complex Hermitian matrix Sylvester's
criterion gives the necessary and su�cient condition for all the roots of the secular equation
(its eigenvalues) to be positive real numbers. If a real matrix is of the form AA′, then
all its eigenvalues are a priori real and nonnegative. The necessary and su�cient condi-
tions for all the roots of an algebraic (polynomial) equation of degree n to be positive real
numbers are inferred in our monograph [17, p. 165�191] with the use of the Special diagrams.
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Note that for any algebraic median,

p

√
mi(x

p
1 + · · ·+ xpn) <

q

√
mi(x

q
1 + · · ·+ xqn)

provided that
1 ≤ p < q, i = 1, . . . , n− 1,

there exist at least two distinct elements, and the quantity of the nonzero elements is greater
than i. This follows from (10).

1.4 Structures of scalar and matrix characteristic coe�cients

For a given square matrix B, its scalar characteristic coe�cients of any order t may be
represented according to (5) as the Vi�ete sums of the eigenvalues µi. The eigenvalues are
invariant under all linear transformations of the matrix and the bases; therefore, the scalar
coe�cients are invariant under such transformations too.

For any matrix B there exists a unique pair of matrices (PB , OB) such that PB is a prime
matrix, OB is a nilpotent matrix, and

B = PB +OB . (21)

The matrices PB and OB are determined by the Jordan form JB or the triangle form of B.
As it is known, a matrix O is nilpotent i� all its scalar characteristic coe�cients are equal

to zero. Evaluate the nilpotency degree j of the matrix OB . Let j(i) + 1 be the maximal
size of the Jordan subcell in JB with the eigenvalue µi at the diagonal. Then

j = max
⟨µi⟩
{j(i)}.

Not only OB but also OBPB and PBOB are nilpotent matrices, and the matrices B and
PB have the same secular equation as well as the same eigenvalues with the same algebraic
multiplicities. Thus the scalar coe�cients for the matrix B possess the following additional
properties:

k(PB +OB , t) = k(PB , t) = k(B, t). (22)

k(PB ·OB , t) = k(OB · PB , t) = k(OB , t) = 0. (23)

From the structural point of view, any scalar coe�cient k(B, t) is the sum of all diagonal
(principal) t× t-minors of B [5, p. 78].

Further, consider most important properties of scalar and matrix characteristic coe�-
cients, establish also the structure of the latters and all connections of them.

At �rst, resolvent's formula (1) is equivalent to each of the following identities:

det (B + ϵI)I = (B + ϵI)(B + ϵI)V .

kB(ϵ)I = (B + ϵI)KB(ϵ), (24)

n∑
t=0

ϵn−t [k(B, t)I −BK1(B, t− 1)−K1(B, t)] = Z,

where Z is the zero matrix (all the polynomials are here in the constant-sign form with ϵ).

These formulae give, in particular, the following corollaries.
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1. The scalar parameter ϵ in (24) may be changed for a matrix one E commuting with B:

kB(E) = (B + E)KB(E).

2. Along the way, with relation (24) at E = −B, through this graceful formula, we prove
clear in one line the classic Hamilton�Cayley Theorem:

kB(−B)I = (B −B)KB(−B) ⇒ kB(−B) = Z.

Contrary, if E = +B, then kB(B) = 2BKB(B).

3. The recurrent matrix formula of Jean-Marie Souriau from 1948 [27]

K1(B, t) = −BK1(B, t− 1) + k(B, t)I (25)

is valid because the parameter ϵ in (24) is arbitrary. The initial values

k(B, 0) = 1, K1(B, 0) = I

follow from (1). Note, that k(B, 1) = tr B, k(B,n) = det B.
4. De�ne additionally the matrix characteristic coe�cients K2(B, t) of the 2-nd kind as

K2(B, t) = BK1(B, t− 1).

The initial value is K2(B, 0) = Z. Clarity, K2(B, 1) = B. Taking this into account, one may
transform (25) into

K1(B, t) +K2(B, t) = k(B, t)I. (26)

Repeating application of the recurrent formula (25) with the initial values leads to the
following representation of the matrix characteristic coe�cients as polynomials in B:

K1(B, t) =
∑t

θ=0 k(B, t− θ)(−B)θ,

K2(B, t) = −
∑t

θ=1 k(B, t− θ)(−B)θ.

}
(27)

Hence, the matrix coe�cients K1(B, t) and K2(B, t) commute with each other and with B.
5. The Jean-Marie Souriau scalar binding formulae [27] for both types of these coe�cients

k(B, t) =
1

t
· tr K2(B, t), {k(B, t) =

1

n− t
· tr K1(B, t)} (28)

follow from (27) and (2), i. e., using Le Verrier' method (see above).
6. In order to inverse non-singular matrix B → B−1 through its coe�cients, J.-M. Souriau

suggested in 1948 the very elegant algorithm with successive calculating all these coe�cients
of order t ≥ 1. This algorithm was based on his formulae (25) and (28). Unfortunately,
his article [20] in the Proceedings of the French Academy of Sciences was published as very
brief paper, without details. Though he was then by very eminent French mathematician
in many �elds, in particular, he is well-known as a pioneer in symplectic geometry and
as a high level analyst. The same results were repeated later, probably independently, by
D. K. Faddeev [29], with a reference onto this Souriau's work. Faddeev's approach was based
on the use of a resolvent B (1) for de�nition of matrix and scalar characteristic coe�cients.

A year after this Souriau's publication, similar brief article from Frame J. S., with the
same algorithm, was published in "AMS Bulletin", 1949, v. 55, n. 11, p. 1045 without a
reference onto [27]. But the more unknown Frame became famous in American mathematical
circles by this single publication, where it is cited, while Souriau's original article is for some
reason entirely ignored, which is very strange from the point of view of scienti�c ethics!?
(P. S.: Maybe someday our readers will see and a "new author" of the Tensor Trigonometry?)
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Further, the �rst formula in (27) and the Hamilton�Cayley Theorem lead to equalities

K1(B,n) = kB(−B) = Z,

and from (25) we infer: K2(B,n) = BK1(B,n− 1) = k(B.n)I = (detB)I = BBV .

If B is nonsingular, then multiplying these equalities by B−1 gives us the following:

B−1 =
K1(B,n− 1)

k(B,n)
=

BV

det B
.

This is the Souriau algorithmic method (and only his one!) for inverting a matrix and
of joint computing all these characteristic coe�cients k(B, t) and K1(B, t), t = 1, . . . , n.

7. Therefore, all the values of the matrix coe�cients computed above are the following:

K1(B, 0) = I, K2(B, 0) = Z,
K1(B, 1) = (trB)I −B, K2(B, 1) = B,
. . . . . .
K1(B,n− 1) = BV , K2(B,n− 1) = (tr BV )I −BV ,
K1(B,n) = kB(−B) = Z, K2(B,n) = (det B)I.

 (29)

The formulae of K1(B,n − 1) and K2(B,n − 1) are yet inferred only for non-singular
matrices B, but they are true and for singular ones � see further in their structures.

Further, �nd the greatest order r′′ of the nonzero matrix coe�cients in (29). Due to
(28) it is equal to the terminating order of the Souriau algorithm in formula (25). It does
exist, due to (26) and (28), and is called here as the 2-nd rock of the matrix B. Moreover,
r′′ ≥ r′, where r′ is the greatest order of the nonzero scalar coe�cients, i. e., the 1-st rock
of the matrix B (see in sect. 1.1). If B is a nonsingular n× n matrix, then r′ = r′′ = n.

Inequality r′ < r, where r = rank B, may be inferred only from the structure of scalar
coe�cients: they are the sums of all diagonal minors of order t. Similarly to it, only the
structures of matrix B coe�cients determine the 2-nd rock and its connection with other
numerical parameters of the square matrix singularity (in that number, the annulling eigen-
values multiplicities in its minimal annulling polynomial) as well as its matrix characteristics,
such as eigenprojectors, quasi-inverse matrices and modal matrices.

In order to clear the structure of these matrix characteristic coe�cients of the 1-st and
2-nd kinds, we apply our Special di�erential method for establishing the structures of scalar
and matrix coe�cients simultaneously. (These complete structures was established by the
author in the beginning of 1981 with introduction of both rocks for a matrix B.)

Although, for the scalar coe�cients, the standard (direct) method for exploring their
structure is well known (see, for example, in [5, p. 78]).

Consider an n×n-matrix B and an arbitrary set of itsm generating elements {bik,jk , k =
1, . . . ,m, 1 ≤ m ≤ n}, i. e., if p ̸= q, then ip ̸= iq and jp ̸= jq. The coe�cient at

∏m
k=1 bik,jk

in expansion of det B is

∂mdet B

∂bi1,j1 · · · ∂bim,jm

(−1)
∑m

k=1(ik+jk)


i1, . . . , im ̸∈
j1, . . . , jm ̸∈
minor(n-m)

B

 . (30)

In the partial di�erentiation, the variables for all the elements of B are supposed to be
distinct. The order of partial di�erentiation execution doesn't in�uence the end result. The
minors of order t = n −m in (30) is the adjunct of the minor, determined by the set of m
generating elements; ik, jk are all their indexes of rows and columns.
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Our pure di�erential formula (30) is the result of successive partial di�erentiating det B
with respect to bi1,j1 . . . , bim,jm . Further, apply di�erential formula (30) for evaluating the
resolvent of B in (1), i. e.,

(B + ϵI)−1 =
(B + ϵI)V

det(B + ϵI)
=
KB(ϵ)

kB(ϵ)
.

Expand the numerator and the denominator in powers of ϵ.

The denominator is the scalar polynomial in ϵ of order n. According to (30) with m =
n− t, the coe�cient at

∏n−t
k=1(bik,Ik + ϵ) is{

(i1, i1) . . . , (in−t, in−t) ̸∈
D-minor(t)

(B + ϵI)

}
.

It is the diagonal t-minor of B + ϵI no containing indicated generating elements, the
quantity of such minors (and multiplications) is Ct

n. Only diagonal entries of the minor
contain ϵ. Put ϵ = 0 in all these minors. We obtain the expression of the coe�cient at ϵn−t

in the scalar polynomial det (B + ϵI) as the sum of all its diagonal minors of order t and
its initial mean as k(B, 0) = 1.

The numerator is the following matrix. Its diagonal entries are polynomials in ϵ of
degree n − 1, other entries are polynomials of degree n − 2. The matrix is represented by
the following polynomial in ϵ:

(B + ϵI)V =

n∑
t=0

K1(B, t)ϵ
n−1−t, K1(B, 0) = I.

We wish to compute K1(B, t). For this aim it is necessary to consider the (p, p)- and (p, q)-
entries of (B + ϵI)V . Find the (p, p)-entry. It is equal to

∂det (B + ϵI)

∂(bp,p + ϵ)
= Adp,p(B + ϵI) =

{
(p, p) ̸∈

D-minor(n-1)
(B + ϵI)

}
,

where Adp,p is the adjunct of the (p, p)-entry bp,p + ϵ. Similarly to arguments above, the
coe�cient at ϵn−t−1 (as n−t−1 = (n−1)−t = (n−(t+1)) in expansion of this determinant
is the (p, p)-entry of the matrix K1(B, t):

(p, p)K1(B, t) =
∑

(Ct
n−1 terms)

{
(p, p) ̸∈

D-minor(t)
B

}
=

=
∑

(Ct
n−1 terms)

Adp′,p′

{
(p, p) ∈

D-sub(t+1)
B

}

(here D-sub stands for a diagonal (t+ 1)× (t+ 1)-submatrix of B).
These are sums of D-minors. Both the sums consist of Ct

n−1 terms, as one generating
element, bp,p, among n ones takes part in the �rst di�erentiation, i. e., in forming the �rst
(main) adjunct. Here p′ are the new indexes of the rows and the columns in D-minors of
order t+ 1.



1.4 Structures of scalar and matrix characteristic coe�cients 31

Then �nd the (p, q)-entry of (B + ϵI)V . It is equal to

∂det (B + ϵI)

∂bq,p
= Adq,p(B + ϵI) = (−1)p+q

{
(p, q) ∈

Dh-minor(n-t)
(B + ϵI)

}
,

(here Dh-minor stands for hypodiagonal minor).
It contains only one nondiagonal generating element, bp,q, and thus, after the �rst partial

di�erentiation with respect to bq,p (although the order of partial di�erentiation executions
is of no importance) does not contain bq,p, bp,p + ϵ, and bq,q + ϵ. Due to (30), the coe�cient

at
∏n−t−1

k=1 (bik,ik + ϵ) in expansion of the determinant is

∂n−t−1

{
(p, q) ∈

Dh-minor(n-t)
(B + ϵI)

}
∂(bi1,i1 + ϵ) · · · ∂(bin−t−1,in−t−1

+ ϵ)
=

∂

[
∂n−t−1det(B + ϵI)

∂(bi1,i1 + ϵ) · · · ∂(bin−t−1,in−t−1
+ ϵ)

]
∂bq,p

=

= Adq′,p′

{
(i1, i1), . . . , (in−t−1, in−t−1) ̸∈

D-sub(t+1)
(B + ϵI)

}
.

Put here ϵ = 0, obtain the coe�cient at ϵn−t−1, i. e. the (p, q)-entry of K1(B, t):

(p, q)K1(B, t) =
∑

(Ct−1
n−2 terms)

(−1)p
′′+q′′+1

{
(p, q) ∈

Dh-minor(t)
B

}
=

=
∑

(Ct−1
n−2 terms)

Adq′,p′

{
(p, q) ∈

D-sub(t+1)
B

}
.

Here D-sub stands for a diagonal (t + 1) × (t + 1)-submatrix of B. Both the sums con-
sist of Ct−1

n−2 terms, as two generating elements bp,q and bq,p are used in forming the �rst
(main) adjunct. The (p, q)-element has indexes p′, q′ in the diagonal minor and p′′, q′′ in the
hypodiagonal one, p′ + q′ = p′′ + q′′ + 1.

These two parts are the complete formula for K1(B, t). From it and formula (26), the
expressions for K2(B, t) follow. The structure of matrix coe�cients is completely speci�ed.
These structural properties of all the characteristic coe�cients con�rms formulae (29), (28),
and, taking (27) into account, the Waring�Le Verrier recurrent formula (2).

Note the corollary of these transformations: for a quadratic matrix B, the adjunct of
bp,p or bp,q may be interpreted as the partial derivative of det B with respect to bp,p or bp,q
according to (30), and conversely, the reverse operation, convolution of given adjuncts into
det B, may be interpreted as their partial integrating on bp,p or bp,q.

Compare the scalar and matrix coe�cients structures. Both kinds of the coe�cients are
expressed with the use of minors sums. For scalar coe�cients the summands are exactly all
diagonal minors. Unlike them, the summands of matrix coe�cients are diagonal minors and
hypodiagonal ones, other minors cannot be the summands. Moreover, other r-minors can
exist only under condition 1 < r < n − 1. These facts specify relationship between the 1-st
and 2-nd rocks, and also the rank of a matrix:
(1) r′ ≤ r′′ (see (28);
(2) r′ < r′′ ≤ r if there exists a unique nonzero hypodiagonal minor of order r′′;
(3) r′ < r′′ < r if there exists a unique nonzero minor of order r′′ and this minor is not
diagonal, nor hypodiagonal.

Thus the structures of scalar and matrix characteristic coe�cients speci�es the following
fundamental inequalities for the principal singularity parameters of a square matrix:

0 ≤ r′ ≤ r′′ ≤ r ≤ n. (31)
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The structure of matrix characteristic coe�cients in addition to the well-known structure of
scalar coe�cients (thanks to Le Verrier) was established by the author using his di�erential
method (30) in early 1981, moreover with the use of resolvent (1) for the limit speci�c
introduction of coe�cients and eigenprojectors. (See about this on the author's web-site.)

The game of these three parameters within the boundaries allowed by inequality (31)
determines the entire variety of singular matrices with the identi�cation of their special and
important special cases. Note the following special cases.

1. r′ = 0 ⇔ matrix B is nilpotent.
2. r′′ = 0 ⇔ B = Z. (As well r′′ > 0 i� K2(B, 1) = B ̸= Z.)
3. r = 1 ⇔ r′′ = 1. (By the same argument).
4. r = n− 1 ⇔ r′′ = n− 1. (K1(B,n− 1) = BV contains all minors of rank n− 1).

The value t = r′′ is �nal in the Souriau algorithm [27]. The 1-st and 2-nd rocks are extremely
important singularity parameters of a square matrix B and for eigenmatrices Bi = B−µiI.
The latters are always singular matrices. The 1-st and 2-nd rocks are invariant parameters
under linear transformations as well as the rank and others. In particular, namely these
principal parameters r′i ≤ r′′i ≤ ri determine the exact and explicit formula for the minimal
annulling polynomial of a given square matrix, as well as the cellular and subcellular struc-
ture of its Jordan form with all accompanying parametric equalities and inequalities, starting
with the fundamental inequality (31) for the matrix itself and for all its eigenmatrices.

1.5 The minimal annulling polynomial of a matrix in explicit form

As it is well known � see, for instance, in [3, 4], the exact, but non-explicit formula for
the minimal annulling polynomial of a matrix B was traditionally determined only after the
mathematical operation of reduction with the decrease of the degrees of all the eigenmatrices
in its characteristic polynomial kB(−B) = Z up to the minimum values. As a result, it does
not give the explicit connection for these minimum degrees of eigenmatrices with the above
principal parameters of eigenmatrices r′i, r

′′
i , ri, determined exactly and explicitly by the

elements of the matrix B, based on the structures of its scalar and matrix characteristic
coe�cients.

The results obtained above enable us to express the minimal annulling polynomial ex-
plicitly in terms of basic singularity parameters of a matrix B.

Consider a singular n × n-matrix B of rank r and its eigenvalues µi with algebraic
multiplicities si = n − r′i (i = 1, . . . , q), µ1 = 0 (in the sequel, we omit the index i = 1
of a singular matrix parameters), for example, any eigenmatrix Bi = B − µiI. From (27),
the Hamilton-Cayley Theorem, with use of prime factorization and with replacement of the
scalar coe�cients by the Vi�ete sums, as in (5), we have

K1(B,n) =

n∑
t=0

(−B)n−tk(B, t) = (−B)s
′

r′∑
t=0

(−B)r
′−tk(B, t) =

= (−B)s
′
K1(B, r

′) = (−B)s
′

q∏
i=2

(µiI −B)s
′
i = Z (32)

This is the annulling characteristic polynomial in B.

From the other hand, each characteristic coe�cient of order r′ is nonzero, that is why

K1(B, r
′) =

q∏
i=2

(µiI −B)s
′
i ̸= Z, k(B, r′) =

q∏
i=2

µ
s′i
i ̸= 0. (33)
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The recurrent Souriau formula (25) in the interval r′ < t ≤ r′′ gives us the nilpotent
matrix coe�cients

K1(B, t) = (−B)t−r′K1(B, r
′) = −K2(B, t) ̸= Z. (34)

Further, if t = r′′ + 1, then

K1(B, r
′′ + 1) = (−B)r

′′−r′+1K1(B, r
′) = (−B)r

′′−r′+1

q∏
i=2

(µiI −B)s
′
i =

= Z = (−B)r
′′−r′+1

q∏
i=2

(µiI −B)s
0
i = (−B)s

0
q∏

i=2

(−Bi)
s0i , (35)

where each s0i is the exponent of the eigenmatrix Bi in a minimal annulling polynomial, it
is called the annulling multiplicity of µi.

From (35) and condition in (34)

(−B)r
′′−r′

q∏
i=2

(µiI −B)s
0
i ̸= Z.

We obtain the main result � formulae for the annulling multiplicities of µ1 = 0 and
consequently of all µi of the eigenmatrices Bi in the minimal annulling polynomial:

s0 = r′′ − r′ + 1, s0i = r′′i − r′i + 1. (36)

The annulling multiplicities satisfy the classic inequalities 1 ≤ s0i ≤ s′i [4, p. 24] due to
r′i ≤ r′′i and (32). Replace s0i in the classic inequalities by their values (36), obtain the weak
inequality r′′i ≤ n − 1. Therefore the classic inequalities may be strengthened, the upper
bound is more precise:

1 ≤ s0i ≤ ri − r′i + 1 ≤ s′i. (37)

Now we can see that expressing the unknown 2-nd rock in terms of the given s0i from
(36) can not lead to restriction r′′ ≤ r. That is why the 1-st and the 2-nd rocks are the
primary parameters of a singular matrix, while the annulling multiplicity is the secondary
notion.

The upper bound in (37) is attained when r′′i = ri , in that number if
r′′i = n− 1 = ri ≥ r′i.

Find condition for attaining the lower bound in (37), i. e. for equality r′i = r′′i . Take
advantage of the classic Sylvester Inequality [21, p. 394]:

min(r1, r2) ≥ rank (C1C2) ≥ r1 + r2 − n.

If k ≥ 2 matrices are multiplied (or a power of a matrix is analysed), their singularities
are more suitable than the ranks. Then the following two inequalities in general forms are
expressed in terms of its factors singularities brie�y and do not depend on n:

max⟨sing Ci⟩ ≤ sing
k∏

i=1

Ci ≤ n, sing

k∏
i=1

Ci ≤
k∑

i=1

sing Ci, (38)

sing C ≤ sing Ch ≤ n, sing Ch ≤ h · sing C, (39)

where h is an arbitrary positive integer.
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The upper bounds in right inequalities of (38) are attained if the following two conditions
do hold together:
(i) ⟨ker Ci⟩ ⊕ ⟨im Ci⟩ ≡ ⟨An⟩,
(ii) ⟨ker Ci⟩ ⊂ ⟨ im

∏k
j=i+1 Cj⟩, i = 1, . . . , k − 1.

They seem su�ciently clear and are useful in further considerations. In particular, if Ci

are the eigenmatrices, then their powers pairly commute and conditions above are trans-
formed into

⟨ker Bhi
i ⟩ ∩ ⟨ker B

hj

j ⟩ = ⟨0⟩, i ̸= j.

Then, due to (38) and conditions (i), (ii), for all hi ≥ s0i there holds

n = sing

 ∏
1≤i≤q, hi≥s0i

Bhi
i

 = sing Z =
∑

1≤i≤q, hi≥s0i

sing Bhi
i .

From the other hand, rank Bhi
i ≥ r′i (and this is equivalent to

sing Bhi
i ≤ s′i) as the algebraic multiplicity and the 1-st rock are invariant under powering

a matrix. Consequently, due to
∑q

i=1 s
′
i = n, we obtain

sing Bhi
i < s′i i� hi < s0i ,

sing Bhi
i = s′i i� hi ≥ s0i .

}
(40)

The value s = n− r is the geometric multiplicity. In particular,

sing Bs0 = s′, sing B
s0i
i = s′i. This fact and (39) lead to the following special inequalities:

s0i si ≥ s′i (s0i ≤ s′i and si ≤ s′i),
s0s ≥ s′ (s0 ≤ s′ and s ≤ s′).

}
(41)

The set ⟨sing Bhi
i ⟩ as well as the set ⟨rank B

hi
i ⟩ determines [4, p. 143] the set of the

Jordan subcells in the ultrainvariant s′i × s′i-cell, and the critical exponent of the matrix in
(40) determines the maximal size of the Jordan s0i × s0i -subcell.

If s0i = 1 (it is equivalent to r′i = r′′i ), then, due to (41), si = s′i. Conversely, if si = s′i,
then r′i = r′′i = ri. Thus, for lower boundaries of s

0
i there holds:

s0i = 1 ⇔ r′i = r′′i ⇔ r′i = ri,
s0 = 1 ⇔ r′ = r′′ ⇔ r′ = r.

}
(42)

For example, the following fact is well known:

s0i = 1, i = 1, . . . , q, ⇔ si = s′i, i = 1, . . . , q ⇔ B ∈ ⟨P ⟩.

The Jordan form JB is used for inferring them [4, p. 143], however it immediately follows
from (42), if to let i = 1, . . . , q.

On the other hand, for upper boundaries of s0i there holds:

s0i = s′i ⇔ si = 1 ⇔ r′′i = n− 1 = ri. (43)

They are determined by (41).

So, the theory of minimal annuling polynomial is exposed more completely, and this
polynomial is expressed in explicit form due to results obtained in the previous section.
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1.6 Null-prime and null-defective singular matrices

A singular matrix is called null-prime if its 1-st rock is equal to its rank. We shall use
notation Bp for null-prime matrices if necessary.

Of the fact above follows: if B is null-prime, then B′ is null-prime. Obviously, for the
eigenspace corresponding to its eigenvalue zero holds ⟨ker Bp⟩ ≡ ⟨ker (Bp)h⟩. In this
subspace, the matrix Bp behaves as a prime one. Indicate more widely the properties and
de�nitions of Bp.

The following assertions are equivalent:

(i) a square matrix B of rank r is null-prime,

(ii) r′ = r′′,

(iii) r′ = r,

(iv) rank(B2) = r,

(v) ⟨ker B⟩ ∩ ⟨im B⟩ ≡ ⟨0⟩,

(vi) ⟨ker B⟩ ∪ ⟨im B⟩ ≡ ⟨ker B⟩ ⊕ ⟨im B⟩ ≡ ⟨An⟩.

Due to (vi), any null-prime matrix possesses the characteristic a�ne projectors in the
linear spaces.

A square matrix B is called null-defective if r′ < r (its 1-st rock r′ = rank Bs0 also is
the minimal value of rank Bh). According to (35), for a null-defective matrix B, there exists
the characteristic nilpotent matrix

O1 = {K1(B
s0 , r′B)/k(B

s0 , r′B)}B, Os0

1 = Z, [(I ±O1)
s0 − I]s

0

= Z, (44)

where all the matrices commute with each other as polynomials in B (see in details in the
next sect. 2.2).

The nilpotent matrix OB in (21) is, in its turn, the sum of all the eigenmatrices
O1, . . . , Oq.

The parameters of the nilpotent matrix for a null-defective matrix B are the following:

r′ = 0, r′′ = s0 − 1,

where s0 is the nilpotency degree, and

s0 − 1 = r′′ ≤ rank O1 ≤ n[r′′/(r′′ + 1)] = n[(s0 − 1)/s0] ≤ n− 1, (45)

0 ≤ rank O1 ≤ r, n− s0(n− r) ≤ rank O1. (46)

Inequalities (45), (46) follow from (39). More precise bounds for the parameters

(n− 1)− (s′i − s0i ) ≤ ri ≤ n− 1, (47)

si ≤ s′i − (s0i − 1), s0i ≤ s′i − (si − 1) (48)

follow from (37).
In matrix Jordan form (see [10, part 2]), the value s0i − 1 = r′′i − r′i is the maximal

quantity of nonseparated units in the adjacent diagonal of the i-th ultrainvariant s′i×s′i-cell.
The total number of units in the cell is s′i − si = ri − r′i. This gives the sense to estimations
(47) and (48), and the notions of the 1-st and 2-nd rock.
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Inequality (41) may be interpreted in terms of the Jordan form too, namely, by the
following arguments. The adjacent diagonal of the matrix Jordan form contains, as well
known, only units and zeros; moreover, k nonseparated units in it correspond to the Jordan
subcell of size k+1. Among them there exists a subcell (may be not unique) of the maximal
size s0i . Consider this s

0
i ×s0i -subcell and add to the end of its array of units one zero element

(outside the subcell). When s0i is �xed, the total number of units in the adjacent diagonal
takes the maximal value if its partition into segments is almost uniform: all the segments
(but may be one) are of length s0i , and the last segment may be shorter, its length is equal
to the nonzero remainder of division s′i by s

0
i . Each segment ends with a zero, all other its

elements are units. Therefore,

min si = ⌊s′i/s0i ⌋

and the equality in (41) holds i� s′i/s
0
i is an integer. Inequalities (41) are equivalent to each

of the following:

(n− ri)(r′′i − r′i) ≥ ri − r′i, (49)

r′i + [(s′i − si)/si] ≤ r′′i ≤ (n− 1)− (s′i − s0i )/s0i ]. (50)

Hence estimations (41), (49), (50) for r′′ and s0i are e�ective only under condition r
′′
i < r.

In this case, we obtain

si < s′i, s0i < s′i, s′i > 3, si > 2, s0i > 1, n > 3.

The parameter ri − r′′i is called the i-th di�erent of a matrix. A defective matrix is
called null-di�erent if r′′ < r. The maximal value of the di�erent (particular and total)
is (
√
n − 1)2, it is less than n − 3. This follows from (49). The di�erent is maximal if the

integer n is a square. In this case,

r = n−
√
n, r′′ =

√
n− 1, r′ = 0, q = 1.

Due to (49), the matrix B is null-indi�erent in the following special cases:

(i) ri = 1 (⇔ r′′i = 1);
(ii) ri = 2 (⇔ r′′i = 2);
(iii) n ≤ 3;
(iv) s′i ≤ 3.

 (51)

Therefore, the di�erent is zero if the dimension of the whole space or the dimension of
the ultrainvariant space does not exceed 3. This may be useful for constructing the minimal
annulling polynomial in terms of the ranks. Note the sense of condition (ii): units in the
adjacent diagonals of the Jordan cells cannot be separated by zeros.

A singular square matrix B is null-indi�erent i�

rank Bh = rank Bh−1 − 1, h = 2, 3, . . . , s0

(rank Bs0 = r′ is minimal).

Null-prime and null-defective matrices as well as prime and defective ones according
to their de�nitions are pure a�ne notions. But they relate only to the eigenvalue zero of
singular matrices, in particular, of the eigenmatrices Bi = B − µiI. For the de�nition, it is
not meaning, the matrix is real-valued or complex-valued one.
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These notions are important especially in theory of eigenprojectors connected with given
singular matrix B, and in its numerous applications. One of them is spectral decomposition
of a matrix B up to its invariant and ultrainvariant subspaces for each eigenvalue µi, with
reducing original matrix into the basic canonical form or only into the null-cell form (see in
the next sect. 2.3).

Further, we shall often deal with matrices-multiplications of the types B = A1A
′
2 and

B′ = A2A
′
1, where A1 and A2 are n × m-matrices set certain geometric objects in a n-

dimensional a�ne or metric space. In the case, angular geometric relations between these
objects in the space are determine the matrix-multiplication B as a null-normal one or a
null-defective one.

It is clear that in the minimal polynomial of a prime matrix P , all the eigenmatrices
Pi = P −µiI are null-normal ones, and all they have powers 1 in it. However in the minimal
polynomial of a defective matrix B, some of its eigenmatrices Bi = B−µiI are null-defective

ones, and they have powers s0i > 1 in it. Then B
s0i
i became by null-normal matrix with this

minimal power.

1.7 The reduced form of characteristic coe�cients

We conclude the chapter with evaluating all the characteristic coe�cients of a given matrix
B in so called reduced form, where the fraction numerator and denominator in (1) are
polynomials in ϵ = −µ of the least degree. This reduced form is obtained through dividing
by the greatest common divisor the numerator and the denominator. The similar method for
computing the minimal annulling polynomial of a matrix is well known � see, for example,
in [4, p. 123].

Dividing the numerator and the denominator of fraction (1) by their greatest common
divisor leads to reducing the Hamilton�Cayley zero polynomial as well as all the charac-
teristic coe�cients, their connection formulae, and the Souriau algorithm [27] (see above).
Reducing in (24) yields the reduced analogues of the scalar and matrix characteristic poly-
nomials kB(ϵ) and KB(ϵ) from (1):

qB(ϵ)I = (B + ϵI)QB(ϵ). (52)

These reduced polynomials have also the reduced scalar and matrix characteristic coef-
�cients q(B, t) and Q1(B, t), where t is the order of these coef�cients:

qB(ϵ) =

n0∑
t=0

q(B, t)ϵn
0−t,

QB(ϵ) =

n0−1∑
t=0

Q1(B, t)ϵ
n0−t−1.

As well as (24), formula (52) is valid also for the matrix parameter E, and in special
case E = −B it gives the matrix minimal annulling polynomial of E = −B (where scalar
one depends on ϵ = −µ).
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From here, the reduced Hamilton�Cayley Theorem and the reduced secular equation:

qB(−B) = Q1(B,n
0) =

=

n0∑
t=0

q(B, t)(−B)n
0−t =

q∏
i=1

(µiI −B)s
0
i = Z, (53)

qB(−µ) =
n0∑
t=0

q(B, t)(−µ)n
0−t =

q∏
i=1

(µi − µ)s
0
i = 0. (54)

Thus n0 is the order of the minimal annulling polynomial (53). Reducing results in only
those parts of (53), (54) that do not contain µi and s

0
i . The values µi and s

0
i are determined

by solving the secular equation in (54).
When these values are known, the reduced Vi�ete theorem

q(B, t) =
∑

(Ct
n0 terms )

∏
(t values)

µi (q ≤ n0 =

q∑
i=1

s0i ≤ n) (55)

follows from (53). This leads to reducing (25)�(29). In the reduced Souriau algorithm [27]
(see above), the initial values are as usually, but further computations use the reduced trace,
etc.:

Q1(B, t) = I, Q2(B, 0) = Z, Q2(B, 1) = B,

and q(B, 1) =
∑q

i=1 s
0
iµi is the matrix B reduced trace. The reduced determinant is

q(B,n0) =

q∏
i=1

µ
s0i
i .

The inverse nonsingular matrix is

B−1 = Q1(B,n
0 − 1)/q(B,n0).

Note that quantity of the eigenvalues decreases up to n0.
The highest coe�cients of the eigenmatrices Bi = B − µiI as functions of µi have the

following reduced form:

Q1(Bi, r
0
i ) =

q∏
j=1

(µjI −B)s
0
j , q(Bi, r

0
i ) =

q∏
j=1

(µj − µi)
s0j , j ̸= i, (56)

where r0i = n0−s0i is the reduced 1-st rock. The second rock is equal to n0−1 after reducing.
Particular reducing (of the �xed eigenvalue µi quantity) is equal to s

′
i − s0i = (n− 1)− r′′i ,

the total reducing (for all µi) is n− n0.
The sum of the basic particular parameters satis�es inequalities

nq − 1 =

q∑
i=1

r′i ≤
q∑

i=1

r′′i ≤
q∑

i=1

ri ≤ nq − q.

If the matrix is prime (B ∈ ⟨P ⟩), then

n0 = q, s0i = 1, q(Ph, 1) =

q∑
i=1

µh
i , q(Ph, n0) = qn(P, n0) =

(
q∏

i=1

µi

)n

.
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And the coe�cients for its eigenmatrices are

Q1(Pi, n
0 − 1) =

q∏
j=1

(µjI − P ), q(Pi, n
0 − 1) =

q∏
j=1

(µj − µi), j ̸= i. (57)

Note, the general spectral representation of a matrix (see in sect. 2.2) may apply the min-
imal annulling polynomial and, perhaps, other types of annulling polynomials, for example,
these:

q∏
j=1

(µjI −B)max s0j =

q∏
j=1

(−Bj)
max s0j = Z, (58)

q∏
j=1

(µI
j −B)max s′j =

q∏
j=1

(−Bj)
max s′j = Z. (59)

Here the matrix (−Bj) powers are null-prime matrices too.

These reduced forms of exact matrices scalar and matrix characteristic coe�cients are
important, of course, from the theoretical point of view. They demonstrate in some extent
similarity between the Number theory and the Matrix algebra. In both cases, we deals with
cancellation of greatest common divisor, but here it is as scalar or as matrix polynomial.
Progenitor of such procedure with this divisor is the most ancient algorithm of Euclid in the
Number theory!

In this �rst chapter, we have dealt with a lot of theoretical aspects, which were needing
in more detailed consideration and studying. Contrary, from the practical point of view, its
most valuable results are the general inequality of all means, the serial limit method and
limit formulae of solving algebraic equations on it's basis, the found structure and properties
of the matrix characteristic coe�cients, the explicit form of the minimal annuling polynomial
of a square matrix, the fundamental inequality for basic singularity parameters of a square
singular matrix with their dependence on structure of the scalar and matrix characteristic
coe�cients, and an introduction of the very useful null-prime matrices with their unical
properties. Particular attention was paid to higher order coe�cients of a singular matrix
(note that all the eigenmatrices of an arbitrary square matrix Bi = B − µiI are always
singular ones).

All these new relationships and notions for a square matrix will be used in subsequent
theoretical and practical considerations. So, the results of the chapter give new opportunities
for inferring explicit formulae expressing eigenprojectors and modal matrices in terms of the
scalar and matrix characteristic coe�cients. This advantage is used widely in development
of tensor trigonometry in further divisions of the book.



Chapter 2

A�ne and orthogonal eigenprojectors

2.1 A�ne (oblique) projectors and quasi-inverse matrix

Let ⟨An⟩ be an a�ne n-dimensional space. Suppose Bp is a null-prime matrix of rank r,
then k(Bp, r) ̸= 0. Formula (26) is transforming into

K1(Bp, r)/k(Bp, r) +K2(Bp, r)/k(Bp, r) =
−→
Bp+

←−
Bp = I. (60)

Further
−→
Bp and

←−
Bp stand for the so-called a�ne eigenprojectors of Bp. These projectors

are also idempotent matrices (in general case, they are non-symmetric). In the Euclidean
space they are also the oblique eigenprojectors in the metric sense. We claim that in the

a�ne space
←−
Bp is a projector into the image ⟨im Bp⟩ parallel to the kernel ⟨ker Bp⟩, and

−→
Bp is a projector into ⟨ker Bp⟩ parallel to ⟨im Bp⟩. Indeed,

K2(Bp, r) = BpK1(Bp, r − 1) = K1(Bp, r − 1)Bp;

−→
Bp+

←−
Bp = I,

−→
Bp ·

←−
Bp =

←−
Bp ·

−→
Bp = Z;

(
−→
Bp)2 =

−→
Bp(I −

←−
Bp) =

−→
Bp, (

←−
Bp)2 =

←−
Bp(I −

−→
Bp) =

←−
Bp;

⟨ker Bp⟩ ⊕ ⟨im Bp⟩ = ⟨An⟩, x =
−→
Bpx+

←−
Bpx = −→x +←−x .

Any element x is uniquely decomposed into the sum of its projections in ⟨An⟩ as above.
Therefore, −→

Bp = K1(Bp, r)/k(Bp, r), (61)

←−
Bp = K2(Bp, r)/k(Bp, r) =

= BpK1(Bp, r − 1)/k(Bp, r) = K1(Bp, r − 1)Bp/k(Bp, r). (62)

The matrix Bp and both its eigenprojectors commute with each another as polynomials in
Bp (compare with formula (27)). In particular, for a scalar we get:

−→a = 0, ←−a = 1

and in some other trivial cases, −→
Z = I,

−→
I = Z;

⟨im K1(Bp, r)⟩ ≡ ⟨ker K2(Bp, r)⟩ ≡ ⟨ker Bp⟩,

⟨ker K1(Bp, r)⟩ ≡ ⟨im K2(Bp, r)⟩ ≡ ⟨im Bp⟩;

 (63)

rank K1(Bp, r) = sing Bp, rank K2(Bp, r) = rank Bp; (64)

−−−→
(Bp′) = (

−→
Bp)′,

←−−−
(Bp′) = (

←−
Bp)′,

−→−→
Bp =

←−←−
Bp =

←−
Bp,

←−−→
Bp =

−→←−
Bp =

−→
Bp;

k(
−→
Bp, t) = Ct

n−r, k(
←−
Bp, t) = Ct

r.


(65)
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For singular matrices Bp (r = r′), we have (as generalization of detBh = dethB):

k(Bph, r) = kh(Bp, r) ̸= 0; (67)

Kj((Bp)
h, r) = Kh

j (Bp, r) = kh−1(Bp, r)Kj(Bp, r), j = 1, 2. (68)

In an a�ne space, the a�ne quasi-inverse matrix for a matrix Bp is the following:

Bp− =
←−
Bp[K1(Bp, r − 1)/k(Bp, r)] = [K1(Bp, r − 1)/k(Bp, r)]

←−
Bp

= Bp[K1(Bp, r − 1)/k(Bp, r)]2 = [K1(Bp, r − 1)/k(Bp, r)]2Bp. (69)

It commutes with Bp and in the subspace ⟨im Bp⟩ it behaves as an usual inverse matrix,
in ⟨ker Bp⟩ it plays the role of the zero matrix. It is uniquely determined by equations

Bp−Bp = BpBp− =
←−
Bp, Bp− =

←−
BpBp− = Bp−

←−
Bp. (70)

The following formulae hold:

rank Bp− = rank Bp;

⟨im Bp−⟩ ≡ ⟨im Bp⟩, ⟨ker Bp−⟩ ≡ ⟨ker Bp⟩;

BpBp−Bp = Bp; Bp−BpBp− = Bp−;

(Bp−)− = Bp; (Bph)− = (Bp−)h; (Bp′)− = (Bp−)′.

Moreover,

B− = B−1 ⇔ det B ̸= 0.

Due to (1), (61), (62), and (69), the a�ne eigenprojectors and the quasi-inverse matrix
are represented as limits

−→
Bp = lim

ϵ→0
[ϵ(Bp+ ϵI)−1] = lim

N→∞
(NBp+ I)−1, (71)

←−
Bp = lim

ϵ→0
[Bp(Bp+ ϵI)−1] = lim

N→∞
[NBp(NBp+ I)−1], (72)

Bp− = lim
ϵ→0

[Bp(Bp+ ϵI)−2] = lim
N→∞

[(N2Bp(NBp+ I)−2] (73)

(
−→
Bp+

←−
Bp = I, Bp−Bp = BpBp− =

←−
Bp, N = 1/ϵ).

These limit formulae have most common a�ne form. They are gotten here by the algebraic
manner using a resolvent of Bp (see also in sect. 3.4).

2.2 Spectral presentation of n×n-matrix with basic canonical form

In all ultrainvariant subspaces (their sums are direct), the a�ne eigenprojectors (61) of a
prime matrix P may be represented, due to (57), by two manners as follows:

−→
Pi =

K1(Pi, ri)

k(Pi, ri)
=
Q1(Pi, r

0)

q(Pi, r0)
=

∏
1≤j≤q, j ̸=i

µjI − P
µj − µi

, (74)

where r0 = n0 − 1 = q − 1 (see the last manner also, for example, in [4, p. 156]).
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The a�ne projectors of a non-prime (defective) matrix B are represented according to
(61), (33), (56), and (58)�(60), by two di�erent manners as follows:

−−−→
Bp(i) =

K1(Bi, r
′
i)

k(Bi, r′i)
=
Q1(Bi, r

0
i )

q(Bi, r0i )
=

=
∏

1≤j≤q, j ̸=i

(µjI −B)s
0
j

(µj − µi)
s0j

=
∏

1≤j≤q, j ̸=i

(µjI −B)h

(µj − µi)h
=
−−→
(Bh

i ), (75)

where Bp(i) = B
s0i
i , h ≥ max s0i (see the last manner, for example, in [11, p. 128�143]).

Note, that eigenmatrices Pi = P − µiI and the power matrices

Bh, h ≥ s0, Bhi
i , hi ≥ s

0
i ,

are trivial special cases of null-prime singular matrices Bp.
Spectral representation of a non-prime matrix B up to its ultrainvariant eigen subspaces

corresponding to each µi determines decomposition of the matrix B into the unique sum of
two its characteristic matrices � prime one and nilpotent one (see before (21) and (44)):

B = B

q∑
i=1

−−−→
Bp(i) =

q∑
i=1

µi
−−−→
Bp(i) +

q∑
i=1

Bi
−−−→
Bp(i)

=

q∑
i=1

Pi +

q∑
i=1

Oi = PB +OB . (76)

Note, Oh
B = Z if h ≥ max s0i . This may be interpreted by the Jordan form.

In order to construct the canonical q-block-diagonal form of the matrix [4, p. 130], the
modal matrix of transformation may be evaluated with use of the following coe�cients
(proportional to eigenprojectors), accordingly, due to (33) or theoretically to (56):

K1(Bi, r
′
i) =

∏
1≤j≤q, j ̸=i (µjI −B)s

′
j , Q1(Bi, r

0
i ) =

∏
1≤j≤q, j ̸=i (µjI −B)s

0
j .

Then

⟨im K1(Bi, r
′
i)⟩ ≡ ⟨im Q1(Bi, r

0
i )⟩ ≡ ⟨ker B

s0i
i ⟩,

⟨ker K1(Bi, r
′
i)⟩ ≡ ⟨ker Q1(Bi, r

0
i )⟩ ≡ ⟨im B

s0i
i ⟩.

}
(77)

For a prime matrix P , the coe�cients are simpli�ed according to r′i = ri, or due to (57).

All the coe�cients are null-prime matrices. However, such matrices have nonzero scalar
coe�cients of the highest order, that is why they contain a basis minor. This minor is the
intersection of the basis s′i × n-submatrix of the rows and the basis n× s′i-submatrix of the
columns. Therefore the total covariant and contravariant modal matrices consist of all the
column submatrices and, respectively, of all the row ones (i = 1, . . . , q):

V −1
col BVcol = Cµ(B), Ẽ1 = VcolẼ, (78)

VligBV
−1
lig = Cµ(B), Ẽ2 = V −1

lig Ẽ, (79)

(V ′
lig)

−1B′V ′
lig = C ′

µ(B), Ẽ3 = V ′
ligẼ, (80)

(V ∗
lig)

−1B∗V ∗
lig = C∗

µ(B), Ẽ4 = V ∗
ligẼ, (81)

where Cµ is the q-block-diagonal form of B with respect to its eigenvalues µ1, . . . , µq, Ẽ

and Ẽk, k = 1, . . . , 4, are the original basis and one of these 4 canonical forms.
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Each ultrainvariant space contains non invariant subspaces

⟨ker Bs0i
i ⟩ ⊃ ⟨im O1

i ⟩ ⊃ · · · ⊃ ⟨im O
s0i−1
i ⟩,

⟨ker Bs0i
i ⟩ ⊃ ⟨ker O

s0i−1
i ⟩ ⊃ · · · ⊃ ⟨ker O1

i ⟩,

}
(82)

⟨im Ot
i⟩ ≡ ⟨im K1(Bi, r

′
i)B

t
i ⟩ ≡ ⟨im Q1(Bi, r

0
i )B

t
i ⟩,

⟨ker Ot
i⟩ ≡ ⟨im Bt

i ⟩, t = 1, . . . , s0i − 1.

}
(83)

Take a certain ultrainvariant cell of projection (76) and subtract its prime diagonal part. The
result is its nilpotent cells. It may be transformed into subcells (82) till the �nal elementary
subcells. After this the common process may be continued till the Jordan nilpotent form.

Formulae (78) and (79) determine here the various modal matrices for the prime matrix
PB =

∑q
i=1 Pi in (76). The general formula of the covariant modal matrix is

⟨Vcol⟩ ≡ Vcol⟨Cq⟩, V −1
lig ∈ ⟨Vcol⟩. (84)

Here Cq is an arbitrary nonsingular cell matrix consisting of nonsingular blocks c1, . . . , cq.
The quantity of nilpotent Jordan t × t-subcells in the i-th cell of the basic canonical form
for the matrix B are

(rank Ot
i − rank Ot+1

i )− (rank Ot+1
i − rank Ot+2

i ),

see, for example, [10, part 2, p. 95]. General spectral representation of the matrix B
analytical functions may be computed with use of the Lagrange and Hermite interpolating
polynomials with so called the component matrices [4, p. 155-159]:

B(ik) =
Bk−1

i

(k − 1)!

−−−→
Bp(i), ⟨im B(ik)⟩ ≡ ⟨im Ok−1

i ⟩, k = 1, . . . , s0i . (85)

Substitute here
−−−→
Bp(i) for (75), the result is the form depending only on the original matrix B.

2.3 Transforming a null-prime matrix in its null-cell form

Let Bp be a null-prime n×n-matrix and rank Bp = r. Further, de�ne the canonical null-cell
(two-block-diagonal) form of the matrix Bp as the modal transformed n× n-matrix Bc:

Bp → Bc =

[
Z1 Z
Z B1

]
.

Here B1 is a nonsingular r × r-matrix (det B1 ̸= 0) and Z1 is the zero s × s-matrix,
s = n − r is the geometric and algebraic multiplicity of the eigenvalue 0 for Bp. Find the
modal transformation of Bp into Bc. The high coe�cients K1(Bp, r) and K2(Bp, r), where
r = rank Bp, are proportional to the eigenprojectors (61) and (62), what are necessary here
for the searched modal transformation. (But for their evaluating the eigenvalues of Bp are
not necessary as for the full spectrum (76)). These coe�cients are null-prime matrices, and
thus they contain basis diagonal minors determining two basis n× s- and n× r-submatrices
of columns. These submatrices generate the modal matrix of the base transformation:

V −1
col BpVcol = Bc, Ẽ1 = VcolẼ, ⟨Vcol⟩ ≡ Vcol⟨C2⟩. (86)

Here C2 is a two-cell analog of Cq from (84). So, the transformation is found.
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Suppose there are two null-prime matrices Bp1 and Bp2 of the same order such that

⟨im Bp1⟩ ≡ ⟨im Bp2⟩, ⟨im Bp′1⟩ ≡ ⟨im Bp′2⟩ (
−−→
Bp1 =

−−→
Bp2,

←−−
Bp1 =

←−−
Bp2).

Then, due to (86), we obtain

Kj(Bp1Bp2, r) = Kj(Bp2Bp1, r) = Kj(Bp1, r)Kj(Bp2, r), j = 1, 2,

k(Bp1Bp2, r) = k(Bp2Bp1, r) = k(Bp1, r)k(Bp2, r). (87)

The last formula generalizes the well-known one for the determinant of square matrices
multiplications

det (B1B2) = det (B2B1) = det B1 · det B2.

One else simplest form for a null-prime matrix consists of zero n × (n − r)-matrix and
n× r-matrix of the basis columns:

Bp =
[
Z2 | A2

]
.

It may be also useful.

2.4 Null-normal singular matrices

There is an one-to-one correspondence between the pair of eigenprojectors (
−→
Bp,
←−
Bp) and the

pair (⟨im Bp⟩, ⟨ker Bp⟩) of linear subspaces in an a�ne space ⟨An⟩ with a certain base.
Suppose this space is real. Consider the set of real so-called null-normal matrices ⟨Bm⟩
satisfying condition

−−→
Bm =

−−→
Bm′ = (

−−→
Bm)′ ⇔

←−−
Bm =

←−−
Bm′ = (

←−−
Bm)′. (88)

Geometrically, this means that

⟨ker Bm⟩ ≡ ⟨ker Bm′⟩ ⇔ ⟨im Bm⟩ ≡ ⟨im Bm′⟩. (89)

The sum of ⟨im Bm⟩ and ⟨ker Bm⟩ in ⟨An⟩ is direct as k(Bm, r) ̸= 0. In the Euclidean
space ⟨En⟩ with an orthonormal base, we have

⟨ker Bm′⟩ ≡ ⟨im Bm⟩⊥ ≡ ⟨ker Bm⟩,
⟨im Bm′⟩ ≡ ⟨ker Bm⟩⊥ ≡ ⟨im Bm⟩;

}
⇔ (90)

⇔ ⟨im Bm⟩⊞ ⟨ker Bm⟩ ≡ ⟨En⟩.

This is the special geometric sense of matrices Bm: In a real space ⟨En⟩ with a �xed or-
thonormal base the characteristic eigenprojectors of a null-prime matrix Bp are symmetric
i� its subspaces ⟨im Bp⟩ and ⟨ker Bp⟩ form the spherically orthogonal direct sum, what is
specially denoted in (90) (i. e., i� they are orthocomplements of each to another in ⟨En⟩.)

In the eigenspace corresponding to the eigenvalue µ = 0, the matrix Bm is similar
to a normal matrix. That is why it is called null-normal. In the Euclidean space its
eigenprojectors are orthogonal. Special cases of null-normal matrices are normal, symmetric,
skew-symmetric, and nonsingular ones.

The following equivalences do hold:

−−→
Bm =

−−→
Bm′ = K1(Bm, r)/k(Bm, r) ⇔ K1(Bm, r) = K ′

1(Bm, r) (91)
⇕ ⇕

←−−
Bm =

←−−
Bm′ = K2(Bm, r)/k(Bm, r) ⇔ K2(Bm, r) = K ′

2(Bm, r). (92)
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In ⟨En⟩,
−−→
Bm and

←−−
Bm project into ⟨ker Bm⟩ and respectively ⟨im Bm⟩ by the orthogonal

way, and
−−→
Bm ⊥

←−−
Bm.

The following conditions are equivalent (see sect. 2.1):
(i) all the eigenmatrices Bi are real and null-prime;

(ii) all these matrices have the real a�ne projectors
−→
Bi and

←−
Bi;

(iii) the matrix B is real and prime, and all its eigenvalues are real numbers.
A real normal matrix B = M may be transformed into diagonal real one by a real

orthogonal modal matrix i� the matrix M is symmetric (M = S).
For any symmetric matrix S, the kernel and the image of each its eigenmatrix Si are

the orthogonal complements of each other, and kernels form the direct orthogonal sum.
Therefore, all the eigenmatrices of a real matrix B are real and null-normal i� B is real and
symmetric. In particular, null-normal matrices B and B′ of rank n − 1 have the common
eigenvector ⟨ker B⟩ ≡ ⟨ker B′⟩ i� BV = (BV )′.

Take a null-normal matrixBm and apply the Gram�Schmidt orthogonalization algorithm
to columns of the two blocks of the matrix Vcol = V ′

lig in (86) separately. The result is the
orthogonal modal matrix for constructing the null-cell canonical form (86), i. e. congruent
modal transformation:

Bc = R′
colBmRcol (93)

(⟨Rcol⟩ ≡ Rcol⟨R2⟩, but ⟨Vcol⟩ ≡ Rcol⟨C2⟩, see (86)). Structure of R2 here is similar to C2

in (86). If the original base is, for example, Cartesian, then the new orthonormal base is
expressed in terms of the columns of the modal matrix {Rcol} = {R′

lig}. And orientation
of the base is changed under multiplying Rcol by the alternating unity matrix on the right
for its restoring. The modal orthogonal matrix Rcol for constructing the diagonal form of a
symmetric matrix S is computed by the way similar to (78). If all the eigenvalues of S are
distinct, then n its unity length eigenvectors determined by ⟨ker Si⟩ form the desired matrix
Rcol. If some of them are degenerative (under condition si > 1), then the Gram�Schmidt
orthogonalization is applied.

The following examples of null-normal matrices are used in the sequel. These matrices
are generated by the special n×m-matrix A (n ̸= m):

Bm1 = A1A
′
2, Bm′

1 = A2A
′
1 (94)

(⟨im A1⟩ ≡ ⟨im A2⟩, rank A1 = rank A2 = m < n),

Bm2 = A′
1A2, Bm′

2 = A′
2A1 (95)

(⟨ker A1⟩ ≡ ⟨ker A2⟩, rank A1 = rank A2 = n < m).

Note some other properties of all null-normal matrices.

−−−−−→
Bm′Bm =

−−−−−→
BmBm′ =

−−→
Bm,

←−−−−−
Bm′Bm =

←−−−−−
BmBm′ =

←−−
Bm,

⟨ker Bm′Bm⟩ ≡ ⟨ker BmBm′⟩ ≡ ⟨ker Bm⟩,
⟨im Bm′Bm⟩ ≡ ⟨im BmBm′⟩ ≡ ⟨im Bm⟩.

 (96)

Apply (87) to null-normal matrices Bm and Bm′, we obtain

K1(BmBm
′, r) = K1(Bm

′Bm, r) = K2
1 (Bm, r),

K2(BmBm
′, r) = K2(Bm

′Bm, r) = K2
2 (Bm, r),

k(BmBm′, r) = k(Bm′Bm, r) = k2(Bm, r).

 (97)

Formula (97) generalizes the well-known formula for determinants

det(BB′) = det(B′B) = det2B.

(Singular matrices M and S are also the special cases of null-normal ones.)
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2.5 Spherically orthogonal projectors and quasi-inverse matrices

In the previous section, we introduced the orthogonal eigenprojectors in addition to oblique
ones. They were de�ned for null-normal matrices due to spherical orthogonality (90) of
eigensubspaces in ⟨En⟩. This property takes place only in ⟨En⟩ and corresponds to to right
tensor spherical angles (see in Ch. 5) between subspaces or lineors.

Let A be a real-valued m× n-matrix of rank r which is less n and m. We have products
A′A,AA′ ∈ ⟨Bm⟩, and their rank is also equal to r. According to (91) and (92) we obtain

−−→
A′A = K1(A

′A, r)/k(A′A, r),
−−→
AA′ = K1(AA

′, r)/k(AA′, r), (98)

←−−
A′A = K2(A

′A, r)/k(A′A, r) = A+A = In×n −
−−→
A′A,

←−−
AA′ = K2(AA

′, r)/k(AA′, r) = AA+ = Im×m −
−−→
AA′,

{k(AA′, t)} = {k(A′A, t)};


(99)

and in the two trivial cases, when either rank A = r = m < n, or rank A = r = n < m,
they expressed as follow:

rank A = r = m < n⇒
←−−
A′A = A′{AA′}−1 ·A = A+A,

rank A = r = n < m⇒
←−−
AA′ = A{A′A}−1 ·A′ = AA+.

 (99′)

Here, for example, in ⟨Em⟩ with m× 1-vectors a:
←−−
AA′ is the orthogonal projector onto ⟨im A⟩ ≡ ⟨ker A′⟩⊥;

←−
aa′ = aa′/a′a, {a}+ = a′/(a′a);

−−→
AA′ is the orthogonal projector onto ⟨ker A′⟩ ≡ ⟨im A⟩⊥;

−→
aa′ = I − aa′/(a′a);

A+ is here the quasi-inverse Moor�Penrose n×m-matrix [30�32], rank A+ = r.
Contrary, for the two complementary subspaces of ⟨En⟩ or of ⟨An⟩, we obviously obtain

←−−
A′A+

−−→
A′A = In×n,

←−−
B′B +

−−→
B′B = In×n =

←−−
BB′ +

−−→
BB′ (100)

� equivalent to ⟨im A′⟩ ⊕⟨ker A⟩ ≡ ⟨An⟩, ⟨im B′⟩ ⊕⟨ker B⟩ ≡ ⟨im B⟩ ⊕⟨ker B′⟩ ≡ ⟨An⟩.
Ii is in ⟨En⟩ the subspaces are orthogonally complementary. According to (99) any matrix

A+ satis�es the two Penrose equations [32], which determine it independently:

AA+A = A, A+AA+ = A+.

From the latter and (62) we obtain exactly for any A, i. e., for m× n or n×m:

A+ = A′ · K1(AA
′, r − 1)

k(AA′, r)
=
K1(A

′A, r − 1)

k(A′A, r)
·A′. (101)

First is the Decell's formula, inferred in [33] from the Souriau algorithm [27] (see in Ch. 1).
Equality (101) can be checked by representing the matrix coe�cients by polynomials (27).

The matrix A+ behaves as the inverse matrix in ⟨im A⟩ and as the zero one in ⟨ker A′⟩
with respect to multiplication from the left:

A+C = A+[(
←−−
AA′ +

−−→
AA′)C] = A+(

←−−
AA′C). (102)

However with respect to multiplication from the right, the matrix A+ plays the role of the
inverse matrix in ⟨im A′⟩ and the zero matrix in ⟨ker A⟩:

CA+ = [C(
−−→
A′A+

←−−
A′A)]A+ = (C

←−−
A′A)A+. (103)
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In particular, the matrix B commutes with B+ exactly in ⟨im B⟩ ∩ ⟨im B′⟩. That is why
the following equivalences hold for the matrix B− from (69) (see sect. 2.1):

B− = B+ ⇔ B ∈ ⟨Bm⟩ ⇔ B+B = BB+. (104)

In the Euclidean space with a certain orthonormal base, a quasi-inverse orthogonal matrix
has the following geometric sense: its Frobenius norm (the matrix norm of the 1-st order, see
sect. 9.1) is minimal among all quasi-inverse matrices determined by 1-s Penrose equation
AXA = A, i. e., this matrix is the normal solution of this equation from the left and from
the right [30, 32] (see also below). Moreover, this matrix A+ gives the normal solutions (i. e.,
with the minimal Frobenius norm) of the left, right, and mixed general linear equations

A1(m× n) ·X(n× t) = A(m× t) ⇒
•
X (n× t) = A+

1 A, (105)

Y (t×m) ·A2(m× n) = A(t× n) ⇒
•
Y (t×m) = AA+

2 , (106)

A1(m1 × n1) ·X ·A2(m2 × n2) = A(m1 × n2) ⇒
•
X (n1 ×m2) = A+

1 AA
+
2 . (107)

Equations residuals for full solutions have the minimal Frobenius norm too:

•
∆1= −

−−−→
A1A

′
1A,

•
∆1= Z ⇔ A ∈ ⟨

←−−−
A1A

′
1 · Em×t⟩ ≡ ⟨KERR

−−−→
A1A

′
1⟩,

 (108)

•
∆2= −A

−−−→
A′

2A2,

•
∆2= Z ⇔ A ∈ ⟨Et×n ·

←−−−
A′

2A2⟩ ≡ ⟨KERL

−−−→
A′

2A2⟩,

 (109)

•
∆= −

−−−→
A1A

′
1A−A

−−−→
A′

2A2 +
−−−→
A1A

′
1A
−−−→
A′

2A2,
•
∆= Z ⇔

A ∈ ⟨
←−−−
A1A

′
1 · Em1×n2 ·

←−−−
A′

2A2⟩ ≡ ⟨KERR

−−−→
A1A

′
1 ∩KERL

−−−→
A′

2A2⟩.

 (110)

Intersection of the set of all left quasi-inverse matrices and the set of all right ones
determined by (99) consists of the unique element A+ [30, 34]:

⟨A−
R⟩ ≡ A

+ ⊕ ⟨
−−→
A′A · En×m ·

←−−
AA′⟩ (111)

(all these matrices produce orthoprojectors in (108), in particular, A+),

⟨A−
L ⟩ ≡ A

+ ⊕ ⟨
←−−
A′A · En×m ·

−−→
AA′⟩ (112)

(all these matrices produce orthoprojectors (109), in particular, A+),

A+ = ⟨A−
R⟩ ∩ ⟨A

−
L ⟩. (113)

In particular, from (108)�(110) we obtain

rank A1 = m ⇒
•
∆1= Z, rank A2 = n ⇒

•
∆2= Z,

(rank A1 = m, rank A2 = n) ⇒
•
∆= Z.

 (114)



48 CHAPTER 2. AFFINE AND ORTHOGONAL EIGENPROJECTORS

Consider in details the exact normal solution of the classical linear equation Ax = a in
the general form with the use of formula (101):

||Ax− a|| → min,
•
x= A+a = [

•
A (r)/k(AA′, r)]a, (115)

•
d= −

−−→
AA′a. (116)

We have
•
d= 0 ⇔ a ∈ ⟨ker

−−→
AA′⟩ ≡ ⟨ker K1(AA

′, r)⟩. (117)

Here we get exact formulae (115) and (116) for the normal solution and minimal residual
of the classic linear equation Ax = a. The residual is antiprojection (116). Consequently,
its Euclidean norm satis�es

||
•
d ||2 = −

•
d
′
a, (118)

||
•
d || = sinφ ||a||, (φ ∈ [0;π/2]) (119)

where φ is the introduced here scalar angle between the vector a and the subspace ⟨im A⟩.
We conclude the section with inferring from formula (101) the explicit expression for a

(p, q)-element of the n×m-matrix
•
A (r) in (115). The most general Hermitean-like form of

this element in the case of a complex initial linear equation is

(p, q) =
∑

(Cr
m−1 terms)

∑
(Cr

n−1 terms)

{
(q, p) ∈
minor(r)

A

}
Adq′,p′

{
(q, p) ∈
minor(r)

A

}
,

where p = 1, . . . ,m, q = 1, . . . , n, p′ and q′ are new indexes of aqp in minors of A. Therefore,
(115) generalizes here the Cramer formulae. In special case r = n = m, (115) represents

the matrix solution of a nonsingular linear equation Ax = a, because
•
A (n) = det A · AV ,

k(AA∗, n) = det A · det A and, consequently, the solution is x = (AV /det A)a = A−1a (the
special classic case see, for example, in [4, p. 38]). In the presentation as limit formula
for the initial m× n-matrix A, the quasi-inverse n×m-matrix A+ by Moor and Penrose is
expressed according to initial (1) and to (101),as follows (see more in sect. 3.4):

A+ = lim
ϵ→0

[A′(AA′ + ϵI)−1] = lim
ϵ→0

[(A′A+ ϵI)−1A′]

The exact normal solution of the linear equation Ax = a together with these general limit
and exact real and complex formulae for the matrix of Moor and Penrose were established
by the author with very detailed derivations yet in early of 1981, with introduction of both
rocks for a matrix B, and along with all the new concepts introduced in Chapters 1 and 2.
The draft of the author's 1st math atricle, with these formulae and the structures of the
matrix characterisic coe�cients, was submitted to the main mathematical journal of the
USSR, and it lay with its 1st Soviet reviewer for 2 years, after which it was rejected by
him with the wording that it was not suitable for this respectable journal. However, in the
middle of this period, the new limit formula above mysteriously appeared in this reviewer's
new book, by default, as his proper, and it is clear why: he probably liked it very muched.

The draft article continued to circulate in other Soviet math journals with the same result,
and another "author" from the same math circle later published also very mysteriously my
structure above of the matrix characteristic coe�cients, but from him. How does the hand
rise among "�gures" in the �eld of exact sciences to pass o� someone else's as their own?

"O tempora, o mores!" � Marcus Tullius Cicero (First-century BC).
(See more about these historical aspects on the author's web-site and in the end of Ch. 4.)



Chapter 3

Main scalar invariants of singular matrices

3.1 The minorant of a matrix and its applications

Let A1 and A2 be n×m-matrices. Then k(A1A
′
2, t) = k(A2A

′
1, t). The scalar coe�cients of

order t for n× n-matrix A1A
′
2 were shown to be the sums of all diagonal minors of order t.

Represent each matrix of diagonal minors of A1A
′
2 as the following multiplication of t×m-

matrices of rows:

{D-minor(t)A1A
′
2} = {lig(t)A1}{lig(t)A2}′.

By the Binet�Cauchy formula [4, p. 39], this minor (i. e., determinant of the left matrix) is
the sum of all pair multiplications of all minors from the right submatrices of order t with
the same set of columns. For the m × m-matrix A′

1A2, in all these assertions, rows are
changed for columns and columns are changed for rows. Consider the two sets of Ct

nC
t
m pair

multiplications of order-t minors of A1 and A2. They form the two sums. The �rst sum is
equal to the scalar coe�cient k(A1A

′
2, t), the second sum is equal to the scalar coe�cient

k(A′
1A2, t). There exists a bijection between these two sets, it is described just above, thus

for external and internal multiplications of these matrices we have

k(A1A
′
2, t) = k(A′

1A2., t) = k(A2A
′
1, t) = k(A′

2A1, t). (120)

In the special case A1 = A2 = A, i. e., for these both homomultiplications, there holds

k(AA′, t) =
∑

(Ct
m terms)

∑
(Ct

n terms)

minor2(t)A = k(A′A, t) =Mt2(r)A ≥ 0. (121)

We introduced here the highest positive characteristic of an n×m-matrix, its minorant:

Mt(r)A =
√
k(AA′, r) =

√
k(A′A, r) =Mt(r)A′ > 0.

It is the square root of the sum of all squared basic minors A, this follows from (121).

Note the special cases.

1. If n > m = r, thenMt2(m)A = det A′A (the Gram determinant for columns A).

2. If m = 1, thenMt(1)a = ||a||E (the Euclidean module a).

3. If n = m = r, thenMt(n)A = |det A| (the determinant A).

Formulae for the matrix poly-step homomultiplication minorant follow from (67):

Mt(r){AA′A . . .︸ ︷︷ ︸
h

} =Mt(r){A′AA′ . . .︸ ︷︷ ︸
h

} =

=
√
k[(AA′)h, r] =

√
kh(AA′, r) =Mth(r)A.

Consider equation (115) and the matrix {A|a}. If n = m = r, according (117),
•
d= 0.

When n ≥ m ≥ r, (116) and (119) give the general result:

Mt(r + 1){A|a} = sinφ · ||a|| · Mt(r)A = ||
•
d || · Mt(r)A. (122)
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Through graceful formula (122) and in term of minorant of the matrix {A|a} of order-(r+1)
with all squared minors, we prove clear in one-line the classic Kronecker�Capelli Theorem:

Mt2(r + 1){A|a} =
∑

(Cr+1
m+1)

∑
(Cr+1

n )

minor2(r + 1){A|a} = 0⇔
•
d= 0 ⇔ sinφ = 0.

If n > m = r, then the Gram determinant may be also the analogous criterion as

Mt2(r + 1){A|a} = det[{A|a}′{A|a}] = ||
•
d ||2 · Mt2(r)A.

Formula (122) in the pure trigonometric form (where φ ∈ (0;π/2]) is

0 ≤ sinφ =Mt(r + 1){A|a}/(Mt(r)A · Mt(1)a) ≤ 1. (123)

In particular, for the angle between two vectors (φ12 ∈ (0;π/2]) in ⟨En⟩, we have:

0 ≤ sinφ12 =Mt(2)[a1|a2] /(Mt(1)a1 · Mt(1)a2) =

=
√
det{[a1|a2]′ · [a1|a2]}/(||a1|| · ||a2||) = ||a1 × a2||/(||a1|| · ||a2||) ≤ 1. (124)

Here on the left we gives a scalar multiplication of sine type for two vectors and on the
right we gives identical to it a module of their vector multiplication. In the �rst variant, for
two vectors on a plane (n = 2), may be eigen, i. e., in ⟨E2⟩!), the determinant in formula
(124) disintegrates in two equal determinants. As result, there holds the simpli�ed formula
for the angle between two vectors on a plane with the angle sign:

−1 ≤ sinφ12 = det[a1|a2]/(||a1|| · ||a2||) ≤ +1, (φ12 ∈ [−π/2;+π/2]).

Relation between the minorant of an n × r-matrix A and the square root of the Gram
determinant of its r columns enables one to clarify the geometric sense of the minorant as the
volume of the parallelepiped, constructed on the vector-columns of the matrix A [5, p. 216].
In particular, put m = r. We often deal with such matrices in part II. They represent
special linear geometric objects lineors of greater dimension (r > 1), then vectors. Consider
the columns of a matrix A. Denote the submatrix formed by �rst j columns as Aj . Then
Aj+1 = {Aj |aj+1} for each j. Apply formulae (119) and (122) to Aj+1, also the geometric
interpretation of the Gram determinant square root may be used. Subsequent application
of this operation gives the formula

Mt(r)A = vr = ||a1|| · sinφ1,2 · ||a2|| · sinφ1,2,3 · · · ||ar|| ≤ ||a1|| · ||a2|| · · · ||ar||, (125)

where vr is the volume of the r-dimensional parallelepiped with sides a1, . . . ,ar, and
φ1,2, φ1,2,3, · · · ∈ (0;π/2].

If n = m = r, then from (125) the sine Hadamard Inequality in its usual form [21, p. 35]
is valid; and, if r = 2, it has particular form (124). Due to (74), the following does hold:

Mt(r)A =
√
k(AA′, r) =

q∏
j=2

σ
sj
j > 0,

−−→
AA′ =

q∏
j=2

(σ2
j In×n −AA′)/σ2

j , (126)

where σ2
j > 0 are the nonzero eigenvalues of AA′ or A′A.
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In general (n ≥ m ≥ r ≥ t), the coe�cients k(AA′, t) = k(A′A, t) can be expressed either
geometrically as the sums of squared t-dimensional volumes (t-measures) or algebraically as
the Vi�ete sums of the eigenvalues of AA′:

k(AA′, t) =
∑

(Ct
m terms)

v2t(p) = st(σ
2
j ) = v2t > 0,

k(AA′, 1) =
∑

(m terms)
ℓ2(p) = s1(σ

2
j ) = ℓ2 = ||A||2F > 0,

 (Mt2(r)A = v2r). (127)

Here, in Cartesian coordinates, vt(p) is the volume vt of the orthoprojection of the rank t.
If m = r, then the ratio vt(p)/vt = cosαp is the p-th direction cosine.

Formulae (127) express the Pythagorean Theorem for the linear objects represented by
n × r-matrices. Further, they are called lineors. All the characteristics are always positive
and invariant under orthogonal transformations of columns or rows of the matrix A and its
Cartesian base. In particular, there holds

Mt(r)A =Mt(r){R1AR2} =Mt(r)
√
AA′ =Mt(r)

√
A′A. (128)

Therefore, a minorant may be used as geometric characteristic for these lineors of di�erent
dimensions and ranks. In Ch. 9 this opportunity will be realized for introducing general
norms of similar linear objects.

The arithmetic roots in (128) may be singular; in general, they are related with the
matrix A by the quasi-polar decompositions of A (i. e., QR-factorization):

A = S⊕
1 ·Rq =

√
AA′ · {(

√
AA′)+ ·A}, (129)

A = Rq · S⊕
2 = {A · (

√
A′A)+} ·

√
A′A. (130)

S⊕
1 = Rq · S⊕

2 ·Rq′ ⇔ AA′ = Rq ·A′A ·Rq′,

Rq = A · (
√
A′A)+ = (

√
AA′)+ ·A ⇒

Rq ·Rq′ =
←−−
AA′, Rq′Rq =

←−−
A′A, Rq′ = Rq+.

The transformation A → Rq gives the same result as the Gram�Schmidt unity ortho-
gonalization of m linearly independent vectors:

A = {a1, . . . ,am} → {e1, . . . , em} = Rq.

This algebraic transformation is the uniquely determined variant of the Gram�Schmidt
orthogonalization (provided that the sequence of vectors is �xed).

In Euclidean space, this Gram�Schmidt orthogonalization can be expressed geometrically
clearly with use of orthoprojectors:

v1 = a1, vi = ai −
i−1∑
k=1

[ek · e′k] · ai = {I −
i−1∑
k=1

[ek · e′k]} · ai, (131)

where ek · e′k =
←−−−−
ek · e′k � see sect. 2.1. The results of this procedure are the following

ei = vi/||vi||, i = 1, . . . ,m, and additionally we have the matrix Rq for A.
For the special kind of n×m-matrices, with n > m = r, prove the split formula for the

minorant of their external multiplications:

Mt(r)A1A
′
2 =Mt(r)A1 · Mt(r)A2 =

√
det (A′

1A1) · det (A′
2A2). (132)
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With the de�nition of a minorant, the quasi-polar decompositions such as (129), (130), and
also formula (128), we subsequently obtain

Mt2(r){A1A
′
2} = k[(A1A

′
2A2A

′
1), r] = k[(Rq1 · S⊕

1 · S
⊕
2 · S

⊕
2 · S

⊕
1 ·Rq′1), r] =

= k[(S⊕
1 · S

⊕
2 · S

⊕
2 · S

⊕
1 ), r] = det (A′

1A1) · det (A′
2A2) =Mt2(r)A1 · Mt2(r)A2.

Further, for such external and internal multiplications of n×m-matrices we use notations:

B = A1A
′
2, B′ = A2A

′
1; C = A′

1A2, C ′ = A′
2A1.

For B, if ⟨im A′
2⟩ ∩ ⟨ker A1⟩ = 0, ⟨im A′

1⟩ ∩ ⟨ker A2⟩ = 0, there holds:
⟨im B⟩ ≡ ⟨im A1⟩ ⇔ ⟨ker B′⟩ ≡ ⟨ker A′

1⟩ � see also (100),
⟨im B′⟩ ≡ ⟨im A2⟩ ⇔ ⟨ker B⟩ ≡ ⟨ker A′

2⟩ � see also (100).
Due to additional condition m = rank A1 = rank A2 = r, the following does hold:

←−−
BB′ =

←−−−−−−−
A1A

′
2A2A

′
1 =
←−−−
A1A

′
1 =
←−−−−−
Rq1Rq

′
1,←−−

B′B =
←−−−−−−−
A2A

′
1A1A

′
2 =
←−−−
A2A

′
2 =
←−−−−−
Rq2Rq

′
2,−−→

BB′ =
−−−−−−−→
A1A

′
2A2A

′
1 =
−−−→
A1A

′
1 =
−−−−−→
Rq1Rq

′
1,−−→

B′B =
−−−−−−−→
A2A

′
1A1A

′
2 =
−−−→
A2A

′
2 =
−−−−−→
Rq2Rq

′
2.

 (133)

Besides, det C = det(A′
1A2) ̸= 0. (See this in details in Part II, sect. 5.4.)

Then formulae

Kj [(A1A
′
2A2A

′
1), r] = det (A′

2A2) ·Kj(A1A
′
1, r),

Kj [(A2A
′
1A1A

′
2), r] = det (A′

1A1) ·Kj(A2A
′
2, r),

}
(j = 1, 2, ) (134)

follow from (61), (62), (132), (133).

3.2 Sine characteristics of matrices

Let E = {ei}n×n be some n× n-matrix, given as a linear unity geometric object in the
1-st quadrant of Cartesian base {I} in a space ⟨En⟩, where ||ei|| = 1 for all i. Namely, the
matrix E = {ei}n×n determines an n-edges polyhedral tensor angle in the Euclidean space;
det E =Mt(n)E ≤ 1 is, due to the trigonometric value in Hadamard Inequality (125), its
sine characteristic. This polyhedral angle corresponds one-to-one the unique mutual tensor

angle, given by the matrix Ê = {êi}n×n = {
−−−→
EiE

′
iei secβi}, where Ei is obtained from E by

change of the column ei on zero one, and for this tensor angle Ê unity its calibration by secβi

is used. The orthoprojector of type
−−−→
EiE

′
i projects into the kernel ⟨ker E′

i⟩ orthogonally to the
image ⟨im Ei⟩ (see sect. 2.5). There holds: cosβi = e′iêi = ê′iei (0 < cosβi ≤ 1), e′iêj = 0 or

E′Ê = Dcos β = Ê′E, → cos2 βi = e′i
−−−→
EiE

′
iei, and the all values of cosβi are �nding. Then

det E · det Ê = det Dcos β =

n∏
i=1

cosβi, |det E| ≤ 1, |det Ê| ≤ 1;

E′E = Dcos β · (Ê′Ê)−1 ·Dcos β , Ê′Ê = Dcos β · (E′E)−1 ·Dcos β ,

G =
√
Dsec β · E′E ·

√
Dsec β = Ĝ−1 = [

√
Dsec β · Ê′Ê ·

√
Dsec β ]−1.

Here G and Ĝ are metric tensors in the stretched of these angles mutual a�ne bases, given
in {I} by modal matrices {E

√
Dsec β} and {Ê

√
Dsec β}.
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However, in the book, we deal with tensor angles of the binary type, i. e., angles formed
by pairs of linear subspaces (straight lines if r = 1) or linear objects A1, A2 (vectors if r = 1)
in spaces with quadratic metrics.

At �rst, consider the sine characteristic of binary angles. For this we suppose that
r1 = rank A1 and r2 = rank A2, but r1 + r2 ≤ n. The block matrix {A1|A2} is called the
external summation of A1 and A2. Introduce for the rectangular matrices (or lineors) A1

and A2 the scalar characteristic sine ratio (see more in sect. 8.4):

|{A1|A2}|sin =Mt(r1 + r2){A1|A2}/(Mt(r1)A1 · Mt(r2)A2) = (135)

=

√
det

[
A′

1A1 A′
1A2

A′
2A1 A′

2A2

]
/
√
det (A′

1A1) · det (A′
2A2) = detG1,2/Mt(r)A1A

′
2 ≥ 0.

It generalizes (123) and ratio (124) for the sine of the angle between two vectors. The matrix
in numerator generalizes the internal multiplication of two vectors of sine type used in (124).
This ratio is the sine positively de�nite norm for a pair of A1 and A2.

The Kronecker�Capelli Theorem may be generalized to matrix linear equations such as
(105)�(107). The generalization is expressed also in terms of the minorant:

Mt2(r1 + r2 + 1)

[
A1 A
Z A2

]
= 0 ⇔

•
∆= Z. (136)

3.3 Cosine characteristics of matrices

Denote the highest scalar characteristic of a square singular matrix, its dianal :

Dl(r)B = k(B, r) = Dl(r)B′ (det B = 0),

So, Dl(r){AA′} = Dl(r){A′A} = k(AA′, r) =Mt2(r)A � see sect. 3.1. And from formula

(122) we have: Mt2(r + 1){A|a} = Dl(r + 1){[A|a][A|a]′} = 0⇔
•
d= 0 ⇔ sinφ = 0!

Then the new scalar characteristic for a singular square matrix B, its sign-inde�nite
cosine ratio (see more in Ch. 8), is expressed in terms of the minorant and the dianal:

{B}cos = Dl(r)B/
√
Dl(r)BB′ = Dl(r)B/Mt(r)B =

q1∏
i=2

µ
s′1,i
i

/
q2∏
j=2

σ
s2,j
j . (137)

We may preliminary introduce the cosine norm for B as follows (see more in sect. 8.1):

1 ≥ |{B}|cos = |Dl(r)B|/Mt(r)B =

q1∏
i=2

|µi|s
′
1,i

/
q2∏
j=2

σ
s2,j
j ≥ 0. (138)

The cosine ratio of null-defective B is 0 (r′ < r), and it is +1 or −1 for null-normal B.
Formula (137) to the right contains the eigenvalues µi with their algebraic multiplicities s

′
1,i

for the matrix B and its singular numbers σj > 0 (for the square root of the matrix BB′ or
B′B) with their algebraic (geometric) multiplicities s2,j inMt(r)B as in (126).

Let A1 and A2 be n × m-matrices with their external and internal multiplications of
cosine type B = A1A

′
2 and B′ = A2A

′
1, C = A′

1A2 and C ′ = A′
2A1. Then the cosine ratio

for a pair of matrices (or lineors) A1 and A2 may be expressed as

{A1 ·A′
2}cos = {A2 ·A′

1}cos = Dl(r){A1 ·A′
2}/Mt(r){A1 ·A′

2}. (139)
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If A1 and A2 are equirank n× r-matrices, then, due to (120) and (132),

{A1 ·A′
2}cos = Dl(r){A1 ·A′

2}/(Mt(r)A1 · Mt(r)A2) =

= det {A′
1A2}/[

√
det {A′

1A1} ·
√
det {A′

2A2}]. (140)

In particular, for the angle between two vectors in the Euclidean space ⟨En⟩ we have

−1 ≤ cosφ12 = a′1a2/||a1|| · ||a2|| = a′2a1/||a2|| · ||a1|| ≤ +1, (φ12 ∈ (0;π]). (141)

We note here especially, that both left and right sides in formulae (135) or (140) may be
considered as some identical algebraic expressions of trigonometric (sine or cosine) nature
for coordinates of geometric objects (lineors) represented by n× r-matrices A1 and A2. The
angle sign is de�ned only for two vectors on a plane, may be eigen, i. e., in ⟨E2⟩.

For two vectors a1 and a2 (i. e. if r = 1), the expressions in (135), (140) at n ≥ 2
separately or as the sum of their squared forms give a number of algebraic inequalities or
identities of trigonometric (sine and cosine) nature. Their examples are well-known as sine
Hadamard Inequality, for example in form (125) at r = 2; cosine Cauchy Inequality, for
example in form (141). The scalar multiplications of two vectors of sine type in (124) and
cosine type in (141) give these Summary identity for their coordinates (here in Euclidean
space), which equivalent to Lagrange Identity also for two vectors:

[Mt(2)[a1|a2]/(Mt(1)a1 · Mt(1)a2)]
2 + [tr a1a

′
2/(Mt(1)a1 · Mt(1)a2)]

2 =

= [det([a1|a2]′[a1|a2])]/[a′1a1 · a′2a2] + [(a′1a2)
2]/[a′1a1 · a′2a2] = (142)

= sin2 φ1,2 + cos2 φ1,2 = 1 = (a1 × a2)
2/||a1||2 · ||a2||2 + (a1 · a2)2/||a1||2 · ||a2||2,

(where the last variant is a classical sine-cosine Identity of Lagrange for two vectors). Note,
that formula (142) enables one to normalize the angles between vectors in Euclidean spaces.
In part II of the book, similar constructions for more general linear objects as lineors,
represented by n×m-matrices A1 and A2, will be analyzed.

3.4 Limit evaluation of eigenprojectors and quasi-inverse matrices

According to (1) and (101), the following limit formulae do hold:

A+ = lim
ϵ→0

[A′(AA′ + ϵI)−1] = lim
ϵ→0

[(A′A+ ϵI)−1A′] = (143)

= lim
N→∞

[NA′(NAA′ + I)−1] = lim
N→∞

[(NA′A+ I)−1NA′], (144)

(
−−→
A′AA′ = Z = A′−−→AA′ ⇒ K1(A

′A, r)A′ = Z = A′K1(AA
′, r) ).

As well as general formulae (71)�(73), the special limit formulae (143), (144) are inferred by
pure algebraic way, with use of the resolvent (1).

A. N. Tikhonov [26] was the �rst who expressed the normal solution of the linear equation
Ax = a as a limit. He used his regularization method in the special case of a conditional
extremum problem: �nd the value of the argument with the minimal Euclidean norm on a
given set corresponding to the minimal residual of equation

U(x, ϵ) = ϵF1(x) + F2(x) = min, dU/dx = 0 (ϵ→ 0). (145)

Here: (F1(x) = x′x, F2(x) = d′(x) · d(x), and where the residual is d(x) = Ax− a).
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Note, that similar results, but in limit form (144), might be obtained long before the
publication of A. N. Tikhonov by Courant's penalty functions method [18]:

W (x, N) = F1(x) +N · F2(x) = min, dW/dx = 0 (N →∞). (146)

In this task, both the methods are in one-to-one correspondence consisting in multiplying
or dividing by a scalar limit parameter.

Courant's penalty functions method �nds the conditional extremum of F1(x) with the
gradient 1 × n-vector function in the constraint equation h′(x) = dF2/dx = 0. Integration
converts the usual vector form into the equivalent scalar form:

h(x) =

x∫
xs

h′(x)dx = 0 = const. (147)

Then in (146) we obtain the Lagrange function W (x, N) and the unique scalar Lagrange
multiplier N →∞, as

(dh/dx) ·N = h′(x) ·N = 0 ·N = −dF1/dx ̸= 0

follows from the di�erential equation (146), and consequently N →∞.
In particular, these limit methods are applicable for �nding conditional extremum of

F1(x) on the stationary set of F2(x). Chains in equations (145) and (146) may be continued
by polynomials in ϵ or N . The su�cient condition for applicability these two limit methods
in the di�erential form (with the small or large parameter) is, due to (147), integrability of
the 1× n-vector function h′(x) from the constraint equation and consequently symmetry of
its Jacobi matrix: (dh/dx)′ = dh/dx. If the normal solution of equation Ax = a is searched
for, this symmetric Jacobi matrix is A′A.

Due to General optimization limit method di�erential equation ϵdF1/dx+ h′(x) = 0,
ϵ → 0 or dF1/dx + Nh′(x) = 0, N → ∞, determines a complete solution according to
conditional stationarity of F1(x) under constraint h′(x) = 0 i� the Jacobi matrix of the
constraint vector function h′(x) is null-normal, i. e., ⟨ker dh/dx⟩ ≡ ⟨ker (dh/dx)′⟩. (And
at the stationarity point of F1(x) for the 1×n-vector of the conditional gradient, obviously,
there holds: dF1/dx ·

−−−−→
dh/dx ∈ ⟨ker dh/dx⟩.)

The conditional stationarity nature of F1(x) (i. e., either a conditional minimum or a
conditional maximum, or a conditional saddle without extremum) is determined by the limit
conditional Hesse matrix of F1(x) up to scalar parameter ϵ or N .

See detailed exposition of this General optimization limit method and its applications
in other our monograph [17, p. 97�112]. In particular, this method gives, by such simple
way, the exact solutions for a conditional extremum of the second-order scalar function Q(x)
under the linear constraint equation Bm · x = a, including Bm = S.

Moreover, the constant singular Jacoby null-prime matrix Bp for the linear constraint
equation Bp·x = a may be transformed into the null-normal matrix Bm by a suitable modal
transformation of the initial base (further, this limit method may by applied). As example,
for a null-prime matrix Bp, its a�ne quasi-inverse matrix Bp−, see (69), may be computed
by the same limit way with preliminary use of linear base transformation for converting Bp
into Bm. Then one calculates Bm− by the limit method due to its value in (104), i. e.,
factually as the Moor-Penrose quasi-inverse matrix. Having �nished these operations, one
returns to the initial base by the reverse modal transformation, and get the matrix Bp−.

Further, in Ch. 8, the trigonometric sense of the sine and cosine ratios from sections.
3.2, 3.3 will be explained on the basis of the trigonometric spectrum of a null normal B.



Chapter 4

Main alternative variants of complexi�cation

4.1 Comparing alternative variants of complexi�cation

Until this chapter, we have not particularly touched on the question: what arithmetic content
is permissible and can appear instead of letter designations in formulae, inequalities, and in
various statements using them. From the preliminary section "Notations", together with its
complete at �rst Matrix Alphabet, it is clear that these abstract letter notions will appear in
the further presented Tensor Trigonometry and in its numerous mathematical and physical
applications else in a very large number using all Latin and Greek alphabet. Of course, the
notations of logical operations linking these literal notions have nothing to do with what was
said above. For scalar notions, instead of their letter designations, we can mean, under the
conditions of their admissibility and expediency, speci�c kinds of numbers, including those
with zero. Here we consider the main variants associated with the use of complex numbers,
what is usually de�ned as complexi�cation of the original real concepts.

Nature of complex numbers gives rise to main two and quite di�erent approaches for
implementing operations over initially given complex algebraic or numerical elements. The
complex elements may have due to these operations the corresponding form of presentations.

By the adequate approach, operations over complex-number elements are formally the
same as over real-number ones. This allows one to use results previously obtained for
real-number analogous objects. However, there are some exceptions: inequalities (unless
parameters are only real), module notions. The special case is pseudoization, when real and
imaginary parts of complex elements form direct sums of the same type.

The symbiotic approach supposes the use of standard operations applied to real numbers
as well as the additional operation of complex conjugation independent on usual ones. In
particular, it takes place in the Hermitean approach for vectors and matrices with complex
entries: their transposition is always accompanied by complex conjugation. The Hermite's
variant of complexi�cation allows one to use in the self-conjugate form notions of the real
positive module or norm as well as similar self-conjugate form for a lot of inequality relations.

These di�erent variants of complexi�cation point out the two independent directions for
further development of theories and their applications in complex spaces.

So, identities of types ⟨im B⟩ ≡ ⟨im B′⟩ and ⟨im B⟩ ≡ ⟨imB∗⟩ determine accordingly
adequately and Hermitean null-normal matrices. But adequately and Hermitean orthogonal
eigenprojectors and quasi-inverse matrices are de�ned by di�erent ways using (98)�(101).
Adequate complex characteristics no always exist in such determined form in what Hermitean
ones exist. As example, Mt2(r)A = k(AA′, r) = k(A′A, r) for a complex matrix, where
r = rangA, may have any complex values including zero.

But for pseudoized vectors and matrices their squared minorant may have only real values
� positive, negative and zero. From the other hand, in the Hermitean variant there holds
k(AA∗, t) = k(A∗A, t) > 0, t ≤ r.

In any case, all eigenprojectors of a null-prime matrix Bp exist and are spectrally
nonnegative semi-de�nite matrices, because their eigenvalues are equal to +1 and 0.
Moreover, for matrices Bp a�ne eigenprojectors and quasi-inverse matrices do not de-
pend on the complexi�cation variant. If a matrix B is complex and nonsingular, then
⟨im B⟩ ≡ ⟨imB′⟩ ≡ ⟨imB∗⟩ ≡ ⟨An⟩, that is why the complex inverse matrix B−1 for such
quadratic matrix B is uniquely determined.
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Forms of representing any complex number "a" with the imaginary unit "i" are well-
known and various. They are simplest arithmetic form, trigonometric Moivre's and polar
forms, exponential Euler's form, pseudoized vectorial form, stereographic Riemann's form.
For further aims, we use a normal 2×2-matrix form � without using the imaginary unit "i":

W (a) ≡ F (ρ, φ), (φ ∈ [−π; +π]) :[
p −q

+q p

]
= ρ

[
cosφ − sinφ

+sinφ cosφ

]
= S +K

(a = p+ iq);

W ′(a) ≡ F ′(ρ, φ) :[
p +q
−q p

]
= ρ

[
cosφ +sinφ
− sinφ cosφ

]
= S −K

(ā = p− iq),



(148)

Then, we have the properties:

W (a) ·W ′(a) =W ′(a) ·W (a) = ρ2 · I2×2 , S = S′, K = −K ′, SK = KS.

Note especially, that this real formW (a) is also single-valued as usual one. In particular,
such form may be used in its simplest 2× 2-matrix normal form for representation of paired
solutions of a real-valued algebraic equation formally with conjugate roots, and with possible
following generalization.

For instance, with such unusual approach one may proved simply that a real-valued
algebraic equation of power n has always a complete real-valued similar simplest matrix
solution unique up to admitted permutations of its 2× 2-cells!

There holds W (a1) ·W (a2) = W (a1 · a2) ≡ F (ρ1, φ1) · F (ρ2, φ2) = F [ρ1 · ρ2, (φ1 + φ2)].
The form W (a) executes summation and multiplication so as the arithmetic form a.

Besides, the real forms W (aj) of complex numbers aj as well as the scalar complex form
aj are commutative in their summations and multiplications, and satisfy all formulae and
identities for complex numbers. They compile the pairs of mutually transposed matrices in
(148) similarly to the pairs of conjugate complex numbers.

FormallyW (a) represents a given complex number a in the arithmetical a�ne of the real
normal matrices space ⟨A2×2⟩ of the binary type.

The trigonometric form F (ρ, φ) in (148) represents the complex number a in the arith-
metical Euclidean of the real normal matrices space ⟨E2×2⟩ of the binary type.

From this point of view, a real-valued normal n×n-matrixM represents in a certain a�ne
or Cartesian base 2k ≤ ⌊n⌋ complex conjugate numbers and n − 2k real-valued ones, i. e.,
M = RWR′. A real-valued prime matrix P = VWV −1 represents in a certain a�ne base
these numbers. Generally, hereW is a canonical normal monobinary cell form of the matrices
M and P . Their decompositions, as a direct sums, contain only real 1× 1- and 2× 2-cells.

In general, the matrix W , up to permutations of its cells, is the simplest real solution
of secular equation c(µ) = 0. Applying the Cayley-Hamilton Theorem to the prime
matrix P gives V −1{c(P )}V = c(W ) = Z. Similar W-forms of such simplest matrices
will be use in Part II of the book for clear inferring of the tensor trigonometry some formulae.
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In its turn, real matrix form (148) may be complexi�ed too, either in the adequate or
Hermitian variant. In the �rst case, there holds

W (z1) :[
u −v
v u

]
= ρ

[
cosψ − sinψ
sinψ cosψ

]
= S +K

(z1 = u+ iv),

W ′(z1) =W (z2) :[
u v
−v u

]
= ρ

[
cosψ sinψ
− sinψ cosψ

]
= S −K

(z2 = u− iv).



(149)

Then, we have the properties:

[W (z) ·W ′(z) =W ′(z) ·W (z) = ρ2 · I2×2, S = S′, K = −K ′, SK = KS.]

Complex adequately normalW -form (149) is implemented in a some adequately Cartesian
base of the complex-valued Euclidean space ⟨E2×2⟩ over C. A complex adequately normal
n× n-matrixM = RWR′ may represent double quantity of non-conjugate complex numbers
(i. e., as z1 and z2) in the similar bases. All the elements of its W -form are complex
numbers, including the module ρ and the angle ψ. The complex normal matrix M may be
simpli�ed with some adequately orthogonal transformation R (also complex) and represented
in complex canonical W -form (149).

In the second case, in the Hermitean variant, there holds

W (z) : W ∗(z) =W ′(z̄) :[
u −v̄
v ū

]
= H +Q

[
ū v̄
−v u

]
= H −Q,

(z = u+ iv), (z̄ = ū− iv̄),

(150)

[W (z) ·W ∗(z) =W ∗(z) ·W (z), H = H∗, Q = −Q∗, HQ = QH].

Complex Hermitean normal W -form (150) is implemented in a certain Cartesian base
of the unitary space ⟨U2×2⟩. Its two eigenvalues are the complex conjugate numbers so as
in (148). Hence, this complex normal form is simpli�ed with some Hermitean orthogonal
transformation U till converting into real W -form of type (148). The full set ⟨UWU∗⟩ is
the speci�ed set of complex normal matrices, that may by reduced by some modal trans-
formations till canonical forms (150) and (148).

These normal matrices are interesting in Hermitean tensor trigonometry. Their conjugate
eigenvalues are dt = ρt exp(±iβt), ρt ∈ (−∞ + ∞), βt ∈ [−π/2;+π/2]; for Hermitean
orthogonal matrices: dt = exp(±iβt). Moreover, a pair of conjugate elements in their
diagonal forms correspond to a trigonometric 2× 2-cell of some Hermitean rotation for the
geometric transformation of elements in a basic unitary space. (But general complex n× n-
normal matrices are simpli�ed with some unitary transformations till their diagonal forms
with n entries of the type dt = ρt exp(iβt)!)

These questions are discussed more in details in Part II, Ch. 10.
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4.2 Examples of adequate and pseudoized complexi�cations

Typical examples of adequate complexi�cation are the following:
• formulae for roots of algebraic equations with complex coe�cients,
• algebraic identities including ones of trigonometric nature � see in Chs. 3 and 8,
• trigonometric formulae for complex angles and their functions,
• analytical (holomorphic) functions, their expansions into power series,
• formulae for derivatives, di�erentials and integrals for functions of scalar and vectorial

complex arguments.
(Everywhere real-number elements are substituted by complex ones.)
In a space over C with an adequate type of metric, the measures of length and angles

are necessary complex. However, in a pseudo-Euclidean space, these measures may be real,
zero or imaginary. Give below the following main examples for the pseudo-Euclidean space
of index q = 1 (see more in Part II, Chs. 6, 11, 12, and in the large Appendix):
• Minkowski Geometry and pseudo-Euclidean tensor trigonometry in elementary form

as the additional new important part of this Geometry,
• external pseudo-spherical non-Euclidean geometries on the spheres of the imaginary

and real radius (i. e., of two types), embedded into pseudo-Euclidean space. (These two
geometries with tensor hyperbolic and orthospherical functions in elementary forms are
isometric to Lobachevsky�Bolyai and Beltrami geometries).

Consider examples of applications of the adequate complexi�cation in theory of analytical
functions of scalar and vectorial complex variable and in theory of matrices.

Let x,y ∈ ⟨En⟩, and z = x+ iy be an (n×1)-vector argument in a n-dimensional complex
Euclidean space, F (z) = F1(x,y)+ iF2(x,y) be a certain scalar complex analytical function
of z. Di�erentiation and integration with respect to an (n × 1)-vector-argument in the
Euclidean space are expressed in Cartesian coordinates. Total derivatives, di�erentials, and
integrals have adequate analogues from which partial characteristics and their relations are
clear and obviously inferred:

dF = h(z)dz ⇔ dF = dF1 + idF2 = (h1(x,y) + ih2(x,y))(dx+ idy) =

= [h1(x,y)dx− h2(x,y)dy] + i[h1(x,y)dy + h2(x,y)dx].

Here the 1× n-vector partial derivatives (gradients) form pairs:

h1(x,y) =
∂F1
∂x

= ∂F2
∂y

,

h2(x,y) = −∂F1
∂y

= ∂F2
∂x

.

 (a)

This is the vector-form of classical d'Alembert�Euler Equations for the scalar functions F1,
F2 totally di�erentiable with respect to arguments x, y (or for totality of two di�erential
expressions above in square brackets).

Apply the same scheme of reasoning to the 1× n-vector function

dF
dz

= h(z) = h1(x,y) + ih2(x,y):

∂h1
∂x

= ∂h2
∂y

= ∂2F1

∂x2 = −∂
2F1

∂y2 = ∂2F2
∂x∂y

= ∂2F2
∂y∂x

=
(
∂h1
∂x

)′
,

∂h1
∂y

= −∂h2
∂x

= ∂2F2

∂y2 −
∂2F2

∂x2 = ∂2F1
∂y∂x

= ∂2F1
∂x∂y

=
(
∂h1
∂y

)′
.

 (b)
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The �rst equalities in chains (b) are the matrix-form d'Alembert�Euler equations for the
vector functions h1 and h2 totally di�erentiable in terms of x, y. Together they express,
as well as symmetry of Jacobi matrices due to symmetry of Hesse matrices, necessary and
su�cient conditions for totality of the second di�erential F also in terms of x, y. The
matrix-forms Laplace Equations for the harmonic functions F1, F2 of the real variables x, y
follow from the additional matrix equations in (b).

In a pseudo-Euclidean space ⟨En+q⟩ (in the binary complex form), due to its special
structure, the characteristics described above are changed:

z =

[
x
iy

]
; dF = h(z)dz ⇔ dF = dF1 + idF2 =

=
(
[ h1 t1 ] + i[ h2 t2 ]

) [ dx
idy

]
=

= [h1(x,y)dx− t2(x,y)dy] + i[t1(x,y)dy + h2(x,y)dx].

Here

h1(x,y) =
∂F1
∂x

, h2(x,y) =
∂F2
∂x

,

t1(x,y) =
∂F2
∂y

, t2(x,y) = −∂F1
∂y

;

 (a′)

∂h1
∂x

= ∂2F1

∂x2 =
(
∂h1
∂x

)′
, ∂t1

∂y
= ∂2F2

∂y2 =
(
∂t1
∂y

)′
,

∂h2
∂x

= ∂2F2

∂x2 =
(
∂h2
∂x

)′
, ∂t2

∂y
= −∂

2F1

∂y2 =
(
∂t2
∂y

)′
,

∂h1
∂y

= ∂2F1
∂x∂y

=

(
∂2F1
∂y∂x

)′

= −
(
∂t2
∂x

)′
,

∂t1
∂x

= ∂2F2
∂y∂x

=

(
∂2F2
∂x∂y

)′

=
(
∂h2
∂y

)′
.



(b′)

In this case, F1(x,y), F2(x,y) are not harmonic in the Sense of Laplace.

The real analogues exist for purely real parameters used previously. In particular, for
matrices they are the rank, the 1-st and 2-nd rock. Parallelism of linear objects is an a�ne
property, that is why it does not depend on the complexi�cation variant. However, optimal
procedures for parallelism checking in a real space and complex one may di�er.

Suppose that n ×m-matrices A1 and A2 determine linear subspaces (or linear objects)
in the a�ne space ⟨An⟩. The procedure for parallelism recognizing uses here characteristic
symmetric projectors. If ranks of A1 and A2 are equal, then process (94) may be run in the
simplest variant.

In more general case, consider an n × n-matrix with the same image, i. e., ⟨im AC⟩ ≡
⟨im A⟩, where C is an m× n-matrix such that:

1) ⟨im C⟩ ∩ ⟨ker A⟩ = 0 ⇔ rank AC = rank A,
2) k(AC, r) ̸= 0.
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In a space over R one may put C = A′, in a space over C put C = A∗. In general, the
following holds:

1. ⟨im A2⟩ ⊆ ⟨im A1⟩ ⇔
←−−−
A1C1 ·A2 = A2 ⇔

−−−→
A1C1 ·A2 = Z,

⟨im A1⟩ ⊆ ⟨im A2⟩ ⇔
←−−−
A2C2 ·A1 = A1 ⇔

−−−→
A2C2 ·A1 = Z.

2. ⟨im A2⟩ ≡ ⟨im A1⟩ ⇔
−−−→
A1C1 ·A2 = Z =

−−−→
A2C2 ·A1.

On the other hand, orthogonality of linear objects is the notion depending on a metric
in a given space.

In a real Euclidean space or in a complex Euclidean space with the adequate metric
variant, orthogonality is recognized by the condition:

⟨im A1⟩ ⊥ ⟨im A2⟩ ⇔ A′
1A2 = Z = A′

2A1.

But in a complex Euclidean space with the Hermitean metric variant, it is recognized by
the condition:

⟨im A1⟩ ⊥ ⟨im A2⟩ ⇔ A∗
1A2 = Z = A∗

2A1.

Here the both (left and right) conditions equations are equivalent.

4.3 Examples of Hermitean and symbiotic complexi�cation

Hermite's complexi�cation may be used almost in any case when it is necessary to decide
problems in a complex space with vectorial objects. Hence we indicate only some examples,
most close to our theme:

• positive norms for lengths, surfaces, volumes etc. of a di�erent geometric objects in
the Hermitean space;

• positive norms for the angle and its functions in an Hermitean plane;

• previous results expressed in the self-conjugate form, in particular, formulae and a lot
of inequalities (98)�(103), (115)�(130), (132)�(144) with Lagrange Identity (142), especially:

• • minorant positivity for the linear objects in an Hermitean space,

• • formulae (122) and (136) expressing the Kronecker�Capelli Theorem,

• • Hadamard and Cauchy Inequalities of the sine and cosine types (Ch. 3), they are
important for the trigonometry on an Hermitean plane with de�nition of Hermitian spherical
trigonometric functions of angles between vectors using Hermiteized them as normalizing;

• • Sine general and Cosine general Inequalities (Chs. 3 and 8), they are important for
the tensor trigonometry in an Hermitean space (see further in sect. 10.1 as the basis for
de�nition of Hermitean spherical tensor trigonometric functions of angles between lineors
using the Sine and Cosine Hermiteized normalizing inequalities);

• In particular, in the Quantum Mechanics, Hermiteanly orthogonal matrices are used
to represent some observable paired physical values. This is based on the fact that the
Heisenberg Uncertainty Principle is generated mathematically from the Hermiteized form
of the Cosine Cauchy Inequality for a pair of complex vectors (see above in sect 2.3). And
in addition, using the general Cosine Inequality for a pair of complex lineors, also in the
Hermiteized form, it is possible to pass to more general quantume estimates;

• All the limit functional methods (sect. 3.4) act very well in the Hermiteized forms;

• Maximum Modulus Principle, in general form, it holds for scalar and vectorial complex
functions of complex single and many variables � see this Principle's original inferring as a
particular case in the our mathematical monograph [17, p. 127].
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Most general is the symbiotic approach. Its application to the classical theory of analytical
functions and basic operations of calculus (orthogonal di�erentiation and integration) gives
the following symbiotic analogues:
• expansions into power series in conjugate variables z and z for special analytical non-

holomorphic functions of z and z, i. e., the not analytical functions in the Sense of Riemann,
• special rules of symbiotic (conjugate) di�erentiation and integration,
• special conditions for di�erentiability and analyticity for functions of the conjugate

variables z and z,
• special conditions for integrability of a certain di�erential expression (i. e., of the

di�erential totality),
• symbiotic methods for �nding extrema of scalar real functions of conjugate variables

(the preliminary necessary condition to such scalar function is its symmetry with respect to
the conjugate arguments). This is further development of formal derivatives idea (see, for
example, [19]) in analysis of nonholomorphic complex-variable functions. We illustrate the
extremal problems by the following two examples, close to our theme,
• • extrema of the scalar real functions (from sect. 1.2) expressing the di�erences or

ratios of corresponding means formed of all the algebraic equation roots, if the roots are
positive and complex conjugate (see our methods of solving similar tasks in [17, p. 124�135]),
• •minimizing squared Hermitean module of complex equation residual (116), i. e., scalar

real function F = ||Ax− a||2H with inferring complex limit formulae (143, 144).

* * *
Post scriptum to the Part I. In conclusion of this introductory part I as the initial basis for
subsequent development of the tensor trigonometry in part II, the author considers it necessary to
note the following. A lot of new provisions, characteristics and formulae of the part I were established
by the author else at the beginning of 1981. However, they were not accepted then to publications
in the leading Soviet mathematical journals � see more about this on the author's web-sites. These
contents were published many later, in 2004, in his monograph [15]. In particular, this has place
for the structure of matrix characteristic coe�cients, for the new parameters of matrices singularity
with fundamental relations and inequalities connecting them, for the explicit form of a minimal
annulling polynomial, for the explicit formulae of all eigenprojectors and quasi-inverse matrices in
terms of elements of an initial matrix, for the de�nition and applications of null-prime and null-
normal matrices, for the exact and explicit normal solution of linear equations with formulae for
pseudoinverse matrices � algebraic and limit ones, for the new algebraic notions as a minorant and
a dianal of a matrix with their useful properties in the theory of linear algebraic equations and
matrices, etc.. But some contents from this series began to appear later in publications from the
same circle of mathematicians which did not accept all indicated above. For this reason, the author
did not consider to make references to these publications with as if "their results". The same applies
to plagiarist publications, in that number, in Wikipedia with borrowings from [15] of 2004 and later.

All of plagiarists were surpassed by the Ukrainian publishing house "Îñâiòà Óêðà¨íè" ("Light
of Ukraine") issued my "Tensor Trigonometry - 2004" after 10 years in 2015, without changes, but
under other "author" name, with reviews to it from two Ukrainian Professors � Drs of sciences!!!

Probably, some, especially novice authors, have encountered with similar ethically unacceptable
phenomena when, due to the lack of a�liations or connections for them to receive o�cial reviews,
their scienti�c works are not published, but then, due to the absence of these results in the literature,
other �authors� with a�liations and connections quietly use them in their similar own publications.
The author writes this here and sometimes further only for the purpose of additional information
about generating a number of early suggested by him mathematical ideas, relations and results.

Therefore, in our overly politicized time, only the author himself should defend his scienti�c
priorities and, along the way, the priorities of other authors appropriated by someones, when they
have already left earthly life, and not hoping that others with increased a sense of justice will do it.

Results presented in Part I are for 20th cent., results of Part II and Appendix are to September 2004.



Part II

Tensor Trigonometry: fundamental contents

This basic part of the book begins by large Chapter 5 in which Tensor Trigonometry
is developing in spaces with Euclidean metric, and further in the way, with preliminary
introducing the so-called re�ector tensor of the so-called quasi-Euclidean space with their
strong de�nitions. The re�ector tensor is a symmetric matrix with eigenvalues −1 and +1,
it is {I±} in the simplest case or R{I±}R′ generally. It divides this binary quasi-Euclidean
space into its direct orthogonal sum from two subspaces corresponding to these eigenvalues!

In the 1-st half of Chapter 5 (sect. 5.1�5.6), projective and re�ective Tensor Trigonometry
is constructed. It is developing with using eigenprojectors from the rectangular or square
matrices. The projective spherical trigonometric functions and re�ectors with tensor angles
of also projective type between n×r lineors A1 and A2 or their images ⟨im A1⟩ and ⟨im A2⟩
(i. e., as planars of rank r1 and r2) are de�ned. In other interpretation, the tensor functions
with their angles are de�ned by the same manner between two images of the singular null-
prime n × n-matrix ⟨im B⟩ and ⟨im B′⟩ (i. e., as planars of rank r). Then canonical
structures of projective tensor trigonometric functions and re�ectors are installed.

In the 2-nd half of Chapter 5 (sect. 5.7�5.12), we transit naturally into rotational and
deformational Tensor Trigonometry constructed in Euclidean and quasi-Euclidean spaces.
The motive tensor trigonometric functions in this version represent rotational (sine-cosine)
and deformational (tangent-secant) matrix transformations). In the Chapter end, they are
gotten in the so-called elementary forms, i. e., with one motive tensor spherical eigen angle of
rotations�motions and corresponding to the given re�ector tensor of the space of index q = 1.
The re�ector tensor determines the mono-binary canonical structure in some Cartesian base
for all main concepts of the entire quasi-Euclidean trigonometry besides its Euclidean metric.

In Chapter 6 Tensor Trigonometry in the pseudo-Euclidean space with the identical
re�ector metric tensor I± and with corresponding to it sign-inde�nite quadratic metrics
is constructed with the wide use of the abstract and speci�c spherical-hyperbolic analogies.
Scalar Trigonometry is exposed on the pseudoplane with the complete solution of the pseudo-
Euclidean right triangles and with complete tensor trigonometric relations between principal
and complementary hyperbolic angles. For geometries with principal hyperbolic angles, the
especial hyperbolic angle (number) ω is introduced as the hyperbolic analog of π/4 (which
corresponds to a hyperbola focus). The descriptive connections of spherical and hyperbolic
principal angles, their functions, rotors and re�ectors are given in the especial Quart circle.
In the Chapter end, the motive hyperbolic functions are inferred in the elementary forms.

In Chapter 7 the trigonometric nature of matrices commutativity and anticommutativity
is established as the separate important application for real-valued and Hermitian variants.

In Chapter 8 the trigonometric spectrums for a null-prime matrix and for a pair of lineor
are established, which serve as a basis for inferring the general cosine and sine normalizing
new matrix inequalities. They give opportunity for correct de�ning of trigonometric norms
with cosine and sine relations for matrix objects. See preliminary about them in Chapter 3.

In Chapter 9 the correct quadratic norms of matrices and lineors as some geometric
objects are de�ned with the use of the general inequality for average values from Chapter 1.

In Chapters 10, 11, 12 Tensor Trigonometry is developed in the complex adequate and
Hermitian metric spaces, and in realifyed pseudoized spaces. Large attention is spared from
the Tensor Trigonometry point of view to studying motions in the pseudo-Euclidean space
of index q and separately in the Minkowskian space�time of index q = 1, with the embedded
into them two concomitant hyperboloidal hyperspaces with hyperbolic geometry. So, various
trigonometric models of two hyperbolic geometries in the large are inferred. In the end, the
Special mathematical principle of relativity is formulated for its use in the large Appendix.



Chapter 5

Euclidean and Quasi-Euclidean tensor trigonometry

5.1 Objects of tensor trigonometry and their spatial relations

According to the Cantor�Dedekind Continuum Axiom [21, p. 99], a�ne and arithmetic
spaces of the same dimension are isomorphic, therefore their metric forms are isomorphic
too. Due to this, results, obtained by algebraic ways, may be geometrically interpreted; and
vice versa. Primary elements of the n-dimensional a�ne space are points and free vectors,
according to the axiomatic determination by Hermann Weyl. Their coordinates in a certain
base are represented by n-tuples of numbers. Points and vectors form geometric objects.
There are centralized and noncentralized geometric objects. Centralized geometric object
has its application point in the center of a given coordinates system. There is the following
correspondence between the equivalent algebraic and geometric forms of linear objects in
these two spaces ⟨An⟩ :

a vector a − a straight line segment,
an image ⟨im a⟩ − a straight line,
a kernel ⟨ker a′⟩ − a hyperplane,
n× r-lineor A of rank r − an r-simplex,
an image ⟨im A⟩ − a planar of rank r,
a kernel ⟨ker A′⟩ − a planar of rank n− r.

Note, due to (100) there holds ⟨im A⟩⊕⟨ker A′⟩ ≡ ⟨An⟩ (direct and orthogonal in ⟨En⟩ sum).
These simplest linear geometric objects of developing tensor trigonometry have a valency 1.
A valency for nonanalitic functions of objects may be other. For example, the internal and
external multiplications of two vectors have the valency respectively 0 and 2:

a′1a2 = c = a′2a1, a1a
′
2 = B = {a2a′1}′. (151), (152)

Separate the class of equirank n×r-lineors and planars. The planars may be determined
also by any singular null-prime n×n-matrices Bp (we shall denote the matrices brie�y as B
unless another sense is noted). Generally, for a pair of planars (rank A1 = r1, rank A2 = r2)
relations of parallelism in ⟨An⟩ and orthogonality in ⟨En⟩ with the use of eigenprojectors
from Ch. 2 in a�ne and Euclidean spaces are the following:

⟨im A1⟩ ≡ ⟨im A2⟩ ⇔
←−−−
A1A

′
1 =
←−−−
A2A

′
2 ⇔

⇔
−−−→
A1A

′
1 =
−−−→
A2A

′
2 ⇔ ⟨ker A′

1⟩ ≡ ⟨ker A′
2⟩,

}
for equirank planars (r1 = r2), (153)

⟨im A2⟩ ⊆ ⟨im A1⟩ ⇔
←−−−
A1A

′
1 ·
←−−−
A2A

′
2 =
←−−−
A1A

′
1 =

=
←−−−
A2A

′
2 ·
←−−−
A1A

′
1 ⇔

←−−−
A1A

′
1 ·A2 = A2 ⇔

⇔
−−−→
A1A

′
1 ·A2 = Z = A′

2 ·
−−−→
A1A

′
1 ⇔ ⟨ker A′

1⟩ ⊆ ⟨ker A′
2⟩,

 (r2 ≤ r1), (154)

⟨im A2⟩ ⊆ ⟨ker A′
1⟩ ⇔ A′

1A2 = Z1, A
′
2A1 = Z2 ⇔

⇔ ⟨im A1⟩ ⊆ ⟨ker A′
2⟩ ⇒ ⟨im A1⟩ ∩ ⟨im A2⟩ = 0,

}
⇒ (r1 + r2 ≤ n), (155)

⟨ker A′
1⟩ ⊆ ⟨im A2⟩ ⇔

←−−−
A2A

′
2 ·
−−−→
A1A

′
1 =

−−−→
A1A

′
1 ⇔

⇔
−−−→
A2A

′
2 ·
−−−→
A1A

′
1 = Z =

−−−→
A1A

′
1 ·
−−−→
A2A

′
2 ⇔

⇔ ⟨ker A′
2⟩ ⊆ ⟨im A1⟩ ⇒ ⟨ker A′

1⟩ ∩ ⟨ker A′
2⟩ = 0,

 ⇒ (r1 + r2 ≥ n), (156)
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These fundamental relations of parallelism in an a�ne space ⟨An⟩ and orthogonality in
an Euclidean space ⟨En⟩ of lineors or planars, given by the lineors too, require further deve-
lopment and expansion so that on their basis we can derive tensor trigonometric functions
and the basic trigonometric relations between them with their tensor angles � arguments.

If the linear subspaces are de�ned by null-prime n × n-matrices Bp (Part I, sect. 1.6),
then their a�ne eigenprojectors may be used also, for example,

⟨im Bp1⟩ ≡ ⟨im Bp2⟩, ⟨ker Bp1⟩ ≡ ⟨ker Bp2⟩ ⇔
←−−−−→
Bp1 =

−−→←−−
Bp2; (157)

⟨im Bp2⟩ ⊆ ⟨im Bp1⟩ ⇔
←−−
Bp1 ·Bp2 = Bp2 ⇔

⇔
−−→
Bp1 ·Bp2 = Z = Bp′2 ·

−−→
Bp′1 ⇔ ⟨ker Bp′1⟩ ⊆ ⟨ker Bp′2⟩.

 (158)

A�ne relations (153)�(156) between planars determined by lineors A1 and A2 of their
rank r1 and r2 may be naturally widen as follows. In the �rst extreme case, we have:

⟨im A1⟩ ∩ ⟨im A2⟩ = 0 ⇔ rank (
←−−−
A2A

′
2 −
←−−−
A1A

′
1) =

= r1 + r2 = rank (
−−−→
A1A

′
1 −
−−−→
A2A

′
2) ≤ n.

 (159)

The image of this matrix (
←−−−
A2A

′
2−
←−−−
A1A

′
1) in any Cartesian base Ẽ of an Euclidean space

⟨En⟩ is the direct orthogonal sum ⟨im A1⟩ ⊕ ⟨im A2⟩ of dimension (r1 + r2), and its kernel
is the orthocomplement in the same ⟨En⟩ to the image of dimension n − (r1 + r2). In the
second extreme case, we have:

⟨ker A′
1⟩ ∩ ⟨ker A′

2⟩ = 0 ⇔ rank (
←−−−
A2A

′
2 −
←−−−
A1A

′
1) =

= rank (
−−−→
A1A

′
1 −
−−−→
A2A

′
2) = (n− r1) + (n− r2) ≤ n.

 (160)

Here the same matrix image, but in other interpretation (
−−−→
A1A

′
1 −
−−−→
A2A

′
2), is the direct sum

⟨ker A′
1⟩ ⊕ ⟨ker A′

2⟩ of dimension [(n− r1) + (n− r2)] = 2n− (r1 + r2), and its kernel is the
orthocomplement in ⟨En⟩ of dimension (r1 + r2) − n. Note, that (155) and (156) are only
the special extreme cases of (159) and (160). Formulae (159) and (160) are compatible i�
n = r1 + r2, i. e., in this especial case, there holds

⟨im A1⟩ ⊕ ⟨im A2⟩ ≡ ⟨An⟩ ≡ ⟨ker A′
1⟩ ⊕ ⟨ker A′

2⟩.

Under this condition, the matrix (
←−−−
A2A

′
2 −
←−−−
A1A

′
1) = (

−−−→
A1A

′
1 −
−−−→
A2A

′
2) is nonsingular.

Similarly, in other cases, we have:

⟨im A1⟩ ∩ ⟨im A2⟩ ≠ 0 ⇔ rank (
←−−−
A2A

′
2 −
←−−−
A1A

′
1) < r1 + r2, (161)

⟨ker A′
1⟩ ∩ ⟨ker A′

2⟩ ≠ 0 ⇔ rank (
−−−→
A1A

′
1 −
−−−→
A2A

′
2) < 2n− (r1 + r2). (162)

Such in brackets and other similar wonderful matrices give us the way for de�ning further
all the projective spherical tensor trigonometric functions of tensor angles as their arguments
in terms of eigenprojectors corresponding for beginning to a pair of lineor A1 and A2, and
then to a pair of matrix or linear matrix objects B and B′. Next, we turn to the construction
of the tensor trigonometry, initially of projective type, in a�ne and Euclidean spaces.
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5.2 Projective sine, cosine and spherically orthogonal re�ectors

The following matrix characteristic

sin Φ̃12 =
←−−−
A2A

′
2 −
←−−−
A1A

′
1 =
−−−→
A1A

′
1 −
−−−→
A2A

′
2 = sin′ Φ̃12 = − sin Φ̃21 (163)

is called the projective tensor sine of the angle between two planars ⟨im A1⟩ and ⟨im A2⟩
(or between the lineors A1 and A2). The projective nature of the angle is pointed out by
the tilde upper character. We have:

Φ̃12 = (Φ̃12)
′ = −Φ̃21. (164)

The properties (164) of a projective tensor angle will be inferred further after converting
with its tensor sine into the canonical monobinary and diagonal forms.

In tensor trigonometry, the concept of an angle with its orientation is de�ned mathe-
matically very simply and correctly as the arcsine of the tensor sine. The introduction of the
Euclidean quadratic metric in ⟨An⟩ with transition into ⟨En⟩ allows to rigorously de�ne the
concept of orthogonality with passing from the abstract a�ne value of angle to metric value.
In scalar trigonometry, the de�nition without orientation is done through the relations in
a right triangle, but for this it is necessary to strictly introduce the concept of a right angle.

According to (163), the angle between ⟨im A1⟩ and ⟨im A2⟩ is additively opposite to
the angle between ⟨ker A′

1⟩ and ⟨ker A′
2⟩. These two angles together form the whole binary

structure of Φ̃12. For example, the tensor sine of the angle between two non-oriented vectors
or straight lines is

sin Φ̃12 =
←−−−
a2a

′
2 −
←−−−
a1a

′
1 =

a2a
′
2

a′2a2
− a1a

′
1

a′1a1
. (165− I)

In addition, its algebraic structure on an Euclidean plane ⟨E2⟩ is

sin Φ̃12 = sinφ12

√
I2×2,

√
I2×2 = R ·

[
0 1
1 0

]
·R′,

where φ12 is the counter-clockwise angle in the right Cartesian base, |φ12| ≤ π for vectors
or |φ12| ≤ π/2 for straight lines, R is some orthogonal modal matrix.

Condition sin Φ̃12 = Φ̃12 = Z means parallelism (153) of the planars. In common these
planars may be noncentralized as < a1 + ⟨im A1⟩ > and < a2 + ⟨im A2⟩ > .

Relations similar to (154) have trigonometric analogues too:

⟨im A1⟩ ⊆ ⟨im A2⟩ ⇔ sin2 Φ̃12 = +sin Φ̃12, (166)

⟨im A2⟩ ⊆ ⟨im A1⟩ ⇔ sin2 Φ̃12 = − sin Φ̃12. (167)

Indeed,

sin2 Φ̃12 =
←−−−
A1A

′
1 ·
−−−→
A2A

′
2 +
←−−−
A2A

′
2 ·
−−−→
A1A

′
1 =
−−−→
A1A

′
1 ·
←−−−
A2A

′
2 +
−−−→
A2A

′
2 ·
←−−−
A1A

′
1. (168)

For example, in the case of formula (167), it may be inferred as:

⟨im A2⟩ ⊆ ⟨im A1⟩ ⇔ ⟨ker A′
1⟩ ⊆ ⟨ker A′

2⟩ ⇔

⇔
←−−−
A1A

′
1 ·
←−−−
A2A

′
2 =
←−−−
A2A

′
2 ,
←−−−
A2A

′
2 ·
−−−→
A1A

′
1 = Z ⇔ sin2 Φ̃12 = − sin Φ̃12.

In special case (166), the tensor sine is a symmetric projector (its eigenvalues are 0 and +1);
in special case (167) it is an antiprojector (the eigenvalues are 0 and −1).
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The tensor angle between ⟨im B′⟩ and ⟨im B⟩ is additively opposite to the tensor angle
between ⟨ker B⟩ and ⟨ker B′⟩. These two angles form entirely the whole binary structure
of the projective tensor angle Φ̃B . Similarly to (163) and (164), there holds

sin Φ̃B =
←−−
B′B −

←−−
BB′ =

−−→
BB′ −

−−→
B′B = sin′ Φ̃B = − sin Φ̃B′ ; (169)

Φ̃B = (Φ̃B)
′ = −Φ̃B′ . (170)

Condition sin Φ̃B = Z is equivalent to Φ̃B = Z and B ∈ ⟨Bm⟩, it is the tensor trigonometric
interpretation of null-normal matrices (Part I, sect. 2.4); sin Φ̃12 = 0 is equivalent to (153).

The trigonometric relations between two planars: image and kernel of matrices A1 and A2

or B and B′ are characterized by the projective tensor cosine of tensor angle Φ̃12 or Φ̃B :

cos Φ̃12 =
←−−−
A2A

′
2 −
−−−→
A1A

′
1 =
←−−−
A1A

′
1 −
−−−→
A2A

′
2 =

=
←−−−
A1A

′
1 +
←−−−
A2A

′
2 − I = I −

−−−→
A1A

′
1 −
−−−→
A2A

′
2 =

= cos′ Φ̃12 = cos Φ̃21 = cos (−Φ̃12),

 (171)

cos Φ̃B =
←−−
BB′ −

−−→
B′B =

←−−
B′B −

−−→
BB′ =

←−−
BB′ +

←−−
B′B − I =

= I −
−−→
BB′ −

−−→
B′B = cos′ Φ̃B = cos Φ̃B′ = cos (−Φ̃B′).

}
(172)

For two non-oriented vectors or straight lines on the Euclidean plane there holds:

cos Φ̃12 =
←−−−
a2a

′
2 +
←−−−
a1a

′
1 − I =

a1a
′
1

a′1a1
+

a2a
′
2

a′2a2
− I. (165− II)

cos Φ̃12 = cosφ12

√
I2×2,

√
I2×2 = R ·

[
+1 0
0 −1

]
·R′, (cosφ12 ≥ 0).

The trigonometric analogues of conditions (155) and (156) follow from the formula

cos2 Φ̃12 =
←−−−
A1A

′
1 ·
←−−−
A2A

′
2 +
−−−→
A2A

′
2 ·
−−−→
A1A

′
1 =
−−−→
A1A

′
1 ·
−−−→
A2A

′
2 +
←−−−
A2A

′
2 ·
←−−−
A1A

′
1. (173)

Similarly to (168), equalities for the singular cosine (as projector and antiprojector)

cos2 Φ̃12 = +cos Φ̃12 ↔ (156), cos2 Φ̃12 = − cos Φ̃12 ↔ (155) (174)

are equivalent to formulae (156) and (155), this follows from (173).
Tensor cosine of the main angle is equal also to tensor sine of the complementary angle

with respect to the right angle compatible with it as Ξ̃ = (π̃/2− Φ̃), and vice versa:

cos Φ̃ = sin Ξ̃, sin Φ̃ = cos Ξ̃. (175)

In an a�ne space ⟨An⟩, tensor angle Φ̃ has no quantitative sense unless this is zero or open.
But in an Euclidean space ⟨En⟩ the projective tensor angle as an argument expresses in its
metric form the quantitative spatial angular relations between lineors or between planars.

In an Euclidean space, the right tensor angle is formed by pairs of planars ⟨im A⟩ and
⟨ker A′⟩. Hence, we obtain for the lineors A1 and A2 the pair of tensor mutual eigenre�ectors,
and this pair is bound one-to-one with the given projective tensor angle Φ̃12:

←−−−
A1A

′
1 −
−−−→
A1A

′
1 = Ref{A1A

′
1} = cos Φ̃12 − sin Φ̃12 = Ref⊞{−Φ̃12} = cos Z̃1, (176)

←−−−
A2A

′
2 −
−−−→
A2A

′
2 = Ref{A2A

′
2} = cos Φ̃12 + sin Φ̃12 = Ref⊞{+Φ̃12} = cos Z̃2, (177)
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Due to the right tensor angle between ⟨im B⟩ and ⟨ker B′⟩ we get mutual eigenre�ectors too
←−−
BB′ −

−−→
BB′ = Ref{BB′} = cos Φ̃B − sin Φ̃B = Ref⊞{−Φ̃B} = cos Z̃B , (178)

←−−
B′B −

−−→
B′B = Ref{B′B} = cos Φ̃B + sin Φ̃B = Ref⊞{+Φ̃B} = cos Z̃B′ . (179)

They are tensor cosines of four zero tensor angles corresponding to planars ⟨im A1⟩, ⟨im A2⟩,
or ⟨im B⟩, ⟨im B′⟩; and cos2 Z̃ = I. The symmetric square roots (176)�(179) such as√
I = (

√
I)−1 = (

√
I)′ are orthogonal spherical mutual re�ectors for Φ̃ with eigenvalues ±1.

(Here Φ̃ is variable projective angle-argument for orthogonal function Ref⊞ as were shown
in de�nitions (176)-(179)! For a pair of lineors or null-prime matrix Bp, we have 4 variants
of the eigenre�ectors as ±(cos Φ̃∓sin Φ̃). The symmetric tensor eigenre�ectors carry out the
orthogonal re�ections: +Ref{AA′} o� the mirror ⟨ker A′⟩ parallel to ⟨im A⟩, −Ref{AA′}
o� the mirror ⟨im A⟩ parallel to ⟨ker A′⟩; +Ref{BB′} o� the mirror ⟨ker B′⟩ parallel to
⟨im B⟩; −Ref{BB′} o� the mirror ⟨im B⟩ parallel to ⟨ker B′⟩. Some extreme cases are:

sin Φ̃ = Z̃ ⇔ cos Φ̃ ⊂ ⟨
√
In×n ⟩S , cos Φ̃ = Z ⇔ Φ̃ = π̃/2 ⇔ sin Φ̃ ⊂ ⟨

√
In×n ⟩S ,

sin Φ̃12 = +I ⇔ r1 = 0, r2 = n, sin Φ̃12 = −I ⇔ r1 = n, r2 = 0; (sin Φ̃B ̸= ±I).

cos Φ̃ = +I ⇔ rank A = rank B = n, cos Φ̃ = −I ⇔ rank A = rank B = 0.

From one-to-one bond a pair of equirank re�ectors with the tensor angle Φ̃ we get:

cos {Φ̃} = cos′{Φ̃} = (F{+Φ̃}+ F{−Φ̃})/2,
sin {Φ̃} = sin′{Φ̃} = (F{+Φ̃} − F{−Φ̃})/2.

}
(180)

The following identities equivalent to I · I = I = I · I are clearly valid:

(
←−−−
A1A

′
1 +
−−−→
A1A

′
1)(
←−−−
A2A

′
2 +
−−−→
A2A

′
2 = I = (

←−−−
A2A

′
2 +
−−−→
A2A

′
2)(
←−−−
A1A

′
1 +
−−−→
A1A

′
1),

(
←−−
BB′ +

−−→
BB′)(

←−−
B′B +

−−→
B′B = I = (

←−−
B′B +

−−→
B′B)(

←−−
BB′ +

−−→
BB′).

 (181)

They give trigonometric formulae for a sine-cosine pair in the projective version:

sin2 Φ̃ + cos2 Φ̃ = I = cos2 Ξ̃ + sin2 Ξ̃ (Ptolemy Tensor ortho-Projective Invariant), (182)

sin Φ̃ · cos Φ̃ = − cos Φ̃ · sin Φ̃, (183)

sin2 Φ̃ · cos2 Φ̃ = cos2 Φ̃ · sin2 Φ̃, (184)

Note, that the projective sine-cosine tensor pair is anticommutative.

The Table of multiplication for di�ergenesis eigenprojectors

←−
B ·
←−−
BB′ =

←−−
BB′ =

←−−
BB′ ·

←−
B′,

−→
B ·
−−→
B′B =

−−→
B′B =

−−→
B′B ·

−→
B′,

←−
B′ ·
←−−
B′B =

←−−
B′B =

←−−
B′B ·

←−
B,

−→
B′ ·
−−→
BB′ =

−−→
BB′ =

−−→
BB′ ·

−→
B,

←−
B ·
←−−
B′B =

←−
B =

←−−
BB′ ·

←−
B,

−→
B ·
−−→
BB′ =

−→
B =

−−→
B′B ·

−→
B,

←−
B′ ·
←−−
BB′ =

←−
B′ =

←−−
B′B ·

←−
B′,

−→
B′ ·
−−→
B′B =

−→
B′ =

−−→
BB′ ·

−→
B′.

(185)

This Table of multiplication may be inferred easy with the use of transposition operations!
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Projective nature of introduced above tensor trigonometric functions is illustrated by the
cosine formulae, associated with solving a �at right triangle:

←−−
BB′ = +

←−
B · cos Φ̃ = +cos Φ̃ ·

←−
B′, (186)

←−−
B′B = +

←−
B′ · cos Φ̃ = +cos Φ̃ ·

←−
B, (187)

−−→
B′B = −

−→
B · cos Φ̃ = − cos Φ̃ ·

−→
B′, (188)

−−→
BB′ = −

−→
B′ · cos Φ̃ = − cos Φ̃ ·

−→
B, (189)

In the Euclidean space
←−
B and

−→
B are the oblique eigenprojectors for the null-prime matrix B

(see in sect. 2.1). Here they play a role of the hypotenuse in such tensor right triangles.

But the sine formulae give us the surprising four nilpotent legs:

←−
B −

←−−
BB′ = +(

√
Z)1 = +

←−
B · sin Φ̃ = +

←−
B ·
−−→
BB′ = −

←−−
BB′ ·

−→
B, (190)

−→
B −

−−→
B′B = +(

√
Z)2 = +

−→
B · sin Φ̃ = −

−−→
B′B ·

←−
B = +

−→
B ·
←−−
B′B, (191)

←−
B′ −

←−−
B′B = −(

√
Z)′2 = −

←−
B′ · sin Φ̃ = −

←−−
B′B ·

−→
B′ = +

←−
B′ ·
−−→
B′B, (192)

−→
B′ −

−−→
BB′ = −(

√
Z)′1 = −

−→
B′ · sin Φ̃ = +

−→
B ·
←−−
BB′ = −

−−→
BB′ ·

←−
B′, (193)

(When these formulae are transposed, then the sine sign changes.) The indicated di�erences
of oblique and orthogonal projectors of the same type are nilpotent matrices of order 2.

Quadrating and multiplying of simple formulae (186)�(189) give the cosine formulae for
the multiplications of oblique as well as orthogonal projectors of the same type:

←−−
BB′ = (

←−
B · cos Φ̃)2 =

←−
B ·
←−
B′ · cos2 Φ̃ =

←−
B · cos2 Φ̃ ·

←−
B′ = cos2 Φ̃ ·

←−
B
←−
B′, (194)

−−→
BB′ = (− cos Φ̃ ·

−→
B )2 =

−→
B′ ·
−→
B · cos2 Φ̃ =

−→
B′ · cos2 Φ̃ ·

−→
B = cos2 Φ̃ ·

−→
B′−→B, (195)

←−−
BB′ ·

←−−
B′B = (

←−
B · cos Φ̃) · (

←−
B′ · cos Φ̃) = cos2 Φ̃ ·

←−
B =

←−
B · cos2 Φ̃, (196)

−−→
B′B ·

−−→
BB′ = (− cos Φ̃ ·

−→
B′) · (− cos Φ̃ ·

−→
B ) = cos2 Φ̃ ·

−→
B =

−→
B · cos2 Φ̃. (197)

Projective trigonometric nature of the tensor angles is illustrated with the symbolic tensor
octahedron formed by eight eigenprojectors of null-prime B in 2-valent ⟨En×n⟩ (Figure 1).
For null-normal B, this octahedron is reduced to the tensor right triangle with hypotenuse I.

Figure 1. Symbolic tensor octahedron from 8 eigenprojectors
for illustration of the projective tensor angles.
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5.3 Projective secant, tangent and a�ne (oblique) re�ectors

The tensor secant (and further tangent) of a projective angle is de�ned in terms of oblique
eigenprojectors. The matrix trigonometric function

sec Φ̃B =
←−
B′ −

−→
B =

←−
B −

−→
B′ =

←−
B +

←−
B′ − I =

= I −
−→
B −

−→
B′ = sec′ Φ̃B = sec Φ̃B′ = sec (−Φ̃B) =

= (
←−
B′)′ −

−→
B =

←−
B − (

−→
B )′


(198)

is called the projective tensor secant of the tensor angle Φ̃B .

These formulae are easily inferred by the following way. Summation of (186) and (189),
(187) and (188) gives

(
←−
B′ −

−→
B ) · cos Φ̃ = cos Φ̃ · (

←−
B′ −

−→
B ) = I = cos Φ̃ · (

←−
B −

−→
B′) = (

←−
B −

−→
B′) · cos Φ̃.

These equalities determine the tensor secant.

According to (172), cos Φ̃B is nonsingular i� ⟨im B⟩ ∩ ⟨ker B⟩ = 0, i. e., B ∈ ⟨Bp⟩ is
a null-prime matrix (see Part I, sect. 1.6), therefore,

sec Φ̃Bp = cos−1 Φ̃Bp, sec Φ̃Bp · cos Φ̃Bp = I = cos Φ̃Bp · sec Φ̃Bp; (199)

The matrix B may be null-defective, and there may exist no oblique eigenprojectors. Then
the cosine of angle Φ̃B is the zero matrix on the subspace ⟨im B⟩ ∩ ⟨ker B⟩ and

sec Φ̃B = cos+ Φ̃B , sec Φ̃ · cos Φ̃ =
←−−−
cos Φ̃ = cos Φ̃ · sec Φ̃. (200)

The formal de�nition of the tensor secant as quasi-secant takes advantage of the quasi-
inverse Moor�Penrose matrix (see Part I, sect. 2.5) for the inversion of the singular tensor
cosine. (Recall, that its matrix is symmetrical.) In this case, the multiplication of the
tensor cosine and quasi-secant is the orthoprojector in formula (200). From the other hand,

for a null-defective matrix B, the cosine of the angle between the subspaces ⟨im Bs0⟩ and
⟨im (B′)s

0⟩ is a nonsingular matrix. Note, that for the null-normal matrix the tensor angle
between ⟨im B⟩ and ⟨ker B⟩ is right. But for the main tensor angle and its functions, in
the case, we have:

sin Φ̃B = Z ⇔ cos Φ̃B =
√
I, cos2 Φ̃B = I, sec Φ̃B = cos−1 Φ̃B .

For the tensor sine in the especial case, if B ∈ ⟨Bp⟩ and rB = n/2, there holds

det sin Φ̃B ̸= 0 ⇔ ⟨im B⟩ ∩ ⟨im B′⟩ = 0, ⟨ker B⟩ ∩ ⟨ker B′⟩ = 0. (201)

If the same tensor angle is de�ned by lineors A1 and A2, then conditions (159) and (160)
should hold simultaneously. In other cases, the tensor sine is a singular matrix, and the
quasi-cosecant is de�ned in terms of the quasi-inverse Moor�Penrose matrix:

cosec Φ̃B = sin+ Φ̃B = cosec′ Φ̃B = − cosec Φ̃B′ = − cosec(−Φ̃B) = sec Ξ̃. (202)

Further, subtracting (186) and (187) gives

sin Φ̃B = − cos Φ̃B · (
←−
B′ −

←−
B ) = +(

←−
B′ −

←−
B ) · cos Φ̃B .
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These equalities determine the tensor function

i tan Φ̃B =
←−
B′ −

←−
B =

−→
B −

−→
B′ = (

←−
B ) ′ −

←−
B ) =

=
−→
B − (

−→
B ) ′ = −(i tan Φ̃B)

′ = −i tanΦB′ = −i tan(−ΦB),

 (203)

called the projective reali�cated tensor tangent of Φ̃B . In the reali�cated form it is a real
valued skewsymmetric matrix with the eigenvalues µj = ±i tanφj . Moreover (see also sect.
5.5 and 7), there hold the following anticommutative paired relations (!):

i tan Φ̃ = + sin Φ̃ · sec Φ̃ = − sec Φ̃ · sin Φ̃↔

↔ sin Φ̃ = +i tan Φ̃ · cos Φ̃ = − cos Φ̃ · i tan Φ̃→

→ +sin Φ̃ · i tan Φ̃ = −i tan Φ̃ · sin Φ̃.

 (204)

For two vectors or two straight lines, due to (151) and (152), there holds

i tan Φ̃B =
B′

trB′ −
B

trB
=
B′ −B
trB

=
a2a

′
1

a′1a2
− a1a

′
2

a′2a1
=

a2a
′
1 − a1a

′
2

a′1a2
= i tan Φ̃12. (205)

Its structure is [i tan Φ̃12 = tanφ12

√
I2×2 ],

√
I2×2 = R ·

[
0 −1

+1 0

]
·R′.

The reali�cated quasi-cotangent is de�ned, in the general case, as

i cot Φ̃B = i tan+ Φ̃B = −i cot′ Φ̃B = −i cot Φ̃B′ = −i cot(−Φ̃B) = i tan Ξ̃B . (206)

The following identities are a�ne (oblique) analogs of identities (181):

(
←−
B +

−→
B ) · (

←−
B′ +

−→
B′) = I = (

←−
B′ +

−→
B′) · (

←−
B +

−→
B ) (207)

They are clearly valid for the null-prime matrices. By the way, trigonometric formulae

sec2 Φ̃− tan2 Φ̃ = I = cosec2 Ξ̃−cot2 Ξ̃ (Tensor oblique-Projective quasi-Invariants), (208)

+i tan Φ̃ · sec Φ̃ = − sec Φ̃ · i tan Φ̃, (209)

tan2 Φ̃ · sec2 Φ̃ = sec2 Φ̃ · tan2 Φ̃ (210)

complement formulae (182)�(184) for the tensor sine-cosine anticommutative pair. Note,
tan Φ̃ is a true projective tensor tangent with the eigenvalues µj = ± tanφj .

Note. We named (208) as the quasi-invariants, because, from the point of view of the
kinds of transformations, secant-tangent (or cosecant-cotangent) re�ections with these quasi-
invariants do not have the property of two- and multistep applicability in the re�ective
transformations of coordinates or geometric objects. They are applicable only for one-step
re�ections. This distinction will be discussed in details in the Appendix, where tensor
trigonometric invariants and quasi-invariants will play a large role in various non-Euclidean
geometries and in the theory of relativity.

Rule 1. Square and any even degrees of all the tensor trigonometric functions of the same
angle (for the same pair of lineors or planars) commute with each other tensor trigonometric
functions of the same angle, with all its eigenprojectors and all its eigenre�ectors.
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If B = Bp is null-prime matrix (not null-normal), then its two mutual oblique spherical
eigenre�ectors (re�ecting with the trigonometric deformation � see in sect. 5.10) are de�ned
similarly to formulae (176)�(179) in terms of the oblique eigenprojectors (see Part I, (60)):

←−
B −

−→
B = I − 2

−→
B = Ref{B} = sec Φ̃B − i tan Φ̃B = Ref⊠{−Φ̃B}, (211)

←−
B′ −

−→
B′ = I − 2

−→
B′ = Ref{B′} = Ref ′{B} = sec Φ̃B + i tan Φ̃B = Ref⊠{+Φ̃B}. (212)

(In notation Ref⊠ we used the oblique sub-sign.) From the algebraic point of view, they are
asymmetric prime square roots of the unity matrix as

√
I = (

√
I)−1 with eigenvalues ±1.

These mutual asymmetric tensor eigenre�ectors carry out the oblique re�ection, namely:
+Ref{B} o� the mirror ⟨ker B⟩ parallel to ⟨im B⟩ with the spherical deformation,
−Ref{Bp} o� mirror ⟨im B⟩ parallel to ⟨ker B⟩ with the spherical deformation.

They are inferred with use of (211) and (60). But i� Bp is a null-normal matrix Bm, then
square roots (211) and (212) are symmetric, i. e., they transformed into (178), (179).

Each symmetric and asymmetric prime square roots of I geometrically are accordingly
orthogonal and oblique re�ectors. Moreover, each pair of the same kind roots corresponds
to a unique pair of mutual eigenprojectors, and to a unique pair of mutual projective tensor
trigonometric functions (sine-cosine tangent-secant) � see more about this in sect. 5.6.

Re�ectors are nonsingular matrices, as in their de�ning formulae (176)�(179), (211), (212)
we get that ranks of both matrices (left and right) are summated and their sum equal to n.
(These questions will be consider in details in the following sect. 5.6., 5.7, 5.10.)

Thus we de�ned above with formulae all the trigonometric functions of tensor angles
in the re�ective version of tensor trigonometry. On the Euclidean and a�ne plane, these
tensor formulae are applicable too! Here they determine completely the orientation of tensor
angles, but their scalar invariants determine also classic �at trigonometry. In the Euclidean
and a�ne linear space, classic �at trigonometry acts with scalar invariants too, but only on
the eigenplane of any binary tensor angle without its speci�c nature.

5.4 Comparison of two ways for de�ning projective angles

These ways for the angles Φ̃12 and Φ̃B , are the following:
• in terms of n×m-matrices of lineors A1 and A2, as geometric objects;
• in terms of n × m-matrices B and B′ (as multiplication of the lineors). Both these

ways have already been used before (see Part I, sect. 3.3).
Find general conditions under which tensor angle Φ̃ and its trigonometric functions do

not depend on a choice of the way from these two ways of the tensor angle de�ning.
According to initial de�nitions in sect. 3.1, put external and internal multiplications:

B = A1A
′
2, B′ = A2A

′
1; (213), (214)

C = A′
1A2, C ′ = A′

2A1. (215), (216)

Then the matrices A1 and A2 should have the same sizes. Moreover, from the identity of the
two tensor angles, i. e., Φ̃12 = Φ̃B , the equalities of their projective sine-cosine trigonometric
functions follow as well as the equalities of the corresponding orthogonal eigenprojectors
(bound with the angles by exact formulae) follow too; and vice versa:

Φ̃12 = Φ̃B ⇔ (sin Φ̃12 = sin Φ̃B , cos Φ̃12 = cos Φ̃B) ⇔

⇔ (
−−−→←−−−
A1A

′
1 =
−−→←−−
BB′,

−−−→←−−−
A2A

′
2 =
−−→←−−
B′B).
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However, the equalities of the corresponding a�ne (oblique) eigenprojectors
−−−→←−−−
A1A

′
2 =
−→←−
B (as

bonded with the angle by other formulae) follow from de�nitions (213)�(214). What is more,
these additional equalities are valid due to only existence of a�ne projectors for B (sect. 2.1).
For their existence in the case, see below condition (230).

Equality of the orthoprojectors is equivalent to the following relations:

⟨im A1⟩ ≡ ⟨im B⟩ ⇔ ⟨ker A′
1⟩ ≡ ⟨ker B′⟩, (217), (218)

⟨im A2⟩ ≡ ⟨im B′⟩ ⇔ ⟨ker A′
2⟩ ≡ ⟨ker B⟩. (219), (220)

In their turn, the pairs of relations (217), (218) and (219), (220) are equivalent each to
another due to the well-known fact, that the left and right sub-spaces in these pairs are
complements each to another in ⟨An⟩ and orthogonal ones in ⟨En⟩ � see in Part I this
well-known property (100).

At �rst, consider, when conditions (217) are valid. Obviously, that

⟨im B⟩ ≡ A1⟨im A′
2⟩ ⇐ B = A1A

′
2,

⟨im A1⟩ ≡ A1⟨Ar2⟩ ≡ A1(⟨im A′
2⟩ ⊕ ⟨ker A2⟩).

Therefore (217) is equivalent to the pair of obvious conditions in (213):

⟨im A′
2⟩ ∩ ⟨ker A1⟩ = 0, ⟨ker A2⟩ ⊂ ⟨ker A1⟩. (221)

Similarly, (219) is equivalent to the pair of obvious conditions in (214):

⟨im A′
1⟩ ∩ ⟨ker A2⟩ = 0, ⟨ker A1⟩ ⊂ ⟨ker A2⟩. (222)

It is seen that independent conditions (217), (219) hold simultaneously i�

⟨ker A1⟩ ≡ ⟨ker A2⟩ ⇔ ⟨im A′
1⟩ ≡ ⟨im A′

2⟩ ⇔
⇔
−−−→
A′

1A1 =
−−−→
A′

2A2 ⇔
←−−−
A′

1A1 =
←−−−
A′

2A2

}
(223)

and where it is necessary r1 = r2 ≤ m.
Thus (223) is the necessary and su�cient condition answering the problem from be-

ginning of the section. Obviously, (223) also implies the very simple and useful su�cient
condition r1 = r2 = r = m. This condition, in its turn, has simple corollaries

⟨ker A1⟩ ≡ ⟨ker A2⟩ = 0, ⟨im A′
1⟩ ≡ ⟨im A′

2⟩ ≡ ⟨Ar⟩.

This special case is implied when one deals with external and internal multiplications such
as (213)�(216) for these so called equirank lineors A1 and A2 under condition

r1 = r2 = r = m < n. (224)

(This holds always for two vectors.) From (120) and (213)�(216) we have

k(B, r) = k(B′, r) = det C = det C ′. (225)

If B is null-prime matrix, then ⟨im B⟩∩⟨ker B⟩ = 0 and k(B, r) = det C ̸= 0. In the case,
if B is null-normal matrix, then ⟨im B⟩ ≡ ⟨im B′⟩ and due to (97) (see Part I, sect. 2.4)
we have k(BB′, r) = k(B′B, r) = k2(B, r) = det2C > 0. However if B is null-defective
matrix, then ⟨im B⟩ ∩ ⟨ker B⟩ ≠ 0 and k(B, r) = det C = 0.
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Under general condition (223) or particular condition (224), there holds

−−−→←−−−
A1A

′
1 =
−−→←−−
BB′,

−−−→←−−−
A2A

′
2 =
−−→←−−
B′B. (226)

In an a�ne space, the characteristic det G = det[(A1|A2)
′(A1|A2)] is the criterion for

at least partial parallelism of these planars or partial coplanarity of these lineors − see this
in sect. 8.4. In an Euclidean space, the characteristic det C = det(A′

1A2), under condition
(224), is the criterion for at least their partial orthogonality.

det G = 0 ⇔ ⟨im A1⟩ ∩ ⟨im A2⟩ ≠ 0, (227)

det G ̸= 0 ⇔ ⟨im A1⟩ ∩ ⟨im A2⟩ = 0, (228)

det C = 0⇔ ⟨im A1⟩ ∩ ⟨ker A′
2⟩ ≠ 0⇔ ⟨im A2⟩ ∩ ⟨ker A′

1⟩ ≠ 0, (229)

det C ̸= 0⇔ ⟨im A1⟩ ∩ ⟨ker A′
2⟩ = 0⇔ ⟨im A2⟩ ∩ ⟨ker A′

1⟩ = 0. (230)

In an Euclidean space there holds ⟨ker A′⟩ ≡ ⟨im A⟩⊥ � see, for example, in Part I, (100).

Total parallelism of planars (153) or colplanarity of equirank lineors − see this in sect. 8.4,
under condition (224), means that the matrix B = A1A

′
2 is null-normal, i. e., B ∈ ⟨Bm⟩.

Due to (97) and (132), this is equivalent to the relations:

|det C| =
√
k(Bm ·Bm′, r) = |k(Bm, r)| =

=Mt(r)(A1 ·A′
2) =Mt(r)A1 · Mt(r)A2 =

=
√
det(A′

1 ·A1) ·
√
det(A′

2 ·A2)

 (231)

and is also equivalent to parallelism (153) in an a�ne space. Formulae (227)�(231) may be
interpreted trigonometrically, it will be done later.

Total orthogonality of planars or lineors, under condition (224), means that B = A1A
′
2

is a nilpotent matrix of order 2: B2 = Z, or C = Z. The latter is also equivalent to
orthogonality (155), if r1 = r2 , in an Euclidean space. Their partial orthogonality means
that B is a null-defective matrix.

The tensor angle Φ̃12 and its trigonometric functions are, of course, more general than
the angle Φ̃B and its functions, as matrices A1 and A2 may have distinct sizes n × r1 and
n × r2 admissible only for Φ̃12. Moreover, if the lineors are partially or totally orthogonal,
then only the angles Φ̃12 exist. Therefore the type of a tensor angle more convenient in the
problem solving should be chosen.

5.5 Cell-forms of tensor trigonometric functions and re�ectors

Parallelism and orthogonality correspond to extreme values of tensor angles between linear
objects. In order to completely analyze all relations between objects, it is necessary to
represent the trigonometric functions in canonic forms, to �nd their eigenvalues and to
de�ne informative scalar invariant characteristics for the tensor angle.

Consider di�erences of orthoprojectors similar to (163) and (171). They express the
projective sine and cosine by two manners. According to (182)�(184) the sine and cosine
eigenvalues are real paired (±) numbers belonging to (−1;+1):

µ2
i sin + µ2

i cos = 1. (232)
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The paired sine and cosine eigenvalues in an Euclidean space correspond to values of binary
angles on the trigonometric eigenplanes. Four eigen orthoprojectors in both variants of dif-
ferences (163) and (171) are pairly orthogonal. The projectors correspond one-to-one to four
pairly orthogonal subspaces: ⟨im A1⟩, ⟨ker A′

1⟩ and ⟨im A2⟩, ⟨ker A′
2⟩ � see Part I, (100):

⟨im A1⟩ ⊥ ⟨ker A′
1⟩, ⟨im A1⟩ ⊕ ⟨ker A′

1⟩ ≡ ⟨En⟩ ⇔

⇔ ⟨im A2⟩ ⊥ ⟨ker A′
2⟩, ⟨im A2⟩ ⊕ ⟨ker A′

2⟩ ≡ ⟨En⟩.

 (233)

In the �rst variant of (163), i. e., as in (159), the sine is considered in the subspace ⟨im A1∪
im A2⟩; in the second variant of (163), i. e., as in (160), the sine is considered in the
subspace ⟨ker A′

1∪ker A′
2⟩. Similarly, in the �rst variant of (171), the cosine is considered in

⟨im A2∪ker A′
1⟩; in the second variant of (171), the cosine is considered in ⟨im A1∪ker A′

2⟩.
The illustration is given in Figure 2. It is supposed without loss of generality that the

�rst variant as in (154), i. e., r1 ≤ r2, r1+r2 ≤ n (or 2r ≤ n), takes place. The space ⟨En⟩ is
partitioned due to this variant of di�erences (163) and (171) into four basic subspaces. Both
they map the sine and cosine functions of the tensor angle Φ̃ with its binary eigen angles
±φi � primaary and mutual to the �rst. (See more about such splitting in sect. 5.12.)

Figure 2. Distribution of projective sine and cosine eigenvalues
in all the eigen subspaces of tensor angle between two lineors.

At Figure 2, as a Tensor Trigonometric Diagram for the sine-cosine pair of the projective
tensor angle Φ̃12, we map abstractly the distribution in an Euclidean space in the logical
sequence of paired (±) eigenvalues of the tensor sine and cosine (with its binary eigen angles
±φi in D-form of tensor sine) and with corresponding to them eigen subspaces of this tensor
angle orthogonal each to others. All these indicated subspaces are pairly orthogonal provided
that in the trigonometric subspace of the tensor angle of dimension 2τ there holds:

sinφi ̸= ±1, sinφi ̸= 0, (cosφi ̸= 0, cosφi ̸= ±1). (234)

Otherwise orthogonalization may be used, so, by manner, suggested in (131), Ch. 3.
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This whole binary trigonometric subspace is de�ned as the following direct sums of these
four particular orthogonal subspaces (in the sine and cosine variants):

⟨P11 ⊕ P12⟩ ≡ ⟨P21 ⊕ P22⟩. (235)

(These four subspaces are formed by eigenvectors of the tensor angle sine and cosine.)
Its even dimension 2τ is called further the trigonometric rank of a tensor angle, where

τ = min{r1, r2, n− r1, n− r2}. Here we have τ = r1. The eigenvalues of the sine and cosine
functions in (232) have the same absolute values in the two mutual subspaces (235), as the
two sides of the binary angle in (163) are, due to (233), orthogonal; but their signs are
opposite, as the projectors are ordered inversely in the two variants of di�erences (163) and
(171) � see Figure 2.

If additional conditions (234) and r1 ≤ r2 hold, the two intersections subspaces (the zero
sine and the zero cosine) and their dimensions are expressed as follows:

⟨P3⟩ ≡ ⟨ker A′
1 ∩ ker A′

2⟩, dim⟨P3⟩ = n− (r1 + r2), (sinφ = 0, cosφ = −1);

⟨P4⟩ ≡ ⟨im A2 ∩ ker A′
1⟩ (ν′′ = 0), dim⟨P4⟩ = r2 − r1, (cosφ = 0, sinφ = +1).

The projective tensor cosine and sine are symmetric (anticommutative) matrices, so they
may be converted separately into their D-forms with certain modal orthogonal matrices
R1 and R2 respectively in the bases Ẽ1 = R1 · Ẽ and Ẽ2 = R2 · Ẽ. In order to give
the trigonometric sense to the eigenvalues (232), we use an Euclidean space ⟨En⟩ with the
original base Ẽ and then �nd an local unity Cartesian base for the canonical W -forms of the
tensor trigonometric functions for the angle Φ̃. We establish it below.

Each i-th trigonometric 2× 2-cell with an unique pair of the cosine and sine (±) eigen-
values in the trigonometric subspace of a tensor angle Φ̃12 corresponds to its i-th eigenplane.
It is determined here in Ẽ by a pair of the cosine orthogonal unity eigenvectors ui and
vi. They are two Cartesian axes of the tensor cosine D-form base (not yet oriented) and
correspond to its eigenvalues ± cosφi, where φi ∈ [−π/2;+π/2] are the eigenvalues of the
tensor angle between planars or non-oriented lineors. In order to construct the canonical
forms of the tensor trigonometric functions, dispose the trigonometric cells along the matrix
diagonal with increasing the values | cosφi|. Then along the diagonal dispose the 1× 1-cells
corresponding to the intersection sub-spaces ⟨P3⟩ and ⟨P4⟩. Denote the original base Ẽ axes
as x1, . . . , xn, and the trigonometric part of the new axes as u1, . . . , uτ ; v1, . . . , vτ such that
x1 ↔ u1, x2 ↔ v1,. . . , x2i−1 ↔ ui, x2i ↔ vi,. . . , x2τ−1 ↔ uτ , x2τ ↔ vτ . Direct the new
axes in such way that each ui and vi form an acute angle. We found RW for translating
into new Ẽ1 = RW {Ẽ} = {I}.

In any trigonometric cell, sin2 Φ̃12 and cos2 Φ̃12 have the two positive (quadric) multiple
eigenvalues from (232). As sin2 Φ̃12 and cos2 Φ̃12 commute in (184) and (185), then their
and cosine D-forms are implemented together in the same local base Ẽ1:

sin2 Φ̃12 cos2 Φ̃12

.
.
.

sin2 φi 0
0 sin2 φi

.
.
.

0

.
.
.

1

.
.
.

P3

P4

.
.
.

cos2 φi 0
0 cos2 φi

.
.
.

1

.
.
.

0

.
.
.

.
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Due to symmetry of sin Φ̃12 and cos Φ̃12, and anticommutativity condition (183) one
represents these functions in the following canonical W -forms � see ((148) in sect. 1.4) in
the trigonometric base Ẽ1 = {I} of the diagonal cosine (provided that r1 ≤ r2, r1+r2 ≤ n):

sin Φ̃12 cos Φ̃12 (236), (237)

.
.
.

0 + sinφi

+sinφi 0

.
.
.

0

.
.
.

+1

.
.
.

P3

P4

.
.
.

+cosφi 0
0 − cosφi

.
.
.

−1

.
.
.

0

.
.
.

,

In (236) and (237), the signs of the projective sine and cosine in the trigonometric cells are
chosen out four possible variants, according to their de�nitions in (163), (171); but the signs
of them in ⟨P3⟩, and ⟨P4⟩ are chosen, according to the additional conditions.

For the angle Φ̃B (B ∈ ⟨Bp⟩, there holds ⟨P4⟩ = 0, dim⟨P3⟩ = n−2r. According to (199)
we obtain the same base Ẽ1 of the diagonal secant as for the cosine. From antisymmetry of
i tan Φ̃12 and anticommutativity condition in (203)-(204) one represents these functions in
Ẽ1 in the following canonical W -forms (provided that 2r < n):

sec Φ̃B i tan Φ̃B (238), (239)

.
.
.

+sec φi 0
0 − sec φi

.
.
.

−1

.
.
.

P3

.
.
.

0 − tanφi

+tanφi 0

.
.
.

0

.
.
.

,

Formulae (236)�(239) are the canonical W-forms for all projective trigonometric functions
in the directed base of the diagonal cosine Ẽ1. This base is called trigonometric and used
in W-forms representations. These forms also illustrate Rule 1 (see above).

Under conditions (234) also there holds:

−→
Si =

−−−−−−−−−−−−−−−→
{cos2 Φ̃− cos2 φi · I} =

−→
Si1 +

−→
Si2;

−→
Si1 =

−−−−−−−−−−−−−→
{cos Φ̃− cosφi · I},

−→
Si2 =

−−−−−−−−−−−−−→
{cos Φ̃ + cosφi · I};

−→
S3 =

−−−→
sin Φ̃,

−→
S4 =

−−−→
cos Φ̃; (

−→
S1 +

−→
S2 +

−→
S3 +

−→
S4 = I)


. (240)

These are the orthoprojectors onto the following characteristic eigen subspaces: the i-th
trigonometric cell, the axes ui ⊂ ⟨P21⟩ and vi ⊂ ⟨P22⟩, ⟨P3⟩, and ⟨P4⟩. Here their basis
columns (as well as the basis rows) determine the subspaces indicated.
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If some angle φi is multiple, then the i-th trigonometric cells are united, and ortho-
gonalization of their homogeneous axes are necessary for preserving the binary trigonometric
structure. Moreover, if simplest eigenvalues (0 and ±1) of the projective cosine or sine are
equal to the same ones in ⟨P3⟩ and ⟨P4⟩, one may also use orthogonalization for dividing
the mixed trigonometric partial subspaces. (See sect. 3.1.)

Below we consider the extreme cases of the angles and the cases with the other primary
additional assumptions (see Figure 2).

Return to conditions (234). They facilitate partitioning an Euclidean space ⟨En⟩ into
trigonometric subspaces due to the unary and binary parts of W-forms. At �rst, consider
the additional case, when the eigenvalues sinφi = 0 of the multiplicity 2ν ′ are in ⟨P11⟩ and
⟨P12⟩. Besides they corresponds to the sine value 0 belonging to ⟨P3⟩. Also they corresponds
to the pair eigenvalues of the multiplicity ν′ cosφi = +1 in ⟨P21⟩ and cosφi = −1 in ⟨P22⟩.
The last value of the cosine corresponds to the cosine value −1 belonging to ⟨P3⟩. The
other additional case takes place, when the eigenvalues cosφi = 0 of the multiplicity 2ν′′

are in ⟨P21⟩ and ⟨P22⟩. Besides they corresponds to the cosine value 0 belonging to ⟨P4⟩.
Also they corresponds to the pair eigenvalues of the multiplicity ν′′ sinφi = +1 in ⟨P11⟩
and sinφi = −1 in ⟨P12⟩. The �rst value of the sine corresponds to the sine value +1
belonging to ⟨P4⟩. In order to separate all the characteristic eigenspaces, it is necessary to
orthogonalize them. After that the partial subspaces ⟨P11⟩, ⟨P21⟩, ⟨P3⟩, ⟨P4⟩, ⟨P12⟩, ⟨P22⟩
become entirely orthogonal.

Now suppose that other assumptions, taken before, do not hold. If r1 + r2 > n, then
⟨P3⟩ = ⟨im A1⟩∩⟨im A2⟩. Besides, if r2 > r1, then ⟨P4⟩ = ⟨im A2⟩∩⟨ker A′

1⟩. In according
with these new conditions, the signs of unitary sine and cosine eigenvalues in ⟨P3⟩ and ⟨P4⟩
should be changed. For equirank lineors the subspace ⟨P4⟩ is absent!

All the bases used are right (det{R} = +1). Among them are the original Cartesian
base Ẽ and the new Cartesian bases in the planes ⟨ui, vi⟩, i. e., Ẽ1 = RW {Ẽ} = {I} (they
form the binary part of the trigonometric base). In the trigonometric base, one may �nd the
contradiagonal values of the sine up to their signs according to (236), then the cosine signs
are exactly determined by (237); and vice versa. Both determine completely the absolute
value and the sign of the counter-clockwise scalar angle φi in [−π/2;+π/2]. This segment
is the range of angles for planars or non-oriented lineors.

Analogous reasoning may be realized for distributions of the projective secant and tan-
gent values in the four eigenspaces of the tensor spherical angle between two lineors, with
correspondence to their mapping above in (238), (239).

Thus, with matrices of canonical forms (236)�(240), we have completed that fundamental
part of tensor trigonometry, which relates to the de�nition, various properties, and primary
application of tensor trigonometric functions and their angle-arguments of the projective
type. And it remains for us in the same way to complete its fundamental part with similar
canonical matrices, which relates to the de�nition, properties, and primary application of
tensor trigonometric symmetric (orthogonal) and oblique (a�ne) eigenre�ectors with the
projective-type tensor angles �guring in them. But in eigenre�ectors (176)�(179) and (211),
(212), as mathematical operators, these angles are not arguments. Their arguments are
singular square matrices (AA', BB', B'B, B and B') with images and kernels between which
re�ections occur. All these tensor projective trigonometric functions, as it is exposed above,
in their sine-cosine (176)�(179) and tangent-secant (211)�(212) pairs forms the corresponding
pairs of symmetric (orthogonal) and asymmetric (oblique) eigenprojectors with respect to
the image or the kernel for each. Therefore the same trigonometric base (the directed base
of the diagonal cosine) is used for canonical forms of both mutual orthogonal eigenre�ectors
(176), (177) and of both mutual a�ne eigenre�ectors (211), (212). Their matrix tensor
forms are the following:
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+Ref{A1A
′
1} +Ref{A2A

′
2} (241)

.
.
.

+cosφi − sinφi

− sinφi − cosφi

.
.
.

−1

.
.
.

−1

.
.
.

P3

P4

.
.
.

+cosφi +sinφi

+sinφi − cosφi

.
.
.

+1

.
.
.

−1

.
.
.

,

(they are the algebraic sum (237) and (236) provided that r1 ≤ r2, r1 + r2 ≤ n);

+Ref{B} +Ref{B′} (242)

.
.
.

+sec φi +tanφi

− tanφi − sec φi

.
.
.

−1

.
.
.

P3

.
.
.

+sec φi − tanφi

+tanφi − sec φi

.
.
.

+1

.
.
.

,

(they are the algebraic sum (238) and (239) provided that 2r ≤ n).

5.6 The tensor trigonometric theory of prime roots
√
I

In this section, we describe brie�y connection between the main notions of tensor trigonom-
etry and the theory of prime roots

√
I (i. e., without nilpotent matrix summand as in (21)

or (76) � Part I). Fix an original Cartesian base Ẽ in ⟨En⟩. In this base any prime square
root of the matrix I is the re�ector (sign-inde�nite nonsingular matrix), either symmetric
or nonsymmetric � see formulae (176)�(179) and (211), (212).

So, it is (
√
I)s = Ref{Bm}, in particular (

√
I)s = Ref{AA′}; or

√
I = Ref{Bp}.

They can be converted, with the certain modal transformation T · {Ẽ} = ẼD, into the dual
block-unity D-form of

√
I = Ref{Bm} or

√
I = Ref{Bp}:

R′
W ·
√
I ·RW = I± =

[
+I Z
Z −I

]
q+

q−
(q+ + q− = n, q+ = rank B, q− = sing B).

For any trigonometric matrix (i. e., matrix, bound with a tensor angle) its trigonometric
rank is de�ned by the binary structure of the tensor angle (see, for example, in (235)). Here
the trigonometric rank 2τ also corresponds to an index q of the re�ector:

2τ = 2q = 2min{q+, q−} = 2min{r, n− r}.

Further, for W -forms we use also the trigonometric Cartesian base Ẽ1 = RW {Ẽ} = {I}.
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Separate symmetric roots (
√
I)s = (

√
I)′s. For a null-normal matrix Bm, for example,

+Ref{Bm} =
←−−
Bm−

−−→
Bm = (

√
I)s. Put, without loss of generality, Bm = AA′.

Let (
√
I)1 and (

√
I)2 be a pair of independent symmetric roots. Then, in ⟨En⟩, these

roots and the orthore�ectors are connected as follows:{ ←−−−
A1A

′
1 = (I+(

√
I)1)

2 ,
−−−→
A1A

′
1 = (I−(

√
I)1)

2 ,
←−−−
A2A

′
2 = (I+(

√
I)2)

2 ,
−−−→
A2A

′
2 = (I−(

√
I)2)

2 .

}
⇔

{
(
√
I)1 =

←−−−
A1A

′
1 −
−−−→
A1A

′
1,

(
√
I)2 =

←−−−
A2A

′
2 −
−−−→
A2A

′
2.

}
(243)

From this, taking into account (163), (171), (176), and (177), we obtain

cos Φ̃12 − sin Φ̃12 = (
√
I)1 = +Ref{A1A

′
1},

cos Φ̃12 + sin Φ̃12 = (
√
I)2 = +Ref{A2A

′
2},

}
(244)

cos Φ̃12 = [(
√
I)1 + (

√
I)2]/2, sin Φ̃12 = [(

√
I)2 − (

√
I)1]/2. (245)

The homogeneous projectors are equirank, i� (
√
I)1 and (

√
I)2 have the same index, either

q−, or q+ (as the trigonometric rank for a pair of lineors or null-prime matrix). Remem-
ber, that the orthore�ectors +Ref{AA′} and −Ref{AA′} have their mutually orthogonal
mirrors ⟨ker A′⟩ and ⟨im A⟩ in the Euclidean space.

Corollaries (for ⟨En⟩)
1. A symmetric root

√
I de�nes one-to-one a unique symmetric orthogonal re�ector as

well as a unique mutual pair of spherically orthogonal projectors and a unique right tensor
angle of the same trigonometric rank.

2. Any pair of symmetric roots (
√
I)1 and (

√
I)2 de�nes a unique pair of spherically

orthogonal projectors, a unique tensor angle Φ̃12 and its trigonometric functions.
3. If an original Cartesian base Ẽ is �xed, then all the matrix notions, according to

item 2, due to (243) − (245), may be converted into compatible monobinary W -forms in a
trigonometric Cartesian base Ẽ1.

Separate nonsymmetric prime roots
√
I ̸= (

√
I)′. For a null-prime matrix Bp, for exam-

ple, +Ref{Bp} =
←−
Bp −

−→
Bp =

√
I ̸= (

√
I)′. Denote the matrix Bp brie�y as B. Then we

have the following bond of these roots and oblique re�ectors:{ ←−
B = (I+

√
I)

2 ,
−→
B = (I−

√
I)

2 ,
←−
B′ = (I+(

√
I)′)

2 ,
−→
B′ = (I−(

√
I)′)

2 .

}
⇔

{ √
I =
←−
B −

−→
B,

(
√
I)′ =

←−
B′ −

−→
B′.

}
(246)

From this, taking into account (198), (203), (211), (212), we obtain

sec Φ̃B − i tan Φ̃B =
√
I = +Ref{B},

sec Φ̃B + i tan Φ̃B = (
√
I)′ = +Ref{B′},

}
(247)

sec Φ̃B = (
√
I + (

√
I)′)/2, i tan Φ̃B = ((

√
I)′ −

√
I)/2. (248)

The roots
√
I and (

√
I)′ always have the same trigonometric rank. Remember, that the

oblique re�ectors +Ref{Bp} and +Ref{Bp} have their mutually oblique mirrors ⟨ker B⟩
and ⟨im B⟩ in the Euclidean space � see for the non-transposed re�ector.

Corollaries (for ⟨En⟩)
1. Any nonsymmetric prime root

√
I de�nes a unique nonsymmetric oblique re�ector as

well as a unique mutual pair of spherically oblique projectors.
2. Any pair of nonsymmetric prime roots

√
I and (

√
I)′ de�ne a unique pair of spherically

oblique projectors, a unique tensor angle Φ̃B and its trigonometric functions.
3. If a Cartesian base Ẽ is �xed, then all the notions (item 2), due to (246)− (248), may

be converted into compatible monobinary W -forms in a trigonometric Cartesian base Ẽ1.
* * *



5.7 Rotational functions of motive tensor spherical angles 81

In sections 5.1�5.6, we have laid out that fundamental content of tensor
trigonometry which relates to its linear algebraic objects, to de�nitions of all the
tensor trigonometric functions with their tensor angle�argument of projective
type in the a�ne and Euclidean spaces, to all symmetric (orthogonal) and
oblique (a�ne) eigenre�ectors very logically produced from these trigonometric
projective functions with their speci�c geometric re�ective actions. We have
established a one-to-one relationship between all these eigenre�ectors and the
symmetric or asymmetric prime roots from the unity matrix. When these roots�
re�ectors have also a speci�c origin, then they can have been linked to eigen-
projectors and tensor trigonometric functions with projective angles�arguments.

Our next task is, using such eigenre�ectors, �rstly, to correctly introduce the
quasi-Euclidean space (complementing the well-known pseudo-Euclidean space)
and, secondly, to develop in natural way that part of tensor trigonometry which
relates to representation of rotations as tensor trigonometric functions with their
tensor angle-argument of motive type. In order to pass from tensor angles of
projective type to ones of motive type in natural and correct way, we will resort
to the known property of scalar trigonometry: the execution of two re�ections
for a vector on an Euclidean plane, where re�ection and rotation are consistent
trigonometrically, leads to its rotation (with transformation in tensor variant).

5.7 Rotational functions of motive tensor spherical angles

In the sequel, in order to infer some matrix formulae and connected with them equality and
inequality we shall use so called the principle of binarity. It consists in the following.

The prime real matrices P1 and P2 are anticommutative i� they may be represented
jointly in their real anticommutative monobinary cell formsW1 andW2 in a certain real local
base (sect. 4.1). If the original a�ne base is Ẽ, then here the local base is Ẽ1 = VW ·Ẽ = {I}.
The matrices P1 and P2 are anticommutative on their common real eigenspaces of dimensions
1 and 2 (see more in sect. 7.2). These formsW1 andW2 are a direct sum of their monobinary
cells of the identical structure.

Moreover, any analytical function F (P1, P2) in the base Ẽ may be expressed in the base
Ẽ1 as F (W1,W2). In particular, this realizes for elementary operations of summation and
multiplication. The scalar invariants of F (P1, P2) are the same invariants for F (W1,W2).
(In theory of matrices, the analogous principle of unarity is applied for analytical functions
of several prime commutative matrices with their joint reducing to diagonal forms.) The
principle of binarity is based on the fact that original and squares of anticommutative prime
matrices P1 and P2 commute each with another. Both these principles enable one to gene-
ralize analytical operations over simplest cell structures and results onto original matrices
and their analytical functions.

Suppose, in particular, in ⟨En⟩: P1 = cos Φ̃12, P2 = sin Φ̃12 for the equirank lineors A1

and A2, according to formulae (163) and (171). Then ⟨P4⟩ = 0. But non-zero ⟨P3⟩ exists
i� it exists in canonical cosine form (237) (as positive or negative unity block).

By (176) and (177) for these anticommutative P1 and P2 we have the analytical function

F (P1, P2) = (P1 + P2) · (P1 − P2) =

= [+Ref{A2A
′
2}] · [+Ref{A1A

′
1}] = [−Ref{A2A

′
2}] · [−Ref{A1A

′
1}].

Then there holds TW = RW .
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So, the W -form of F (P1, P2) in the trigonometric base Ẽ1 = RW · Ẽ = {I} is expressed
by the orthogonal rotational matrix at the angle 2Φ12 gotten with two mutual re�ections:

Ref{A2A
′
2} Ref{A1A

′
1} Rot(+2Φ12) (249)


.
.
.

+cosφi +sinφi

+sinφi − cosφi

.
.
.

·


.
.
.

+cosφi − sinφi

− sinφi − cosφi

.
.
.

 =


.
.
.

cos 2φi − sin 2φi

+sin 2φi cos 2φi

.
.
.

 ,

where ⟨P3⟩ is the unity block +I as (±1)·(±1) = +1 for unity cosine part in (237). This 2×2-
cell implements rotation at the counter-clockwise angle +2φi on trigonometric eigenplanes.
In Ẽ, it implements spherical rotation at the motive tensor angle +2Φ12:

Ref{A2A
′
2} ·Ref{A1A

′
1} = (cos Φ̃12 + sin Φ̃12) · (cos Φ̃12 − sin Φ̃12) =

= cos2 Φ̃12 − sin2 Φ̃12 + 2 sin Φ̃12 cos Φ̃12 = cos2 Φ12 − sin2 Φ12 + 2i sinΦ12 cosΦ12 =

= cos 2Φ12 + i sin 2Φ12 = Rot 2Φ12 = [−Ref{A2A
′
2}] · [−Ref{A1A

′
1}], (249)

[±Ref{A1A
′
1}] · [±Ref{A2A

′
2}] = Rot ′2Φ12 = Rot(−2Φ12) = Rot 2Φ21. (250)

Notation Rot Φ is used for tensor rotational functions of binary motive type tensor spherical
angles Φ. Such tensor angles do not contain in their notation the tilde symbol necessary for
projective tensor angles. The following united properties hold for the main sine-cosine pairs of
projective and motive tensor angles (see more in sect 5.8): cos2 Φ̃ = cos2 Φ, sin2 Φ̃ = sin2 Φ;
and sin Φ̃·cos Φ̃ = i sinΦ·cosΦ = cosΦ·i sinΦ = − cos Φ̃·sin Φ̃. These formulae also illustrate
Rule 1 (sect. 5.3), but for the motive type trigonometric functions. Obviously, then in any
rotational matrix subspace ⟨P3⟩ has eigenvalues only +1, and ⟨P4⟩ = 0 (as in the case r1 = r2
at Figure 2). Most generally note, that Rot Φ12 as in (249) is a trigonometric square root
((i. e., as result of the original angle dimidiating in the each binary cell of W -form!):

Rot Φ12 = {[±Ref{A2A
′
2}] · [±Ref{A1A

′
1}]}1/2. (251)

Formula (249) is interpreted as follows. Orthogonal re�ection of ⟨im A1⟩ (or ⟨ker A′
1⟩)

and then of ⟨im A2⟩ (or ⟨ker A′
2⟩) is equivalent to rotation at the doubled angle between

⟨im A1⟩ and ⟨im A2⟩. It is quite clear when we deal with two vectors or straight lines. The
rotational matrix (τ = 1), according to (249), (176), (177), is

Rot Φ12 = [(I − 2 ·
←−−−
a2a

′
2) · (I − 2 ·

←−−−
a1a

′
1)]

1/2 =

=

[
I − 2 ·

(
a1a

′
1

a′1a1
+

a2a
′
2

a′2a2

)
+ 4 cos2 φ12 ·

a2a
′
1

a′1a2

]1/2
. (252)

Here the mirrors are either a or a hyperplane ⟨ker a′⟩ � orthocomplement of ⟨im a⟩,

Rot Φ12 ·
−−−→←−−−
a1a

′
1 ·Rot (−Φ12) =

−−−→←−−−
a2a

′
2,
←−
aa′ =

aa′

a′a
,
←−−−
a2a

′
1 =

a2a
′
1

a′1a2
(
←−
ee′ = ee′,

←−−
e2e

′
1 =

e2e
′
1

cosφ12
).

If these n× 1-vectors are oriented, then the angle φ12 in the trigonometric eigenplane of the
matrix Rot Φ in the Euclidean space ⟨En⟩ varies in [−π;π]. (For rotations of lineors we have
τR = r1 = r2 at Figure 2.) But rotation (249) is performed in the 2τR-dimensional subspace
with respect to its orthocomplement of dimension n − 2τR. The rotation in matrix (249)
with the eigen angles ±iφk on k-th trigonometric eigenplanes is realized in [−π/2;+π/2]!
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Real prime matrices are called compatible if their W-forms have the same structure in a
common base. So, they may be commutative or anticommutative ones � see more in Ch. 7).
Real normal matrices may be converted into W-forms with rotational transformations of the
base, we denote them as RW . For compatible normal matrices, RW is same.

The most general variant of formulae (249) and (250) for compatible re�ectors is

(cos Φ̃12 ± sin Φ̃ 12)(cos Φ̃34 ± sin Φ̃ 34) = Rot {±Φ12 ± Φ34}.

In tensor trigonometry, besides themutual re�ectors in (249), so called themid-re�ector is
very important. For a pair of the given lineors or planars their mid-re�ector is single between
Ref{A1A

′
1} andRef{A2A

′
2} (r1 = r2 = r) orRef{BB′} andRef{B′B}, i. e., for the middle

subspace of tensor angle Φ̃12 or Φ̃B . But it is not attach only to this pair of objects. It is
de�ned for the set of pairs of linear objects having such common mid-re�ector. It has the
sign-alternating unity diagonal W-form congruous to the cosine diagonal form (237) in the
trigonometric base Ẽ1 of the projective angle Φ̃. The cosine axes in the zero sine subspace
⟨P3⟩ are the same with their eigenvalues +1 or −1; the zero cosine subspace⟨P4⟩ = 0 as
r1 = r2. According to (171), (172) and to diagonal cosine (237), the projective cosine is the
algebraic sum of two orthogonal terms with algebraically positive and negative eigenvalues:

cos Φ̃12 = {cos Φ̃12}⊕ + {cos Φ̃12}⊖, {cos Φ̃12}⊕ · {cos Φ̃12}⊖ = Z.

These summands are singular matrices. Here the mid-re�ector mirror is the subspace
⟨im {cos Φ̃12}⊖⟩, given by axes vi. According to (176) the mid-re�ector is expressed as

Ref{cos Φ̃12}⊖} = {
−−−−→
cos Φ̃12}⊖ − {

←−−−−
cos Φ̃12}⊖ = {

√
I}S = {RW · I± ·R′

W }. (253)

De�ne the index q of this mid-re�ector of Φ12 or ΦB as the quantity of its eigenvalues −1.
The mirror of this mid-re�ector is situated in the middle between two mutual mirrors in

(176) and (177) for the tensor angle Φ̃12 � see their structures (241). In order to prove this,
we obtain this mid-re�ector by four ways: by modal rotating the 1-st re�ector at the angle
{+Φ12/2}, by modal rotating the 2-nd re�ector at the angle {−Φ12/2} in the base Ẽ1 and
by only left and right rotating these re�ectors at the angles {±Φ12} as below:

Rot Φ12/2 Ref{A1A
′
1} Rot′ Φ12/2

.
.
.

cosφi/2 − sinφi/2
sinφi/2 cosφi/2

.
.
.

·


.
.
.

+cosφi − sinφi

− sinφi − cosφi

.
.
.

·


.
.
.

cosφi/2 sinφi/2
− sinφi/2 cosφi/2

.
.
.

 =

Rot′ Φ12/2 Ref{A2A
′
2} Rot Φ12/2

=


.
.
.

cosφi/2 sinφi/2
− sinφi/2 cosφi/2

.
.
.

·


.
.
.

cosφi +sinφi

sinφi − cosφi

.
.
.

·


.
.
.

cosφi/2 − sinφi/2
sinφi/2 cosφi/2

.
.
.

 =

= Rot (+Φ12)·Ref{A1A
′
1} = Ref{cos Φ̃12}⊖ = Rot (−Φ12)·Ref{A2A

′
2} = (254)

= (
√
I)S =


.
.
.

+1 0
0 −1

.
.
.

 .
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The small reverse.
Now we may return to justi�cation of projective trigonometric functions de�nition in the beginning
of the chapter. Basically, it comes down to the choice of formulae for the cosine and secant, as well as
for the orthogonal and oblique re�ectors, in fact, from the two most optimal options. Factually, we
have already fully outlined the �rst projective option. It remains to show below how the alternative
option will di�er. So, let us initially choose the opposite formulae for the cosine and secant:

cos Φ̃12 =
−−−→
A2A

′
2 −
←−−−
A1A

′
1, cos Φ̃B =

−−→
B′B −

←−−
BB′; sec Φ̃B =

−→
B′ −

←−
B.

Then in all such formulae containing cosine and secant, they change sign to the opposite. However
the essence of these formulae remains the same. Then, in order to preserve the having logical form
for all useful relations with re�ectors, we also choose opposite formulas for all these re�ectors:

−−−→
A1A′

1 −
←−−−
A1A′

1 = Ref{A1A′
1} = cos Φ̃12 + sin Φ̃12 = F (+Φ̃12),−−−→

A2A′
2 −
←−−−
A2A′

2 = Ref{A2A′
2} = cos Φ̃12 − sin Φ̃12 = F (−Φ̃12);←−

B −
−→
B = Ref{B} = sec Φ̃B + i tan Φ̃B = Ψ{+Φ̃B},←−

B′ −
−→
B′ = Ref{B′} = sec Φ̃B − i tan Φ̃B = Ψ{−Φ̃B}.


After that, in the notations of all re�ectors, the mirror and its orthogonal or a�ne complement also

change automatically places. Accordingly, under the given conditions at Figure 2, the sign of the

unit eigenvalues of the cosine on the subspace of the zero sine becomes positive. In (249), the order

of re�ections and in (254), the order of rotations must be reversed for the positive counter-clockwise

rotation angle as adopted! Of course, this is relative and does not introduce signi�cant change in the

projective part of tensor trigonometry! One can do as it seems more convenient � either according

to the stated option, or according to this alternative option. Both options are equal in rights!

* * *
Further, when using the principle of binarity in 2×2-cells, we do not attach importance to

the sign of unit eigenvalues corresponding to the subspace ⟨P3⟩ in the binary structure of the
mid-re�ector. (It can be either positive or negative, as usually speci�ed.) For new matrices,
gotten with the use of this principle, we give useful relations in addition to (249), (251), (254):

Ref{A1A′
1} = Rot′ Φ12 ·Ref{A2A′

2} ·Rot Φ12 ↔
↔ Ref{A2A′

2} = Rot Φ12 ·Ref{A1A′
1} ·Rot′ Φ12.

}
⇒ (255)

⇒
{

Ref{cos Φ̃12}⊖ = Rot (+Φ12) ·Ref{A1A′
1} = Ref{A1A′

1} ·Rot (−Φ12) =
= Rot (−Φ12) ·Ref{A2A′

2} = Ref{A2A′
2} ·Rot (+Φ12).

}
Ref{A2A′

2} = Ref{cos Φ̃12}⊖ ·Ref{A1A′
1} ·Ref{cos Φ̃12}⊖,

Ref{A1A′
1} = Ref{cos Φ̃12}⊖ ·Ref{A2A′

2} ·Ref{cos Φ̃12}⊖.

}
(256)

Rule 2. Compatible spherical rotational matrices commute. In their multiplications the
tensor argument angles of motive type form an algebraic sum.

Rule 3. In multiplications of a rotation and a symmetric re�ector, if they are compatible,
the rotation is transferred trough the re�ector with the change of its tensor angle sign.

Corollaries
1. An orthogonal matrix R is a rotational function if det R = +1, and R is a re�ector if

R = R′. What is more, when det R = +1, these two properties may be compatible.
2. The types of tensor angle in eigenre�ectors (i. e., when bound with the angle) and in

rotational matrix functions are di�erent in their tensor forms!!! In �rst case, it is projective.
In second case, it is motive. In classic scalar forms of these angles, this di�erence is absent!

3. Compatible active rotational transformation of a re�ector as a 2-valent tensor at an
angle Φ is equivalent to its rotation as an 1-valent tensor at the angle 2Φ � see in (254).

4. So, due to (254), Ref{cos Φ̃12}⊖ = Rot Φ12 ·Ref{A1A
′
1} = Rot (−Φ12) ·Ref{A2A

′
2}.

is a mid-re�ector (253) for the lineors A1 and A2, for their images and eigenorthoprojectors!

Many other relations can be established with the binarity principle, but now we need these.
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Further this Principle works great, as we use it for prime matrices associated with binary tensor
angles between two objects. So, the elegant and useful formula immediately follows from (255):

Rot (±Φ12) ·Ref{cos Φ̃12}⊖ ·Rot (±Φ12) = Ref{cos Φ̃12}⊖ = Const.

Of course, this relation works for a wider set of rotations than ±Φ12. But only some rotations Φ
pass with a change of angle's sign through the 2 × 2-cells of this mid-re�ector from left and right.
Such admissible rotations Rot Φ act between two Euclidean eigensubspaces of ⟨En⟩ corresponding
to eigenvalues +1 and −1 of this speci�c mid-re�ector Ref{cos Φ̃12}⊖. The remaining admissible
rotations ⟨Rot Θ⟩ from the complete set of admissible rotations with respect to this mid-re�ector
act only within these two Euclidean eigensubspaces. This complete set of rotations forms the group
with respect to it and the conditions. In such broader sense, we can represent the complete formula:

Rot Φ ·Rot′ Θ ·Ref{cos Φ̃12}⊖ ·Rot Θ ·Rot Φ = Ref{cos Φ̃12}⊖.

We have obtained the type of formulae which act in Euclidean tensor trigonometry with the given

tensor angles Φ̃12 of the projective kind and their mid-re�ectors Ref{cos Φ̃12}⊖ with the index q.

Let's introduce into mathematical arsenal the new binary quasi-Euclidean space [15],
which naturally complements the well-known binary pseudo-Euclidean space [65] as Sputnik.
The main idea is to extend the �mid-re�ector�, obtained in (253, 254), to the entire Euclidean
space. Then such particular mid-re�ector transforms into the fundamental re�ector tensor of
this quasi-Euclidean space of the index q and with an Euclidean metric! De�ne in our work
this index q of this binary space as the quantity of eigenvalues −1 of its re�ector tensor. As a
consequence, the initial Euclidean space splits into two Euclidean parts that are spherically
orthogonal to each other. Further Φ12 is a spherical angle of the principal rotations between
two Euclidean parts, Θ12 is an orthospherical angle of the secondary rotations inside these
Euclidean parts. Principal rotations often are called boost. ⟨Rot Θ⟩ forms subgroup of the
quasi-Euclidean rotations group. Transferring through the re�ector tensor Ref{cos Φ̃}⊖, the
principal rotation changes its angle sign annihilating; the secondary rotation is transferring
through both unity parts of the re�ector tensor without changes annihilating too! In quasi-
Euclidean and non-Euclidean Geometries of spherical type, the principal angles Φ12 play a
motive role, the orthospherical angles Θ12 give as a rule the rotations of bases or objects.

In the motive version, the compatible spherical rotations of two types satisfy relations:

Rot (±Φ12) ·Ref{cos Φ̃}⊖ ·Rot (±Φ12) = Ref{cos Φ̃}⊖,
Rot′ (±Θ12) ·Ref{cos Φ̃}⊖ ·Rot (±Θ12) = Ref{cos Φ̃}⊖.

}
(257)

For the projective version, we use formula (256) with two mutual orthogonal re�ectors.
With its angular analogues in (175, 176) and adding to them one orthospherical re�ector,
we obtain the compatible spherical re�ections of two types, which all satisfy relations:

Ref⊞{∓Φ̃12} ·Ref{cos Φ̃}⊖ ·Ref⊞{±Φ̃12} = Ref{cos Φ̃}⊖,
Ref⊞{±Θ̃12} ·Ref{cos Φ̃}⊖ ·Ref⊞{±Θ̃12} = Ref{cos Φ̃}⊖.

}
(258)

And as simply follows, transferring through the re�ector tensor Ref{cos Φ̃}⊖, the principal
re�ector is transformed into its mutual one annihilating; the secondary re�ector is trans-
ferring through both unity parts of the re�ector tensor without changes and annihilating too!

By (257), (258) we de�ned the new Special group of transformations of the also new quasi-
Euclidean space ⟨Qn+q⟩ with admissible rotations and re�ectors of two kinds! They complete
the Lorentzian group of the pseudo-Euclidean space ⟨Pn+q⟩. See their common de�nitions in
sect. 6.3! The fundamental re�ector tensor determines spherical tensor trigonometry of this
space with Euclidean metric, internal and external multiplications as in sect. 5.4. Besides, in
this space of the index q = 1, relations (257) and (258) de�ne the embedded Special oriented
hyperspheroid of the constant positive radius R with its external and internal non-Euclidean
geometry of spherical type. And we'll continue this new topic in Chs. 6, 6A, 8A and 10A
with complete tensor and di�erential trigonometric descriptions of the internal motions and
the equivalent external rotations in them with the laws of their summation.
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5.8 Motive-type tensor sine, cosine, secant and tangent

The paired rotational matrices R and R′ (detR = +1) � see (249), (250) consist of the
commutative tensor sine and cosine of a motive tensor angle Φ12 or ΦB with their paired
binary eigen angles � primary and mutual ±iφk in their eigen trigonometric planes:

Rot Φ =


. . .

cosφj − sinφj

+sinφj cosφj

. . .

 , Rot (−Φ) =


. . .

cosφj +sinφj

− sinφj cosφj

. . .

 , (259)

cosΦ = cos′ Φ = (Rot Φ+Rot′ Φ)/2 = [Rot (+Φ) +Rot (−Φ)]/2, (260)

i sinΦ = −(i sinΦ)′ = (Rot Φ−Rot′ Φ)/2 = [Rot (+Φ)−Rot (−Φ)]/2. (261)

The reali�cated motive sine is a real valued skewsymmetric matrix with the eigenvalues
µj = ±i sinφj , but sinΦ is a true motive sine � see below in (267). The motive secant and
tangent will be de�ne through Def Φ in sect. 5.10. Here we de�ne them preliminary as:

sec Φ = cos−1 Φ = sec′ Φ. (262)

tan Φ = sec Φ · sin Φ = sin Φ · sec Φ = tan′ Φ. (263)

Rot Φ ·Rot(−Φ) = sin2 Φ+ cos2 Φ = I = cos2 Ξ + sin2 Ξ (Ptolemy Invariant). (264)

Def Φ·Def(−Φ) = sec2 Φ−tan2 Φ = I = cosec2 Ξ−cot2 Ξ (Tensor quasi-Invariant). (265)

sinΦ · cosΦ = cosΦ · sinΦ = sin Φ̃ · cos Φ̃ = − cos Φ̃ · sin Φ̃,
secΦ · tanΦ = tanΦ · secΦ = tan Φ̃ · sec Φ̃ = − sec Φ̃ · tan Φ̃.

}
(266)

For the cosine and sine of a motive rotation angle in A2 = Rot Φ · A1, obviously, we have
⟨P4⟩ = 0, but dim⟨P3⟩ (as unity block +I, see in sect. 5.7) depends on the relation between
n and rankA. The dimension is either (n− 2r), or (2r − n), or ⟨P3⟩ = 0.

Fix an original Cartesian base Ẽ in ⟨En⟩. The canonical W-forms for a real orthogonal
matrix of the rotation at the motive tensor angle Φ (or Θ) and for its cosine and sine in the
trigonometric base of diagonal cosine Ẽ1 = RW · Ẽ = {I} are following (if 2r < n):

Rot Φ = cosΦ + i sinΦ = exp(iΦ) = Rot′ (−Φ) = Rot−1(−Φ) =

cosΦ sinΦ

=


. . .

cosφj 0
0 cosφj

. . .

+1

+ i


. . .

0 +i sinφj

−i sinφj 0

. . .

0

 .
The tensor sine and angle eigenvalues 0 correspond to the subspace ⟨P3⟩.
Rule 4. After an change in Rot Φ of the principal angle Φ by its complement Ξ = Π/2−Φ
(or by compatible modal rotation Rot Π/4 of Rot Φ), the new sine-cosine function Rot Φ
gives a rotation at Ξ. (The analogous property relates to orthogonal eigenre�ectors too.

Rot Ξ =


. . .

cos ξk − sin ξk
+sin ξk cos ξk

. . .

 = Rot Φ =


. . .

sinφk − cosφk

+cosφk sinφk

. . .

 . (267)
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Describe the canonical forms of a motive angle and its motive functions. At �rst, we use
the complex-valued base of the sine and angle D-form, then return to the original real-valued
trigonometric base of the diagonal cosine. Such identical modal transformation gives the
canonical form of a motive angle Φ in the trigonometric base:

D(Φ) D(Φ)

ẼD⇒ cos


. . .

+φj 0
0 −φj

. . .

0

+ i sin


. . .

+φj 0
0 −φj

. . .

0


Ẽ−1

D⇒

Φ Φ

Ẽ−1
D⇒ cos


. . .

0 +iφj

−iφj 0

. . .

0

+ i sin


. . .

0 +iφj

−iφj 0

. . .

0

 =

iΦ Φ

= exp


. . .

0 −φj

+φj 0

. . .

0

 = exp i ·


. . .

0 +iφj

−iφj 0

. . .

0

 .

The formulae for motive angles follow in addition to (164), (170) for projective ones (with
B and B′ according to (213), (214) or as independent n× n-lineors of rank r):

Φ12 = −(Φ12)
′ = −Φ21, ΦB = −(ΦB)

′ = −ΦB′ . (268)

Compare them with corresponding formulae for the projective type angles (164) and (170)!
Accordingly, for motive cosine and sine from (264), we obtain such simplest forms in the

same trigonometric bases:

Φ D(Φ) cosΦ

cos


. . .

0 +iφj

−iφj 0

. . .

 = cos


. . .

+φj 0
0 −φj

. . .

 =


. . .

cosφj 0
0 cosφj

. . .

,


Φ i sinΦ

i sin


. . .

0 +iφj

−iφj 0

. . .

 =


. . .

0 − sinφj

+sinφj 0

. . .

 .



88 CHAPTER 5. EUCLIDEAN AND QUASI-EUCLIDEAN TENSOR TRIGONOMETRY

5.9 Relations between projective and motive angles and functions

From (236)�(239), and also (277), (278) � see below, we obtain (in common bases):

Ref{cos Φ̃}⊖ · (iΦ̃) = Φ = (−iΦ̃) ·Ref{cos Φ̃}⊖, Φ̃2 = Φ2, (269)

Ref{cos Φ̃}⊖ ·


+cos Φ̃

− sin Φ̃

+ sec Φ̃

−i tan Φ̃

 =


+cosΦ
+i sinΦ
+ sec Φ
+ tanΦ

 =


+cos Φ̃

+ sin Φ̃

+ sec Φ̃

+i tan Φ̃

 ·Ref{cos Φ̃}⊖. (270)

Rule 1 � in generalized form. (see in sect. 5.3) Square and any even degrees of all mutual
tensor trigonometric functions and angles are equal and commute with any other ones.
(Here it is ⟨P4⟩ = 0, r1 = r2.)

In the real Cartesian bases Ẽ, Φ̃ and iΦ are real symmetric and antisymmetric bivalent
tensors. Find the complex local trigonometric base Ẽ0 for installing complex pseudohyperbolic
analogues {iφ}c of real spherical angles {φ}r as the diagonal square root of re�ector-tensor
(254), gotten by the modal transformation of E1 = {I} into E0 = Rc ·E1 = Rc · {I} = {Rc}:

Rc = R′
W ·

√
Ref{cos Φ̃}⊖ ·RW = (

√
I±)D =


. . .

1 0
0 i

. . .

 , (E0 = Rc · Ẽ1). (271)

Recall (see sect. 5.5, 5.7), that Ẽ1 = RW · Ẽ = {I} is the real local trigonometric base for

W-forms, Ẽ is the original Cartesian base. The complex local base Ẽ0, unlike the base Ẽ1,
has imaginary ordinate axes, what correspond to the algebraically negative projective cosine
eigenvalues (uj → uj , vj → ivj). All the real spherical notions are translated into Ẽ0 = {Rc}
as the pseudohyperbolic ones by modal transformation Rc. Below this is exposed clearly in
(272) only for the projective and motive tensor angles. Substituting a base Ẽ1 for Ẽ0 does
not change the cosines and the secants; the angles, their sines and tangents are transformed
into the pseudohyperbolic analogues. Further we use indexes "r" and "c" for notions in
the real and complex bases Ẽ1, Ẽ0.

R−1
c ·{Φ̃}r ·Rc = {Φ̃}c ≡ {Φ}r ≡ i{−iΦ̃}c ⇔ R−1

c ·{iΦ}r ·Rc = −i{Φ}c ≡ {−iΦ̃}r ≡ {−iΦ}c, (272)

{sin Φ̃}c ≡ {sinΦ}r ≡ {i sinh(−iΦ̃}c ⇔ {i sinΦ}c ≡ i{sin Φ̃}r ≡ {sinh(iΦ)}c, (273− 274)

{i tan Φ̃}c ≡ i{tanΦ}r ≡ {tanh(iΦ̃)}c ⇔ {tanΦ}c ≡ {tan Φ̃}r ≡ {i tanh(−iΦ)}c. (275− 276)

{Φ̃}r =


. . .

0 +φj

+φj 0

. . .

 = {Φ̃}′
r → {Φ̃}c =


. . .

0 +iφj

−iφj 0

. . .

 = {Φ̃}∗
c , (277)

{iΦ}r =


. . .

0 −φj

+φj 0

. . .

 = −{iΦ}′
r → {−iΦ}c =


. . .

0 −iφj

−iφj 0

. . .

 = {iΦ}∗
c . (278)

Corollaries −{Φ̃}′c = {Φ̃}c ≡ {Φ}r = −{Φ}′r ⇔ {Φ}′c = {Φ}c ≡ {Φ̃}r = {Φ̃}′r �!
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Canonical forms of spherical and imaginary pseudohyperbolic trigonometric functions:

{cos(±Φ̃)}r =



.
.
.

+cosφj 0

0 − cosφj

.
.
.


=



.
.
.

+cosh iφj 0

0 − cosh iφj

.
.
.


= {cosh(±iΦ̃)}c, (279)

{cos(±Φ)}r =



.
.
.

+cosφj 0

0 + cosφj

.
.
.


=



.
.
.

+cosh iφj 0

0 + cosh iφj

.
.
.


= {cosh(±iΦ)}c, (280)

{sec(±Φ̃)}r =



.
.
.

+ secφj 0

0 − secφj

.
.
.


=



.
.
.

+sech iφj 0

0 −sech iφj

.
.
.


= {sech(±iΦ̃)}c, (281)

{sec(±Φ)}r =



.
.
.

+ secφj 0

0 + secφj

.
.
.


=



.
.
.

+sech iφj 0

0 +sech iφj

.
.
.


= {sech(±iΦ)}c, (282)

{sin Φ̃}r =



.
.
.

0 + sinφj
+ sinφj 0

.
.
.


,



.
.
.

0 + sinh iφj
− sinh iφj 0

.
.
.


= {i sinh(−iΦ̃)}c, (283)

{i sin Φ}r =



.
.
.

0 − sinφj
+ sinφj 0

.
.
.


,



.
.
.

0 − sinh iφj
− sinh iφj 0

.
.
.


= {sinh(−iΦ)}c, (284)

{i tan Φ̃}r =



.
.
.

0 − tanφj
+ tanφj 0

.
.
.


,



.
.
.

0 − tanh iφj
− tanh iφj 0

.
.
.


= {tanh(−iΦ̃)}c, (285)

{tanΦ}r =



.
.
.

0 + tanφj
+ tanφj 0

.
.
.


,



.
.
.

0 + tanh iφj
− tanh iφj 0

.
.
.


= {i tanh(−iΦ)}c. (286)

In the next chapter, we shall use these complex canonical pseudohyperbolic forms for the
clear introducing real-valued motive and projective hyperbolic tensor angles, trigonometric
functions, and re�ectors in real pseudo-Euclidean space. Cosines and secants are real-valued
notions, and therefore, they are invariants of Rc!
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With Moivre's and Euler's formulae for the rotational matrix and angles, we get:

Rot{mΦ} = cos{mΦ}+ i sin{mΦ} = RotmΦ =

= cosh{i ·mΦ}+ sinh{i ·mΦ} = exp{i ·mΦ} →

→ i · {mΦ} = ln Rot{mΦ} → iΦ = ln Rot Φ→ Φ = −i ln Rot Φ. (287)

This give aa motive tensor angle from a rotation tensor! The bond Φ ↔ Φ̃ is in (272)!
Canonical foms of rotational matrices are represented below also in the trigonometric base
of the diagonal cosine with trigonometric 2 × 2-cells and only positive unit eigenvalues
corresponding to the subspace ⟨P3⟩ in the binary W-structures:

{RotmΦ}r =



. . .

+cosmφj − sinmφj

+sinmφj +cosφj

. . .

1

. . .


=

= exp



. . .

0 −mφj

+mφj 0

. . .

0

. . .


,

{RotmΦ}c =



. . .

+cosmφj −i sinmφj

−i sinmφj +cosφj

. . .

1

. . .


=

= exp



. . .

0 −imφj

−imφj 0

. . .

0

. . .


.

The value m = 1/2 gives trigonometric square root (251) of the rotational matrix.
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5.10 Deformational functions of motive tensor spherical angles

Similarly (249) and due to the principle of binarity, consequent multiplication of two oblique
eigenre�ectors for a pair of equirank lineors (planars) as in (211)�(214) determines tangent-
secant motive transformation � the spherical deformational matrix function of some its tensor
angle, as example, for planars ⟨im B⟩, ⟨im B′⟩ (⟨ker B⟩, ⟨ker B′⟩):

Ref{B′} Ref{B} Def αB
. . .

+sec φj − tanφj

+tanφj − sec φj

. . .




. . .

+sec φj +tanφj

− tanφj − sec φj

. . .

 =


. . .

+sec αj +tanαj

+tanαj +sec αj

. . .

.
(i. e., αB ̸= 2ΦB). Note, that αB and Φ in Def Φ are principal spherical motive angles.
(See its exact calculation in sect. 6.2.)
Rule 5. Deformational matrix functions Def Φ12 and Def Φ34 only as the trigonometrically
compatible are commutative, but their angles-arguments do not form an algebraic sum.
They, as function Def (±Φ), perform the trigonometric deformation at motive angle ±Φ:

Ref{B′} ·Ref{B} = (sec Φ̃B + i tan Φ̃B) · (sec Φ̃B − i tan Φ̃B) =

= sec2 Φ̃B + tan2 Φ̃B + 2i tan Φ̃B · sec Φ̃B = sec2 ΦB + tan2 ΦB + 2 tan ΦB · sec ΦB =

= sec αB + tanαB = Def αB = Def ′αB , (288)

Ref{B} ·Ref{B′} = sec αB − tanαB = Def−1αB = Def(−αB). (289)

NotationDef is used for the deformational functions of a motive-type spherical tensor angle.
For them Rule 2 (sect. 5.7) does not work entirely, but Rule 4 (sect. 5.8) works entirely
at one-step motion. Def Φ12 is based on motive tangent and secant. This binary tensor
trigonometric deformation is executed also in the trigonometric subspace (Figure 2) with
respect to its complete spherically orthogonal complement in ⟨En⟩. Hence, for it the principle
of binarity works, which can represents its matrix in W -form as above. The tensor secant
and tangent were introduced preliminary in sect. 5.8. Now we may give their quite natural
de�nitions in terms of the spherical deformational matrix similarly to (260) and (261):

sec Φ = (Def Φ+Def−1Φ)/2 = [Def Φ+Def(−Φ)]/2, (290)

tanΦ = (Def Φ−Def−1Φ)/2 = [Def Φ−Def(−Φ)]/2. (291)

The tensor cosecant and cotangent are the inverse or quasi-inverse sine and tangent.
Canonical forms of deformational matrices are represented also in the same trigonometric

base of the diagonal cosine (−π/2 < φj < π/2) with 2 × 2-cells and positive block +I
corresponding to the subspace ⟨P3⟩ in the binary W-structure:

Def Φ = Def ′Φ = sec Φ + tanΦ =



. . .

sec φj tanφj

tanφj sec φj

. . .

1

. . .


, (292)

Def−1Φ = Def(−Φ) = sec Φ− tanΦ. (293)
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The canonical forms for the rotational and deformational matrix functions of a pseudo-
hyperbolic angle iΦ in the complex-valued trigonometric base of the diagonal cosine are
realized with the use of formulae (277)�(286). They are following

{Rot Φ}c = cosΦ + {−i sinΦ}c =



. . .

cosh(−iφ)j +sinh(−iφ)j
+sinh(−iφ)j cosh(−iφ)j

. . .

1

. . .


=

= cosh(−iΦ)c + sinh(−iΦ)c, (294)

{Rot Φ}−1
c = {Rot(−Φ)}c = cosΦ + {i sinΦ}c = cosh(−iΦ)c − sinh(−iΦ)c; (295)

{Def Φ}c = sec Φ + {tanΦ}c =



. . .

sech(−iφ)j − tanh(−iφ)j
+tanh(−iφ)j sech(−iφ)j

. . .

1

. . .


=

= sech(−iΦ)c + tanh(−iΦ)c, (296)

{Def Φ}−1
c = {Def(−Φ)}c = sec Φ− {tan Φ}c = sech(−iΦ)c − tanh(−iΦ)c. (297)

For the rotational and deformational matrices, their determinants as well as determinants
of their binary cells are equal to 1. Spherical deformational matrices are symmetric and
positive de�nite. Rotation of their 2 × 2-cells (on the trigonometric eigenplanes) at angles
φj = ±π/4 transforms these cells into diagonal ones. The eigenvalues of the deformational
matrix cells are pairs µ2j = sec φj + tanφj > 0, µ2j+1 = sec φj − tanφj = µ−1

2j > 0, and
here not necessity in the values µk = +1 inside the matrix unity block ⟨P3⟩.

In order to clarify the sense of the binary deformation function, we represent it in the
new base spherically rotated by modal transformation in each cells of W-form at angles
φj = ±π/4. For example, expose the rotation of some cell at angles φj = +π/4.

Namely, on the level of the binary trigonometric cells, we have: sec φj tanφj

tanφj sec φj

 =

=

 cosπ/4 − sinπ/4
sinπ/4 cosπ/4

 sec φj + tanφj 0
0 secφj − tanφj

 cosπ/4 sinπ/4
− sinπ/4 cosπ/4

 .

Now it is seen that the modal spherical deformation in canonical form (292) on the
trigonometric eigenplane consists in Euclidean metric in:
� extension of the base along the principal diagonal by coe�cient µ = sec φ+ tanφ > 0,
� contraction of the base along the secondary diagonal by coe�cient µ−1 = sec φ−tanφ > 0.
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Similarly to the real-valued binary structure (149) for a complex number, the following
binary unique representation of an arbitrary real positive number by 2 × 2 deformational
matrix in terms of a spherical angle (−π/2 < φ < π/2) holds with two eigenvalue:

µ = sec φ+ tanφ > 0, µ−1 = sec φ− tanφ > 0. (298)

From here we have sec φ = (µ + µ−1)/2, tanφ = (µ − µ−1)/2. Numbers (298) are
equivalent to analogous ones exp (+γ), exp (−γ), what will be clear in next chapter.

One more interpretation of a binary deformation is respected to so called cross bases.
They may be used in relativistic STR-transformations of geometric objects in the Minkowski
space-time. Consider two Cartesian bases Ẽi and Ẽj and the rotational transformation

Ẽi = Rot(−Φij)Ẽj . Cartesian coordinates of a vector a in the two bases Ẽj and Ẽi are
related as at passive modal transformations by the angle +Φij :

a(i) = Rot Φija
(j) =

=


. . .

cosφt − sinφt

sinφt cosφt

. . .




...

x
(j)
1

x
(j)
2
...

 =


...

cosφtx
(j)
1 − sinφtx

(j)
2

sinφtx
(j)
1 + cosφtx

(j)
2

...

 =


...

x
(i)
1

x
(i)
2
...

.

In 2 × 2-cells, the base Ẽi is the result of rotating Ẽj at the clockwise angles +φt.

Introduce cross bases Ẽi,j with mixed axes ⟨x(i)1 , x
(j)
2 ⟩ and Ẽj,i with mixed axes ⟨x(j)1 , x

(i)
2 ⟩.

These both bases are related by the cross modal transformation:

Ẽi,j = Def(−Φij)Ẽj,i. (299)

In t-th cells, so called cross coordinates of a vector a in the cross bases Ẽi,j and Ẽj,i are
related as at passive cross modal transformations by the angle +Φij :

a(i,j) = Def(+Φij)a
(j,i) =

=


. . .

sec φt tanφt

tanφt sec φt

. . .




...

x
(j,i)
1

x
(i,j)
2
...

 =


...

x
(i,j)
1

x
(j,i)
2
...

. (300).

Then the cross coordinates of vector a(i,j) are determined here by cross projecting with
the use of deformational matrix-function of a principal motive angle compatible with a
re�ector tensor of the space (see sect. 5.7).

Most widely, the usefulness of introduced above tensor deformations is manifested in
so-called universal bases, for example, Ẽ1, where they produce their quasi-invariants, which
are transformed into one-step invariants when the plane or space metric is changed, which
at the general matrix level embodies the main speci�c spherical-hyperbolic analogy with
its nomerous applications in geometries with quadratic metrics and STR. See about last in
detail in next Ch. 6 and further.
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5.11 Transformations of orthogonal and oblique eigenprojectors

In an Euclidean space, there exists an one-to-one correspondence between a centralized pla-
nar and a symmetric projector of the same rank. There exists an one-to-one correspondence
between the planar and its orthocomplement too. Any planar may be transformed into each
other one of the same rank with tensor rotation as well as with tensor mid-re�ector (mid-
re�ector give only the single motive angle Φ!). Formulae for such transformations may be
derived, for example, of (256), (226), (176) and (177) or with direct applying the principle
of binarity.

−−−→←−−−
A2A

′
2 = Rot Φ12 ·

−−−→←−−−
A1A

′
1 ·Rot′ Φ12 = Ref{cos Φ̃12}⊖ ·

−−−→←−−−
A1A

′
1 ·Ref{cos Φ̃12}⊖, (301)

−−→←−−
B′B = Rot ΦB ·

−−→←−−
BB′ ·Rot′ ΦB = Ref{cos Φ̃B}⊖ ·

−−→←−−
BB′ ·Ref{cos Φ̃B}⊖. (302)

These are rotation and re�ection transformations of 2-valent orthogonal tensors inside of
the symbolic octahedron (Figure 1). Use the octahedron for illustration. The diagonal PQ
generates isosceles triangles PZQ and PIQ, where ∠PZQ ≡ ∠PIQ ≡ ΦB .

Moreover, in an Euclidean space, there exists a one-to-one correspondence due to (217)�
(220) between a pair of equirank centralized planars ⟨im A1⟩, ⟨im A2⟩ (then we have

k(A1A
′
2, r) = det(A′

1A2) ̸= 0) and a pair of the oblique eigenprojectors
←−
B ,
←−
B′ (because

in de�nition (213) B = A1A
′
2). Then

←−
B and

←−
B′ (
−→
B and

−→
B′) are transformed into each other

with tensor deformation as well as with tensor mid-re�ector. Analogous formulae for such
transformations (as formulae (301), (302)) may be derived too with the principle of binarity.

−→←−
B′ = Def ΦB ·

−→←−
B ·Def(−ΦB) = Ref{cos Φ̃B}⊖ ·

−→←−
B ·Ref{cos Φ̃B}⊖. (303)

(These non-similarity and similarity with 1st and 2nd parts of (302) are quite logical.)
Following formulae are similar to rotational prototypes (255) and (256):

Ref{B′} = Def ΦB ·Ref{B} ·Def(−ΦB) =

= Ref{cos Φ̃B}⊖ ·Ref{B} ·Ref{cos Φ̃B}⊖, (304)

Ref{cos Φ̃B}⊖ = Def ΦB ·Ref{B} = Def(−ΦB) ·Ref{B′}. (305)

If the original matrix B is null-prime, then, for example, from formulae (186)-(189) and
relation cos Φ̃B · sec Φ̃B = I one may get the mutual modal transformations:

−−→←−−
B′B
−→←−
B′

 = cos Φ̃B ·


−−→←−−
BB′
−→←−
B

 · sec Φ̃B = sec Φ̃B ·


−−→←−−
BB′
−→←−
B

 · cos Φ̃B . (306)

The formulae may be checked with the use of the Table of multiplication for eigenprojectors
(185) in sect. 5.2. too. Formulae indicated above represent the modal transformations found
by di�erent manners, but the results are the same. Express all the eigenprojectors in terms
of corresponding projective trigonometric functions pairs according to (176)�(179):

←−−−
A1A

′
1 = (I + cos Φ̃− sin Φ̃)/2 =

←−−
BB′,

−−−→
A1A

′
1 = (I − cos Φ̃ + sin Φ̃)/2 =

−−→
BB′,

←−−−
A2A

′
2 = (I + cos Φ̃ + sin Φ̃)/2 =

←−−
B′B,

−−−→
A2A

′
2 = (I − cos Φ̃− sin Φ̃)/2 =

−−→
B′B,

 (307)
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←−
B = (I + sec Φ̃− i tg Φ̃)/2 =

←−−−
A1A

′
2,−→

B = (I − sec Φ̃ + i tg Φ̃)/2 =
−−−→
A1A

′
2,←−

B′ = (I + sec Φ̃ + i tg Φ̃)/2 =
←−−−
A2A

′
1,−→

B′ = (I − sec Φ̃− i tg Φ̃)/2 =
−−−→
A2A

′
1.

 (308)

These expressions show that the principle of binarity is valid for projectors too. There
exists a bijection between the complete set of eigen orthoprojectors and the complete set of
symmetric idempotent matrices of the same size and rank. I� the matrix B is null-prime,

then det cos Φ̃ ̸= 0, and there exists a bijection between the pairs ⟨
−−→←−−
BB′,

−−→←−−
B′B⟩ and ⟨

−→←−
B,
−→←−
B′⟩.

Represent orthoprojectors in the trigonometric W -form according to (307). Principle of
binarity enable one to evaluate the modal matrices for constructing D-forms. For example,

consider this for orthoprojector
←−−
BB′. In i-cells of matrices, there holds:

Rot ΦB/2
←−−
BB′ Rot′ΦB/2


. . .

cosφ/2 − sinφ/2
sinφ/2 cosφ/2

. . .

 1

2


. . .

1 + cosφ − sinφ
− sinφ 1 − cosφ

. . .




. . .

cosφ/2 sinφ/2
− sinφ/2 cosφ/2

. . .

 =

D(
←−−
BB′)

=


. . .

1 0
0 0

. . .

, i. e., V −1
col ·

−−→←−−
BB′ · Vcol = D(

−−→←−−
BB′).

This matrix is expressed in the original orthogonal base Ẽ as
←−−
BB′, but in D-form they

is expressed as above in the base:

ẼD = Vcol · Ẽ = Rot (−ΦB/2) · Ẽ = Rot (−ΦB/2) ·R′
W Ẽ1 = {Rot (−ΦB/2)}, (309)

(here RW · Ẽ = Ẽ1 = {I} is the base of W -forms).

The following orthogonal eigenvector-columns of the same modal matrix correspond to
the subspaces ⟨im B⟩ and ⟨ker B⟩:

biI = RW ·



...
0

+ cosφi/2
− sinφi/2

0
...


, diI = RW ·



...
0

+ sinφi/2
+ cosφi/2

0
...


.

By analogy, ones �nd the modal matrix for getting the base for the eigen orthoprojector
←−−
B′B diagonal form, i. e., for D(

−−→←−−
B′B) = V −1

col ·
−−→←−−
B′B · Vcol. This base is

ẼD = Vcol · {Ẽ} = Rot (+ΦB/2) ·RW {Ẽ} = RW · {R′
W ·Rot (+ΦB/2) ·RW }{Ẽ}. (310)
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The following orthogonal eigenvector-columns of the other modal matrix, gotten by (310),
correspond to the subspaces ⟨im B′⟩ and ⟨ker B′⟩:

biII = RW ·



...
0

+ cosφi/2
+ sinφi/2

0
...


, diII = RW ·



...
0

− sinφi/2
+ cosφi/2

0
...


.

The modal matrices for constructing D-forms of mutual oblique eigenprojectors will be
derived in Chapter 6 with the use of spherical-hyperbolic analogy. Here, we present only
preliminary two expressions in terms of arithmetic roots of the same deformational matrix,
though they have no spherical trigonometric sense:

{R′
W ·

√
Def ΦB} ·

−→←−
B · {

√
Def (−ΦB)} ·RW } = D(

−→←−
B ), (311)

{R′
W ·

√
Def (−ΦB)} ·

−→←−
B′ · {

√
Def ΦB} ·RW } = D(

−→←−
B′). (312)

Thus we can see much common in various modal transformations of the mutual eigen-
projectors and eigenre�ectors from one into another with the trigonometric rotational and
deformational modal matrices. This is usually obviously, when the operations are executed
in their same bases of W -forms. What's more, in the middle of these modal transformations
we have their diagonal forms. So, for mutual eigenre�ectors, we obtain their mid-re�ector.

5.12 Spherical tensors of rotation and deformation with frame axis

Consider the set of centralized principal spherical rotations in the oriented along frame axis
−→y quasi-Euclidean space ⟨Qn+1⟩ with simplest diagonal re�ector tensor {I±} of index q = 1
(see about general ⟨Qn+q⟩ in sect. 5.7). They are realized by special matrix functions rot Φ.
These matrices with the minimal trigonometric subspace for homogeneous motions-rotations
in own quasi-Cartesian base have the unique trigonometric 2 × 2-cell with one eigen scalar
motive principal angle φ and the unique rotation's frame axis. Such trigonometric matrix
functions are called elementary. Initially we conserve counterclockwise angles φ.

{rot(±Φ)}3×3 = cosΦ± i sinΦ = cos(±Φ) + i sin(±Φ)

1− (1− cosφ) cos2 α1 −(1− cosφ) cosα1 cosα2 ∓ sinφ cosα1

−(1− cosφ) cosα1 cosα2 1− (1− cosφ) cos2 α2 ∓ sinφ cosα2

± sinφ cosα1 ± sinφ cosα2 cosφ
, (313)

{rot(±Φ)}(n+1)×(n+1)

In×n − (1− cosφ) · eαe′α ∓ sinφ · eα
± sinφ · e′α cosφ

, (eαe
′
α =
←−−−
eαe

′
α). (314)

The coordinates of the matrices are expressed with respect to right quasi-Cartesian bases Ẽ1u

of their canonical E-form (313), (314). The oriented straight line ⟨xn+1⟩ is the frame (polar)
axis for the eigen rotation angle φ, the angle is positive for rot{+Φ}, and has the direc-
tional cosines cosαk, k = 1, . . . , n in the base ⟨x1, . . . , xn⟩ � the frame axis orthocomplement.
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In particular, matrix function rot Φ realizes the full set of principal motions on the
Hyperspheroid embedded and oriented in ⟨Qn+1⟩ with re�ector tensor {I±} and Euclidean
metric. And they are identical to such rotations in this space! (See in Ch. 8A). In what
follows, the option of the unique rotation's frame axis ⟨x3+1⟩ will be very important for
us also in the hyperbolic non-Euclidean geometries from the external point of view and in
Theory of Relativity considered in the pseudo-Euclidean space ⟨P3+1⟩ � see in Appendix.

At �rst, prove formula (313). Find a rotational transformation of the complement base
⟨x1, x2⟩ into new same base ⟨x′1, x′2⟩ such that the axis ⟨x′1⟩, eα = (cosα1, cosα2) (where
cos2 α1 + cos2 α2 = 1), and the frame axis ⟨x3⟩ should be coplanar. This transformation is
the spherical rotation matrix at a certain tensor angle β12. If n = 2, then it has the scalar
eigen angle α1, and the rotational matrix demanded is

rot β12

cosα1 − sinα1 0
+ sinα1 cosα1 0

0 0 1
.

This matrix function executes the rotation on the plane ⟨x1, x2⟩ at the angle α1.

Further, in this new 3-dimensional base Ẽ we use the elementary principal rotational
matrix function rot Φ, but in the 2×2-cell corresponding to the plane ⟨x′1, x3⟩, with following
condition: if the frame axis is ⟨x′1⟩, then the angle of rotation is counter-clockwise; if the
frame axis is ⟨x3⟩, then this angle is clockwise. So, the last form of this elementary spherical
rotational matrix is

{rot(±Φ)}

cosφ 0 − sinφ
0 1 0

sinφ 0 cosφ
. (315)

Then we transform the matrix in E-form applying the inverse base rotation

{rot(±Φ)}3×3 = rot β12 · {rot(±Φ)} · rot β12 ′.

The result is rotational matrix function (313) with the frame axis ⟨x3⟩ for the motive tensor
angle Φ in 3-dimensional Cartesian base Ẽ1u.

General formula (314) is inferred similarly. Now �nd a rotational transformation
of ⟨x1, . . . , xn⟩ into ⟨x′1, . . . , x′n⟩ such that the axis ⟨x′1⟩, the directional cosines vector
eα = {cosαk} (

∑n
k=1 cos

2 αk = 1), and the frame axis ⟨xn+1⟩ should be coplanar. Use
consequently tensor angles of the radius-vector rotation with their spherical coordinates:
β12 in the plane ⟨x1, x2⟩, β1′3 in the plane ⟨x′1, x3⟩, . . ., β1′′...′n in the plane ⟨x′′1 . . .′ , xn⟩.
Due to the trigonometric nature of the transformations, we have the following formulae:

cosβ12 = cosα1/
√
cos2 α1 + cos2 α2,

cosβ1′3 =
√
cos2 α1 + cos2 α2/

√
cos2 α1 + cos2 α2 + cos2 α3,

...

cosβ1′′...′n =
√
cos2 α1 + · · ·+ cos2 αn−1 = sinαn.
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The consequent rotations are executed with the matrices rot β12, rot β1′3, . . . . :

rot β12 rot β1′3

cosβ12 − sinβ12
sinβ12 cosβ12

Z

Z ′ In−1

,

cosβ1′3 0 − sinβ1′3
0 1 0

sinβ1′3 0 cosβ1′3

Z

Z ′ In−2

, . . . .

The result is the base of the simplest 2×2-cell form for the elementary rotation Ẽ = rot β·Ẽ1,
where rot β = rot β12 · rot β1′3 · · · rot β1′′···′n. Then construct the 2-dimensional form for
this elementary rotation in the hyperplane ⟨x′1, . . . , x′n, xn+1⟩ with respect to the base Ẽ:

{rot Φ}

cosφ 0′ − sinφ
0 In−1 0

sinφ 0′ cosφ
. (316)

Further we transform the matrix in E-form applying the inverse base rotation

{rot Φ}(n+1)×(n+1) = rot β · {rot Φ}can · rot′ β.

The result is rotational tensor function (314) with the frame axis ⟨xn+1⟩ for the motive
tensor angle Φ in (n + 1)-dimensional quasi-Cartesian base Ẽ1u of ⟨Qn+1⟩ with naturally
appearing (thanks to the re�ector tensor) eigen binary angles � primary and mutual, as sign
alternative ∓φi or ±φi depending of the choose of counterclockwise or clockwise angle's type!

In ⟨Qn+1⟩ ≡ ⟨En⟩ ⊞ −→y , due to structures of (313), (314), the function rot (+Φ)
rotates at adopted counterclockwise primary angle +φ in the direction to the frame axis −→y
from the Euclidean hyperplane ⟨En⟩. The function rot (−Φ) rotates in contrary direction.
These structures explain: why rot (±Φ) in realizes rotations at ±Φ � similar to acting S-arm!
We see that due to Rule 4 with (267), after change in rot Φ of the principal angle Φ by its
complement Ξ = Π/2− Φ, the new function rot Φ gives the complementary rotation at Ξ:

rot Ξ (ξ ∈ [+π/2; 0]) = rot Φ (φ ∈ [0; +π/2])∣∣∣∣∣ cos ξ ·
←−−−
eαeα

′ +
−−−→
eαeα

′ − sin ξ · eα · · · sinφ ·
←−−−
eαeα

′ +
−−−→
eαeα

′ − cosφ · eα
+sin ξ · e′α cos ξ · · · +cosφ · e′α sinφ

∣∣∣∣∣ . (317)

We will distinguish the two kinds of principal angles: counterclockwise φ, measured o� the
frame axis −→y as cooriented ones, and clockwise ξ, measured o� the Euclidean hyperplane
⟨En⟩ as counteroriented ones (both named here with respect to direction of −→y ). Obviously,
φ and ξ are complementary i� φ+ ξ = π/2 (for compatible tensor angles i� Φ+ Ξ = Π/2).
The angles φ in rot Φ and in rot Φ, seeming as the same, are distinguished geometrically.
In functions rotΦ and rot Φ � both with their identical trigonometric quadratic invariants

rot Φ · rot(−Φ) = sin2 Φ+ cos2 Φ = I = cos2 Ξ + sin2 Ξ = rot Ξ · rot(−Ξ), (318)

such angles φ play roles in (317) either as adjacent to the frame axis −→y or as adjacent
to the Euclidean hyperplane ⟨En⟩. Hence, both variants of rotations are realized also in
the counterclockwise direction from ⟨E2⟩ to −→y , but at ξ. This will manifest itself much
more important for the more complex hyperbolic rotations in Chs. 6, 8A and 10A. In quasi-
Euclidean spaces, in particular, Π/2 is the angle between −→y and ⟨En⟩. See further in Ch. 8A!
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In addition, �nally we consider brie�y elementary spherical deformational matrix func-
tions def Φ (292), but also with frame axis, similar (213), (214). The deformational matrices
with the minimal trigonometric subspace for homogeneous deformation of a vector, a straight
line, and a hyperplane in an Cartesian base have too the unique trigonometric 2 × 2-cell.
Notation def Φ is used for them as the particular case of Def Φ. Elementary deformations
have also one eigen scalar deformation angle φ and accordingly the same unique deformation
frame axis. The more important variant, if the frame axis is ⟨xn+1⟩ in ⟨Qn+1⟩. Then the
matrices in the special Cartesian base Ẽ1u = {I} have the canonical structure in E-form:

{def(±Φ)}3×3 = sec Φ + tanΦ

1 + (secφ− 1) cos2 α1 (secφ− 1) cosα1 cosα2 ± tanφ · cosα1

(secφ− 1) cosα1 cosα2 1 + (secφ− 1) cos2 α2 ± tanφ · cosα2

± tanφ · cosα1 ± tanφ · cosα2 secφ
, (319)

{def(±Φ)}(n+1)×(n+1)

In×n + (secφ− 1) · eαe′α ± tanφ · eα
± tanφ · e′α secφ

, (eαe
′
α =
←−−−
eαe

′
α) . (320)

The coordinates of the deformational matrices are expressed, as usually, with respect to the
right Cartesian base Ẽ1u. The oriented straight line ⟨xn+1⟩ is the frame axis for the angle φ
of trigonometric deformation, this angle is positive for def +Φ and has the directional cosines
cosαk, k = 1, . . . , n, with respect to the base ⟨x1, . . . , xn⟩ as of ⟨xn+1⟩ orthocomplement.
The canonical E-forms (319), (320) are inferred by similar way with their quasi invariants.

Note, that {I±} = −{I∓}. Furthermore, in the quasi-Euclidean space ⟨Qn+1⟩ (q = 1) as
initially not axes-oriented and having the complete quasi-Cartesian base Ẽ = {ek} = RW Ẽ1

with the selected last ordinate en+1, its re�ector tensor may be de�ned as follows:

{
√
I}S = R′

W {I±}R′
W =

←−−−−−−
en+1e

′
n+1 −

−−−−−−→
en+1e

′
n+1 = 2 · en+1e

′
n+1 − I, (321)

where en+1 is the frame axis ⟨xn+1⟩ and simultaneously the orthogonal re�ector's mirror
� see (176), and therefore, here we have: {

√
I}S = ref{en+1e

′
n+1}. (In the most general

case, n× q quasi-orthogonal matrix Rq from (129) in Ch. 3 instead of en+1 may be used.)
Thus this chapter represented complete fundamentals of the Tensor Trigonometry in its

a�ne, Euclidean and quasi-Euclidean versions, which are realized and act in the same spaces.
Latter two spaces have the quadratic Euclidean metric. In di�erent quasi-Euclidean spaces,
their re�ector tensor may be given either by the simplest sign-alternating unity form {I±}
(q ≤ n) and {I∓} (n < q) or in the general form {

√
I}S = {RW I±R′

W }. Further (!) number
q is an index of any similar binary space as a quantity of negative eigenvalues, here −1, of
a re�ector tensor of a given binary space � see in Chs. 6, 10�12 and in Appendix. Above
it is q = 1. In the quasi-Euclidean space, its re�ector tensor generates the continuous
group of own quasi-Euclidean rotations including the set of principal spherical rotations
and the subgroup of secondary orthospherical rotations, and, in addition, the set of own
quasi-Euclidean re�ections including the set of principal spherical orthogonal re�ections and
the set of secondary orthospherical orthogonal re�ections. This continuous group of the
admissible own rotations together with the full set of the admissible own re�ections form
the complete group of quasi-Euclidean motions of the given quasi-Euclidean space. So, the
re�ector tensor of the index q with the quadratic Euclidean metric are main attributes of any
quasi-Euclidean spaces. In particular, the n-dimensional Euclidean geometry, when q = 0,
and the q-dimensional anti-Euclidean geometry, when n = 0, are two extreme cases of the
general quasi-Euclidean geometry with unity {+I} and antiunity {−I} re�ector tensors.



Chapter 6

Pseudo-Euclidean tensor and scalar trigonometry

6.1 Hyperbolic tensor angles, trigonometric functions, re�ectors

Passive transformation Rc (271) of spherical angle Φ gives in (272) pseudohyperbolic angle
{−iΦ}c in complex pseudo-Euclidean space ⟨Pn+q⟩c with its Pseudo-hyperbolic trigonometry
and the space re�ector tensor {I±}. as in ⟨Qn+q⟩! The scalar product is always invariant:

x′x = (Rcz01)
′ · (Rcz01) = [(

√
I±)z01]

′ · [(
√
I±)z01] = z′01{

√
I±}2z01 = z′01{I±}z01,

where z01 = R−1
c · x in Ẽ01 = Rc · Ẽ1, according to (271); Ẽ1 = {I}. Thus in ⟨Pn+q⟩c we

have {I±} = R′
c ·Rc = R2

c = {
√
I±}2D as the metric tensor too. With respect to the original

base Ẽ1 the latter may have the form {RW · I± ·R′
W } = {

√
I}S . Hence, in ⟨Pn+q⟩c re�ector

tensor and metric tensor are equivalent! Importance of this complex pseudo-Euclidean space
consists in simple transition o� intermediate pseudoanalogues (277), (278) into hyperbolic.
Thus, for motive tensor angles, this is tealized by two ways with generalization in (341):

Φ↔ −iΦ↔ Γ, φj ↔ −iφj ↔ γj , (x in Ẽ1 ↔ z01 in Ẽ01 ↔ u in Ẽ1), (322)

Γ↔ +iΓ↔ Φ, γj ↔ iγj ↔ φj , (u in Ẽ1 ↔ z02 in Ẽ02 ↔ x in Ẽ1). (323)

This transition between imaginary and real angles is called spherical�hyperbolic analogy of
abstract type with preserving binary spaces structure and re�ector tensor. Applying abstract
analogy (322) to relations (277)�(286), (294)�(297), one obtains hyperbolic analogs of angles,
trigonometric functions and re�ectors in a real-valued binary pseudo-Euclidean space ⟨Pn+q⟩
with the metric re�ector tensor {

√
I}S , also in their W -forms, with paired eigen angles ±γj

� in their D-forms, in the trgonometric base of diagonal cosine Ẽ1 = RW · Ẽ (as in Ch. 5): . . .
cosh γj sinh γj
sinh γj cosh γj

. . .

 = coshΓ + sinhΓ = Roth Γ = Roth′ Γ = exp Γ, (324)

Roth (−Γ) = cosh Γ− sinh Γ = Roth−1 Γ = exp(−Γ). (325)

⇒ Roth (+Γ) ·Roth (−Γ) = exp (+Γ) · exp(−Γ) = cosh2 Γ− sinh2 Γ = I.

It is the hyperbolic rotational function of the motive angle Γ or −Γ and its tensor Invariant. . . .
sech γj − tanh γj
+tanh γj sech γj

. . .

 = sech Γ + i tanhΓ = Defh (+Γ), (326)

Defh (−Γ) = sech Γ− i tanh Γ = Defh−1 Γ = Defh′ Γ. (327)

⇒ Defh (+Γ) ·Defh (−Γ) = Defh Γ ·Defh′ Γ = sech2 Γ + tanh2 Γ = I.

It is the hyperbolic deformational function of the motive angles with tensor quasi-Invariant.



6.2 Covariant and countervariant spherical�hyperbolic analogies 101

 . . .
cosh γj ± sinh γj
∓ sinh γj − cosh γj

. . .

 = cosh Γ̃∓ sinh Γ̃ → (339), (340), (328)

 . . .
sech γj ∓ tanh γj
∓ tanh γj −sech γj

. . .

 = sech Γ̃∓ tanh Γ̃ → (337), (338). (329)

cosh2 Γ̃− sinh2 Γ̃ = I, sech2Γ̃ + tanh2 Γ̃ = I

They are the hyperbolic orthogonal and oblique re�ectors with the projective angle Γ̃ and
their Invariant and quasi-Invariant.

In pseudo-Euclidean trigonometry, the general re�ector tensor (253) is identical by form
to a metric re�ector tensor of the non-coaxially oriented pseudo-Euclidean space:

Ref {cosh Γ̃}⊖ = {
√
I}S = {RW · I± ·R′

W }, (τ = τmax = q). (330)

Apply the principle of binarity and take into account (271) and (324), the result are the
following conditions of annihilation similar to (257) for secondary orthospherical rotations
Rot Θ and for quasi-Euclidean principal rotations as

Roth Γ · {
√
I}S ·Roth Γ = {

√
I}S .

Further the inverse passive modal transformation R−1
c converts hyperbolic angles and

functions into pseudo-spherical ones. Angles {iΓ}c have spherical form. Pseudo-spherical
trigonometry is realizable in isometric to original ⟨Pn+q⟩ a complex quasi-Euclidean space
⟨Qn+q⟩c. The scalar product is also invariant in both these isometric spaces:

u′ · {I±} · u = (Rcu)
′(Rcu) = z′02 · z02.

Such space ⟨Qn+q⟩c is a complex isomorphism of the real pseudo-Euclidean space by
Minkowski. It was introduced by H. Poincar�e in 1905 [63] as the 3-dimensional model of a
relativistic space-time with the Lorentz transformations group called so also by Poincar�e.

Abstract analogy (323) applied to pseudo-spherical angles and their functions gives �nally
the original spherical notions in our quasi-Euclidean space ⟨Qn+q⟩. The whole closed
cycle (322)�(323) with abstract spherical�hyperbolic analogy is described.

The analogy with spherical formulae (269) and (270) connects hyperbolic projective and
motive angles and their functions in common bases in terms of mid-re�ectors:

−iΓ̃12 ·Ref {cosh Γ̃12}⊖ = Γ12 = Ref {cosh Γ̃12}⊖ · iΓ̃12, ( {Γ̃12}2 = {Γ12}2 ).

6.2 Covariant and countervariant spherical�hyperbolic analogies

Abstract analogies in (322), (323) give no any quantitative relation between real-valued
spherical and hyperbolic angles or functions. However such relations may be determined
if a one-to-one speci�c correspondence in the original (universal) Cartesian base Ẽ1 = {I}
between both these arguments-angles is �xed. Spherical and hyperbolic angles, functions and
transformations with this isomorphic correspondence in all eigen quasiplanes and pseudo-
planes in Ẽ1 may be represented clearly at the general trigonometric diagram (Figure 3).
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Figure 3. The Trigonometric Diagram on the base of unity circle and quadrohyperbola
with spherical�hyperbolic analogies in an eigen plane � pseudoplane of a tensor angle with
respect to the right universal base Ẽ1. (The angle φ is spherical, the angle γ is hyperbolic.)

Here we use the following notations:
I, II, III, IV are the hyperbolic quadrants of a pseudoplane with conjugate hyperbolae (I,
III and II, IV) and hyperbolic angles dividing by the two asymptotic diagonals.
◦
γ and

◦◦
γ are the positive and negative angles of hyperbolic rotations determined along

hyperbolae, they are shown in I and III.
φ(γ) and γ(φ) are the examples of speci�c sine-tangent spherical�hyperbolic analogy, they
are shown in II; in hyperbolae focus we de�ne especial angle ω = γF = γ(π/4) ≈ 0.881 rad.
φR(γ) and γR(φ) are the examples of speci�c tangent-tangent analogy, they are shown in III.
Besides, bisection and duplication of an hyperbolic angle with respect to the base Ẽ1, with
the use of these two analogies, are shown in the left and right parts of IV, and in sect. 6.4.

The identical ranges of certain trigonometric functions of two complementary hyperbolic
angles γ and υ and of two complementary spherical angles φ and ξ = π/2−φ(γ) allows us to
de�ne covariant (or sine-tangent) and countervariant (or sine-cotangent) speci�c analogies,
but correctly only in the so called universal bases, usually in the simplest base Ẽ1 = {I}:

sinh(γ, υ) ≡ tan(φ, ξ), tanh(γ, υ) ≡ sin(φ, ξ) [γ(φ) ⇔ φ(γ), υ(ξ) ⇔ ξ(υ)]. (331− I)

sinh(γ, υ) ≡ cot(ξ, φ) tanh(γ, υ) ≡ cos(ξ, φ) [γ(ξ) ⇔ ξ(γ)], υ(φ) ⇔ φ(υ)]. (331− II)

(See more strict and descriptive justi�cation of this below in sect. 6.4.)
Then, on the basis of (331A), argument angles are connected by the following equalities:

γ = γ(φ) = artanh(sinφ) = arsinh(tanφ) = ln(secφ+ tanφ),

φ = φ(γ) = arctan(sinh γ) = arcsin(tanh γ) = −i ln(sech γ + i tanh γ).
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Function γ(φ) (Lambertian) as in (331-I) was introduced by Johann Lambert in 1760 [36].
In 1830 Christoph Gudermann added to it the inverse function γ(φ) (Gudermannian) [51].
Besides, at Figure 3, in an illustrative sense, we show only covariant analogy (331) between
the hyperbola with hyperbolic angle-argument and the semi-circle with spherical angle in
the angular interval or sector with R = 1 indicated above beginning from the zero points C.

For application in our Tensor Trigonometry, we added else in (331-II) two functions of
the types � direct γ(ξ) and inverse ξ(γ). So, the latter gives the spherical parallel angle of
Lobachevsky ξ = π/2− φ(γ) as one-step in Ẽ1 and in hyperbolic geometry. Trigonometric
de�nitions of four functions for covariant and countervariant speci�c spherical-hyperbolic
analogies, emphasize the fact, that in Geometry, including Tensor Trigonometry, they can
be used only in the universal bases Ẽ1 or widely Ẽ1u = {rot θ · {I} and from zero point O!

According to our Trigonometric Diagram at Figure 3, the main values of spherical angles
are in [−π/2; +π/2], as in Ch. 5. For this range of the angles their cosines and sines are
nonnegative, thus formulae (331) may be supplemented by two analogs:

sech γ ≡ cosφ ≥ 0 , cosh γ ≡ sec φ ≥ 0 . (332− I)

cosh γ ≡ csc ξ ≥ 0 , sech γ ≡ sin ξ ≥ 0 ; (332− II)

dγ(φ) = secφ dφ = cosh γ dφ, dφ(γ) = sechγ dγ = cosφ dγ; (dξ = −dφ). (332− III)

Di�erentials and derivatives will be useful in the instantaneous bases Ẽm � see more further.
The range [−π/2; +π/2] of spherical angles is su�cient for trigonometric transformations

(rotations, deformations) of lineors and bivalent tensors. Identities (331) generate speci�c
sine�tangent spherical�hyperbolic analogy, represented in vector-scalar form usually in Ẽ1:

sinΦ ≡ tanhΓ, tanΦ ≡ sinhΓ,
cosΦ ≡ sech Γ, sec Φ ≡ coshΓ,

}
± φj ∈ [−π/2; +π/2], ±γj ∈ (−∞; +∞). (333)

Most generally covariant speci�c analogy is expresed using spherical and hyperbolic tensors
of rotation and deformation with respect to the universal base Ẽ1 = {I} in two directions
(with identities in 2× 2-cells for binary primary and mutual eigen angles) as follows:

Roth Γ ≡ Def Φ (in the base Ẽ1 = {I}) (334− I)

Roth Γ =


. . .

cosh γj sinh γj
sinh γj cosh γj

. . .

 ≡


. . .

secφj tanφj

tanφj secφj

. . .

 = Def Φ(Γ),

Defh Γ ≡ Rot Φ (in the base Ẽ1 = {I}) (334− II)

Defh Γ =


. . .

sech γj − tanh γj
+tanh γj sech γj

. . .

 ≡


. . .

cosφj − sinφj

+sinφj cosφj

. . .

 = Rot Φ(Γ).

Analogy (334) infers the Rule 5 for spherical deformational matrices in sect. 5.10. Functional
relations between both these motive tensor angles in the base Ẽ1 follow from (331-I):

Γ(Φ) = lnDef Φ = ln(sec Φ + tanΦ), iΦ(Γ) = lnDefh Γ = ln(sech Γ + i tanhΓ).

Countervariant analogies are realised by replacing principal angle by complementary one.
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Most generally countervariant speci�c analogy is expresed using spherical and hyperbolic
tensors of rotation and deformation also in the universal base Ẽ1 = {I} in two directions:

Roth Γ ≡ Def Ξ (in the base Ẽ1 = {I}) (335− I)

Roth Γ =


. . .

cosh γj sinh γj
sinh γj cosh γj

. . .

 ≡


. . .

csc ξj cot ξj
cot ξj csc ξj

. . .

 = Def Ξ(Γ),

Defh Γ ≡ Rot Ξ(Γ) (in the base Ẽ1 = {I}) (335− II)

Defh Γ =


. . .

sech γj − tanh γj
+tanh γj sech γj

. . .

 ≡


. . .

sin ξj − cos ξj
+cos ξj cos ξj

. . .

 = Rot Ξ(Γ).

Rules 1; 2, 3 (sects. 5.3; 5.7) stay valid also for trigonometrically compatible hyperbolic rotational
matrices and orthogonal re�ectors. Rules 3 is foundation for principal spherical and hyperbolic rotations in
the quasi- and pseudo-Euclidean geometries � see sect. 6.3. Here Rule 3 holds for trigonometric functions
and transformations in pseudoplane. In particular,

m∏
j=1

(sec φj ± tanφj)
hj ≡

m∏
j=1

(cosh γj ± sinh γj)
hj = exp

 m∑
j=1

±hjγj

 = (336)

= exp γ = cosh γ + sinh γ ≡ sec φ+ tanφ, φ ∈ [−π/2;+π/2], (see sect. 5.10).

If the mid-re�ector (330) for ΓB is used as a re�ector tensor, then hyperbolic re�ectors (328), (329) are
hyperbolic analogies of spherical ones (178), (179) and (211), (212):

Ref{BB′} = sech Γ̃B − tanh Γ̃B , Ref{B′B} = sech Γ̃B + tanh Γ̃B ; (337), (338)

Ref{B} = cosh Γ̃B − i sinh Γ̃B , Ref{B′} = cosh Γ̃B + i sinh Γ̃B . (339), (340)

Spherical�hyperbolic analogies of the two types � abstract in Ẽ and covariant speci�c in the base Ẽ1 generates
the following Quart-Circle of motive matrix functions�transformations:

Rot (iΓ) ≡ Defh (−iΦ) ⇔ Roth Γ ≡ Def Φ
⇕ ⇕

Rot Φ ≡ Defh Γ ⇔ Roth (−iΦ) ≡ Def (iΓ).
(341)

The sine-tangent analogy generates hyperbolically orthogonal forms of a�ne projectors, quasi-inverse matri-
ces, and re�ectors considered before, if the mid-re�ector for ΓB is used as a re�ector tensor. Then hyperbolic
relations are similar to spherical ones (249):

Ref{B′} · Ref{B} = (cosh Γ̃B + sinh Γ̃B)(cosh Γ̃B − sin Γ̃B) = Roth 2ΓB . (342)

This means here that re�ection {(
√
I)′h(
√
I)h}, where (

√
I)h ̸= (

√
I)′h � the prime non-symmetric square

root, is the double hyperbolic rotation similar to (251). Hence rotational matrix Roth ΓB is a trigonometric
hyperbolic square root of the symmetric matrix in square brackets similar to spherical one in (251); but in
this case it is also an arithmetic root:

Roth ΓB = [(±Ref{B})′ · (±Ref{B})]1/2S = [Roth 2ΓB ]
1/2
S . (343)

If a1,a2 are the non-oriented vectors or planars im a1, im a2 of rank 1 and a1a2 ̸= 0, then they may
also determine the elementary rotational hyperbolic matrix with τ = 1:

Roth Γ12 =
[
(I − 2

←−−−
a2a

′
1)(I − 2

←−−−
a1a

′
2)
]1/2

= (344)

=

[
I − 2

(
a1a′

2

a′
2a1

+
a2a′

1

a′
1a2

)
+ 4 cosh2 γ12 ·

a2a′
2

a′
2a2

]1/2
,

where:
←−−−
a2a

′
1 =

a2a′
1

a′
1a2

,
←−−−
a1a

′
2 =

a1a′
2

a′
2a1

.

(In particular, a1 = e1, a2 = e2,→ e′2e1 = e′1e2 = cosφ12 ≡ sech γ12, e2e′1 =
←−−−
e2e′1.)
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Recall, that {
←−−−
a2a′

1} is a projector into ⟨im a2⟩ parallel to ⟨ker a′
1⟩ ≡ ⟨im a1⟩⊥.

The spherical angle αB in (288) is evaluated quantitatively with the use of (331) and (324):

Def αB ≡ Roth 2ΓB ⇒ αB = arctan(sinh 2γB).

This relation comments commutativity of the trigonometrically compatible matrix functions of their motive
angles � either Ô or Ã according to the quart circle (341)!

The sine-tangent analogy leads to the following four expressions for the mid-re�ector:

Ref{cos Φ̃}⊖ = Ref{sec Φ̃}⊖ ≡ Ref{cosh Γ̃}⊖ = Ref{sech Γ̃}⊖. (345)

Right multiply the matrices in quart circle (341) by the mid-re�ector, we obtain the similar quart circle
for the re�ectors. Repeat this operation once more and we return to their original motive type. De�nitions
of projective hyperbolic angles Γ̃B and functions may be obtained from the spherical ones with the use of
sine-tangent analogy (331), if the mid-re�ector (345) for ΓB is used as the pseudo-Euclidean space metric
re�ector tensor.

Application of spherical formulae (255), (256) and (303) gives the similar hyperbolic modal relations:

Ref{B′} = Roth (+ΓB) ·Ref{B} ·Roth (−ΓB);

Ref{B′} = Ref{cosh Γ̃B}⊖ ·Ref{B} ·Ref{cos Γ̃B}⊖,

Ref{B} = Ref{cosh Γ̃B}⊖ ·Ref{B′} ·Ref{cos Γ̃B}⊖;
−→←−
B′ = Roth (+ΓB) ·

−→←−
B ·Roth (−ΓB) = Ref{cosh Γ̃B}⊖ ·

−→←−
B ·Ref{cos Γ̃B}⊖.

 (346)

Add to them the set ⟨TB⟩ ≡ ⟨Roth ΓB ·Rot ΘB⟩ of modal rotational matrices performing operations (346).
Here the matrix Roth ΓB determined by (343) has the trigonometric subspace of the minimal dimension
among all matrices of ⟨TB⟩. In particular, it enables one to evaluate the rotation variant of modal matrices
for transforming a�ne projectors into D-forms, i. e., developing further relations (311), (312):

R′
W · Roth (+ΓB/2) ·

−→←−
B ·Roth (−ΓB/2) ·RW = D{

−→←−
B},

R′
W · Roth (−ΓB/2) ·

−→←−
B′ ·Roth (+ΓB/2) ·RW = D{

−→←−
B′}.

 (347)

* * *

As in the quasi-Euclidean space and geometry � see (257), (258) in sect. 5.7, in pseudo-
Euclidean ones only the compatible rotations and re�ections of two types as principal hyper-
bolic and orthospherical are used. In the motive version, these rotations satisfy relations:

Roth {±Γ12} ·Ref{cosh Γ̃}⊖ ·Roth {±Γ12} = Ref{cosh Γ̃}⊖,
Rot′ {±Θ12} ·Ref{cosh Γ̃}⊖ ·Rot {±Θ12} = Ref{cosh Γ̃}⊖.

}
(348)

For the projective version, we use analogue of (256) in (356) with re�ectors in angular
variant from (211, 212) and adding to them one orthospherical re�ector; and we obtain the
compatible hyperbolic re�ections of two types, which all satisfy relations:

Ref⊠{∓Γ̃12}} ·Ref{cosh Γ̃}⊖ ·Ref⊠{±Γ̃12}} = Ref{cosh Γ̃}⊖,
Ref⊠{±Θ̃12} ·Ref{cosh Γ̃}⊖ ·Ref⊠{±Θ̃12} = Ref{cosh Γ̃}⊖.

}
(349)

Transferring through the re�ector-tensor Ref{cosh Γ̃}⊖, the principal re�ector is trans-
formed into its mutual one annihilating; the secondary re�ector is transferring through both
unity parts of the re�ector tensor without changes and annihilating too!

Relations (348, 349) are pseudo-Euclidean analogues of quasi-Euclidean ones (257, 258).
They produce the pseudo-Euclidean space ⟨Pn+q⟩, its geometry and tensor trigonometry with
the given re�ector metric tensor, introduced independently, as well as for the external type of
the two non-Euclidean hyperbolic geometries with an index q. The latters at q = 1 are two
hyperbolic geometries on two hyperbolic hypersurfaces of the constant negative curvature.
These two and general hyperbolic geometries realized on twq hyperboloids of the radius-
parameter R embedded into the pseudo-Euclidean space ⟨Pn+q⟩ with a set re�ector metric
tensor. We will continue this topic in Chs. 11, 12, 6A, 7A and 10A with complete tensor and
di�erential trigonometric descriptions of such motions with the laws of their summation.
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6.3 Re�ector tensor in quasi- and pseudo-Euclidean interpretation

Applications of hyperbolic and spherical matrices of the two principal motive types and
re�ective ones in tensor trigonometry need in correct theoretical justi�cation including
a choice of binary spaces with their re�ector metric tensors, admissible transformations
and coordinate bases. Fix an initial arithmetic (a�ne) space with the universal unity
base Ẽ1 = {I}. Then introduce in this space by quite independent way the re�ector
tensor for beginning in its general form as {

√
I}S (see in sect. 5.7). In this initial base,

it determines the non-coaxial orientation of the quasi-Euclidean and pseudo-Euclidean
spaces and, for example, the tensor rotations of three types de�ned before in (257) and (348):

in the space ⟨Qn+q⟩ ≡ ⟨En⟩⊞ ⟨Eq⟩ ≡ CONST , set of principal spherical rotations ⟨Rot Φ⟩

Rot Φ · {
√
I}S ·Rot Φ = {

√
I}S = Rot (−Φ) · {

√
I}S ·Rot (−Φ);

in the space ⟨Pn+q⟩ ≡ ⟨En⟩⊠⟨Eq⟩ ≡ CONST , set of principal hyperbolic rotations ⟨Roth Γ⟩

Roth Γ · {
√
I}S ·Roth Γ = {

√
I}S = Roth (−Γ) · {

√
I}S ·Roth (−Γ);

in both spaces, common group of induced or independent orthospherical rotations ⟨Rot Θ⟩

Rot′ Θ · {
√
I}S ·Rot Θ = {

√
I}S = Rot Θ · {

√
I}S ·Rot′ Θ.

The new quasi-Euclidean space ⟨Qn+q⟩ (see initially in the end of sect. 5.7) is determined by
Euclidean quadratic metric and the set re�ector tensor {

√
I}S . They de�ne the admissible

transformations, forming the new complete group of quasi-Euclidean rotations (motions):

Ẽ2 = Rot Φ ·Rot Θ · Ẽ1 or Ẽ3 = Rot Θ ·Rot Φ · Ẽ1. (350)

Ẽ1, Ẽ2, Ẽ3 are called rotationally connected quasi-Cartesian bases. The quasi-Euclidean
scalar, vector and tensor trigonometries are realized in spaces ⟨Qn+q⟩, with respect here to
the right quasi-Cartesian bases such as (350).

The well-known pseudo-Euclidean Minkowski space ⟨Pn+q⟩ (see in Chs. 10 and 11)
is determined by pseudo-Euclidean quadratic metric with the set re�ector metric tensor
{
√
I}S . They de�ne the admissible transformations, forming the complete Lorentzian group

of pseudo-Euclidean rotations (motions):

Ẽ2 = Roth Γ ·Rot Θ · Ẽ1 or Ẽ3 = Rot Θ ·Roth Γ · Ẽ1. (351)

Ẽ1, Ẽ2, Ẽ3 are called rotationally connected pseudo-Cartesian bases. The pseudo-Euclidean
scalar, vector and tensor trigonometries are realized in spaces ⟨Pn+q⟩, with respect here to
the right pseudo-Cartesian bases such as (351).

Introduce the right so-called universal bases including the original base Ẽ1 = {I}:

⟨ẼIu⟩ ≡ ⟨Rot Θ · Ẽ1⟩ (Ẽ′
IuẼiu = I, Ẽ′

Iu{
√
I}SẼIu = {

√
I}S , det ẼIu = +1). (352)

The transformations ⟨Rot Θ⟩ form the orthospherical subgroup, what s the intersection of
these Quasi-Euclidean and Lorentz groups, but only with respect to universal bases ⟨ẼIu⟩!

A re�ector tensor and a choice of the principal trigonometry from two kinds (spherical or
hyperbolic) determine the spaces quadratic metric with internal and external multiplications
from their two kinds (either Euclidean or pseudo-Euclidean); and vice versa! The two
complete sets of admissible rotations in these two binary spaces (quasi-Euclidean or pseudo-
Euclidean) contain the subsets of Special quasi-Euclidean or Lorentzian pseudo-Euclidean
rotations with the parallel translations, which stipulate the spaces isotropy and homogeneity!
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Recall (!), that q is a quantity of negative unity eigenvalues of the re�ector tensor of any
binary spaces with such a re�ector tensor � see in Chs. 10�12 and in Appendix.

The original base Ẽ1 = {I} is the simplest universal base by its form. Universal bases
enable one to jointly realize quasi-Euclidean and pseudo-Euclidean trigonometries on the
basis of concrete spherical�hyperbolic analogy, but only with one-step motions. Note, in
particular, that in STR (special theory of relativity) physical one-step motions with respect
to relatively �xed Observer are described in terms of universal bases.

Consider how a re�ector tensor acts on matrices eigenprojectors in both spaces.
Let B be a null-prime matrix, used initially in an a�ne space ⟨An⟩. Introduce in the space
the re�ector tensor as the mid-re�ector of the tensor angle for the matrix B in two following
variants (with introducing metrics for external and internal products):

{
√
I}S = Ref {cos Φ̃B}⊖ ≡ Ref {cosh Γ̃B}⊖. (353)

We got quasi- and pseudo-Euclidean spaces. Here the identity is true only in ⟨ẼIu⟩.
In the �rst case, the symmetric projectors

←−−
BB′ and

−−→
BB′ are spherically orthogonal each

to another in Euclidean and quasi-Euclidean spaces with a metric tensor {I+}, i. e., re�ector
tensor (353) does not determine here internal and external products.

In the second case, the non-symmetric projectors
←−
B and

−→
B are hyperbolically orthogonal

each to another in a pseudo-Euclidean space with metric re�ector tensor {I±} according to
(353). This fact follows taking into account last formula in (346):

(
←−
B )′Ref {cosh Γ̃B}⊖

−→
B = Ref {cosh Γ̃B}⊖ ·

←−
B ·
−→
B = Z.

Consequently, B− (sect. 2.1) is a hyperbolically orthogonal quasi-inverse matrix with
respect to re�ector tensor (353) if B is null-prime. Also, in this case, the direct sum ⟨im B⟩⊕
⟨ker B⟩ is hyperbolically orthogonal. Then for non-symmetric projectors

←−
B and

−→
B , their

eigen subspaces corresponding to the eigenvalues 0 and 1 are hyperbolically orthogonal too.

Equirank projectors
←−
B and

←−
B′ as well as

−→
B and

−→
B′ and their planars are transformed into

each other with hyperbolic rotation in (346) as hyperbolically orthogonal 2-valent tensors

and tensor objects. Projectors
←−
B and

−→
B hyperbolically orthogonally project respectively

into ⟨im B⟩ and ⟨ker B⟩. Projective formulae (186)�(197) are transformed. In the symbolic
octahedron (Figure 1) the diagonal RS generates two pseudo-isosceles triangles RZS and
RIS with equal hyperbolic angles ∠RZS ≡ ∠RIS ≡ ΓB . These facts are responses to the
introduction of re�ector tensor (353) in the hyperbolic form.

As hyperbolic analogues of Moivre and Euler formulae, we have the motive tensor angle
from the rotation tensor in cell-forms � see in (287):

Roth{mΓ} = cosh{mΓ}+ sinh{mΓ) = Rothm Γ =

= exp{mΓ} → {mΓ} = ln Roth{mΓ} → Γ = ln Roth Γ.

{RothmΓ} =



. . .

coshmγj sinhmγj
sinhmγj cosh γj

. . .

1

. . .


= exp



. . .

0 mγj
mγj 0

. . .

0

. . .


,

In particular, here the value m = 1/2 gives arithmetic and trigonometric square root (343)
of the rotational matrix.
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Properties of the matrix, no depending on the rotation angle, are the same as of a spherical
deformational matrix. This matrix is symmetric and positive de�nite, its eigenvalues are

µ2j = cosh γj + sinh γj > 0, µ2j+1 = µ−1
2j = cosh γj − sinh γj > 0, and also may be in

addition µk = +1.
Any pair of positive numbers x and x−1 may be uniquely represented in terms of a scalar

hyperbolic angle, in particular, as a 2× 2-matrix (see sect. 5.10).

In order to establish compatibility of certain transformations for some tensor angle with
the space re�ector tensor in both kinds tensor trigonometries on the basis of quadratic
metrics, one may use the de�ning relations (257), (258) and (348), (349) as criterions.

6.4 Scalar trigonometry in a pseudoplane with main relations

A diagonal re�ector tensor {I±} produces a coaxially oriented pseudo-Euclidean space
⟨Pn+q⟩, which has binary structure and admissible to it the pseudo-Cartesian bases Ẽ.
Represent the hyperbolic rotational matrix Roth Γ at a level of the j-th 2×2 cell inW -form
(324) with respect to the trigonometric base Ẽ1 = {I}, where the rotation realizes along the
characteristic quadrohyperbola of coupled hyperbolae (Figure 3). In the j-th eigen pseudo-
plane, two axes � ordinate and abscissa are the eigenvectors u and v for the D-forms of
cosh Γ (with ± cosh γ) and {I±} (with ±1); two asymptotes of the quadrohyperbola with
respect to any admissible base Ẽ are the main and lateral invariant diagonals � lines with
zero quadratic metric. Hence, these two asymptotes for all similar quadrohyperbolae are
invariant under hyperbolic rotations of the base. If a pseudo-Euclidean space dimension
n is greater than 2, then the diagonals correspond to an invariant dividing hypersurface.
At q = 1, n > 2, it is an asymptotic hypersurface for the embedded hyperboloids I an II
(pseudospheres of radii R = ±1 and R = ±i) � see more in Ch. 12. If the j-th pseudoplane
cuts such hyperboloids, then, on it in the base Ẽ1, the rotation {Roth Γ}2×2 is performed
along the quadrohyperbola. In hyperbolic quadrants, positive scalar angle γj is measured o�
the coordinate axis till another side of the angle in direction to the nearest main invariant
diagonal, and vice versa. Hence, the angle cannot be visually more, than π/4 in the universal
base Ẽ1 at Figure 3. Accordingly, for the pseudo-Euclidean scalar and tensor trigonometry,
we adopt that the complementary to γj hyperbolic angle υj are measured o� the second side
of γj till this invariant diagonal. The identical de�nition is done at front Cover of our book.
Then visually their sum is equal π/4 and last is right! See this further more and in detail.

The pseudo-Euclidean length is noted further as λ with Lambert angular measure γ.
The Euclidean length l of the arc is obviously greater its pseudo-Euclidean length λ:

λ = R

γ2∫
γ1

√
(d sinh γ)2 − (d cosh γ)2 = R(γ2 − γ1) < R

γ2∫
γ1

√
(d sinh γ)2 + (d cosh γ)2.

The area of a hyperbolic sector is S = R2(γ2 − γ1)/2. In these four quadrants the radius-
vectors of pseudocurvature ±R or ±iR is hyperbolically orthogonal to the hyperbola tangent
at the point of tangency in an admissible base Ẽ and dλ = Rdγ. These vector and tan-
gent determine local hyperbolically connected coordinate axes. The focus of the hyperbola
corresponds to the especial hyperbolic angle ω ≈ 0.881 rad:

sinhω = 1, coshω =
√
2, tanhω =

√
2/2, cothω =

√
2. (354)

By sine-tangent analogy, φ(ω) = π/4, γ(π/4) = ω. Thus the angle or the number ω is the
hyperbolic analogue of the angle or the number π/4. We shall often use the angle ω in the
sequel. For example, sin(π/4± iω) = 1± (

√
2/2)i; cos(π/4± iω) = 1∓ (

√
2/2)i.
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There exist in�nitely many kinds of speci�c analogies. Let us consider some of them.
Introduce speci�c tangent-tangent analogy for the visual angle φr (or φR) also with respect
to the base Ẽ1 (i. e., at γ0 = 0) with this simmetric condition (see at Figure 3, quadrant III):

tanφr ≡ tanh γ → φr = φr(γ) = arctan(tanh γ), (−π/4 ≤ φr ≤ +π/4). (355)

This angle-analog φr of the angle γ are determined by the same radius-vector r. That is
why the angle φr(γ) is called here visual. Thus, this visual angle φr may be is used for
descriptivity in STR (see Ch. 1A), what is useful only with respect to the universal base Ẽ1.

This mapping leads to other relations between spherical and hyperbolic functions:

sinφr ≡ sinh γ/
√
cosh 2γ, cosφr ≡ cosh γ/

√
cosh 2γ,

sinh γ ≡ sinφr/
√
cos 2φr, cosh γ ≡ cosφr/

√
cosh 2φr.

}
(356)

φr(γ) < φ(γ) < γ < γr. (For example, φr(ω) ≈ 35◦, γr(π/4) =∞.)

Generally, such visually obvious speci�c spherical�hyperbolic analogies (in that number
for angles ξ and υ) are reduced to their identities in various angular intervals similar to

tan(k1φ/2) ≡ tanh(k2γ/2)⇔
{

sin(k1φ) = tanh(k2γ), tan(k1φ) = sinh(k2γ),
cos(k1φ) = sech (k2γ), sec (k1φ) = cosh(k2γ),

(357)

where spherical interval is limited: −π/4 ≤ k1φ/2 ≤ π/4. These two variants are important:
1) k1 = k2 = 1 (this corresponds to (331-I) with Lambertian and Gudermannian functions),
2) k1 = k2 = 2 (this corresponds to main visual analogy (355)) also in Ẽ1.

The joint application of (2) and (1) gives pure geometric (using a compass and a ruler!) duplication
and bisection of hyperbolic angle γ with respect to the base Ẽ1, because we don't have a hyperbolic compass
(see at Figure 3). Under their joint acting, with preliminary duplication of φr and bisection of φ, we get:

(a) γ → φr(γ)→ 2φ→ tan 2φ = 2 tanφ/(1− tan2 φ) ≡ 2 tanh γ/(1− tanh2 γ) = sinh 2γ;

(b) γ → φ(γ)→ φ/2 → tanφ/2 = sinφ/(1 + cosφ) ≡ tanh γ/(1 + sech γ) = tanh γ/2.

 (358)

⇒ |φR(γ)| < |φ(γ)| < |2φR(γ)|.

Indeed for the inequality, if cosφ ≡ sech γ and cos(2φR) ≡ sech (2γ), then cosφ > cos(2φR); but if

tanφ ≡ sinh γ and tanφR ≡ tanh γ, then | tanφ| > | tanφR|.
In 1763, J. Lambert, using abstract analogy of his hypothetical imaginary sphere with

the real-valued sphere, revealed the angular defect of a hyperbolic triangle and connected it
with its area and radius of this sphere [33], in addition to the Th. Harriot connection from
1603 for the angular excess of a spherical triangle. Great creators of the hyperbolic non-
Euclidean geometry, as a holistic axiomatic system, N. Lobachevsky and J. Bolyai used the
abstract and speci�c spherical�hyperbolic analogies with respect to the spherical geometry
for inferences of the hyperbolic non-Euclidean geometry all metric relations.

Thus, for the Lobachevsky spherical angle of parallelism, there holds: Π(a) = ξ, where
the latter is complementary to spherical motion angle φ(γ). According to countervariant
analogy (331-II), we obtain the well-known Lobachevsky formula Π(a) = arccos tanh γ [40].
It was by the �rst manner of introducing in the hyperbolic geometry of its principal motion
angle γ, namely, through the �nite and visual spherical countervariant parallel angle of
Lobachevsky Π(a) = ξ, but it is correct only in the universal base, for example, simplest Ẽ1.
Contrary, the angle of motion γ generates by direct way (331-I) the covariant �nite spherical
angle of parallelism φ = arcsin tanh γ = π − ξ also in Ẽ1.

Tensor Trigonometry given us the opportunities to found the fundamental exact and
correct connection in any own base Ẽk between principal γ and complementary υ hyper-
bolic angles in [16] � see further in (360 IY, Y) and on the book Cover. Their bond is
signi�cantly more complex. Moreover, υ is the parallel angle correct also in any own base Ẽk!
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The analogy (331) gives all trigonometric formulae for a pseudo-Euclidean right triangle
ABC (plane trigonometry began with solving a right triangle!). See visually at front and
back Covers of the book! Its legs a and b lie in two hyperbolic quadrants (suppose a ≤ b).
The principal angle γ at the vertex A is contrary to the leg a < b. Denote the pseudo-
hypotenuse as g. The common pseudo-Euclidean Pythagorean Theorem is g2 = b2 − a2,
because a ≤ b. If the angle γ is in hyperbolic quadrant I (Figure 3), then the triangle ABC
is exterior, g is "space-like", i. e., is outside of two isotropic, or light in the relativistic physics,
diagonals. If |a| = |b|, then γ is in�nite, g is situated onto the diagonal with zero pseudo-
Euclidean length. If the angle γ is in hyperbolic quadrant II, then the triangle is interior,
g is "time-like", i. e., is inside of two isotropic diagonals. Below for determinacy we choose
the exterior triangle ABC, i. e., at back Cover. Its legs a and b belong to distinct eigen
subspaces of re�ector tensor with eigenvalues −1 and +1. In order to infer all trigonometric
formulae between hyperbolic angles of the right triangle ABC, we consider preliminary the
locations and behavior together of all its hyperbolic angles and sides with Euclidean analogs,
preliminary, according to sine�tangent analogy (331-I) in the universal base Ẽ1.

The hyperbolically acute angle γ at the vertex A is contrary to the leg a < b and adjacent
to the leg b. Positive scalar values of the angle are measured in direction to the main
invariant diagonal o� the leg b = AC (i. e., Cartesian axis x). The hyperbolically acute
complementary angle υ is de�ned by us correctly as the angle at the vertex B between the
pseudo-hypotenuse g = AB and the internal isotropic diagonal passing through the vertex B.
Its spherical analogs are (π/4−φR) by (355) and (π/2−φ) by (331-I). Positive values of the
angle υ are measured also in direction to the isotropic diagonal o� the pseudo-hypotenuse.
Identically both these acute complementary anges are de�ned together as it is shown at
Figure 4, Ch. 12, and in Appendix at Figure 1A, Ch. 3A.

The in�nite angles δ = ∞ (with analog φR = π/4) are disposed, for example in the
universal base Ẽ1, between the pseudo-Cartesian axes and the internal isotropic diagonals.

The as if hyperbolically right angle ν is disposed between the legs a and b within of both
hyperbolic quadrants I and II. The angle is equal to zero in hyperbolic metric, because it
consists from two in�nite antithetical angles +δ and −δ (φR = ±π/4) (directions of these
angles measurement are to one side, i. e., o� b = AC to a = BC).

The combined hyperbolic obtuse angle ABC at the vertex B is contrary to the leg b > a.
Geometrically it consists from the hyperbolic intrinsic acute angle υ with the hyperbolic
in�nite angle δ = +∞ (it is as if the geometric sum υ+ δ). Such an obtuse angle appears on
the pseudo-Euclidean graph with a compensatory angular excess due to the fact that we can
use only Euclidean geometry for visualization, but γ and υ in the right triangle are acute and
quasi-acute angles and with equal rights. In the right triangle, they complement each other
up to in�nite angle δ. In the plane and cylindrical hyperbolic geometries, on the
Minkowski hyperbolids (Ch. 12), these complementary hyperbolic angles relate
to the lengths of the hyperbolic �gures legs, including of right triangles!

When the pseudoplane is convoluted into a hyperbolic surface, these original hyperbolic
angles now express the lengths of the opposite legs instead of their previous pseudo-Euclidean
lengths, and the original hyperbolic angles are transformed into spherical analogs with the
angular defect of Lambert in hyperbolic triangles [36]. On the tangent plane and pseudoplane
to the hyperbolic surfaces, the Euclidean and pseudo-Euclidean pictures are restored!

The sine-tangent analogy determines one-to-one correspondence between 3 hyperbolic
angles: γ, υ, δ = ∞ (as principal of motion, complemetary and in�nite with right one)
and their spherical analogues: φ, ξ, d = π/2; and for three sides of the right triangle in
pseudoplane and in quasiplane with respect to the universal base Ẽ1 for speci�c analogy.
Accordingly, classi�cation of hyperbolic angles di�ers from spherical angles. This relates for
all angles as we saw above. We add to them the independent orthospherical angle θ (or Θ).
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Under this map the �rst Euclidean axis (with the leg b) is invariant, now as the �rst
Cartesian axis; the main invariant diagonal is transformed into the second Cartesian axis
(under the angle φ(δ) = π/2). The leg a = CB is rotated to the left at spherical angle
φ(γ) into the new leg aE = CB′, i. e., up to its contact with the central circle of radius
gE = g =

√
b2 − a2 at the point of tangency B′, now as the new vertex of the triangle AB′C

in the quasiplane; the pseudo-hypotenuse g = AB is transformed into the new leg AB′ = gE
with the same length. Now the principal angle φ(γ) at the vertex A is contrary to the
rotated leg aE = a, the complementary angle ξ(υ) at the vertex C is contrary to the new leg
AB′ = gE = g, and the new right angle d = π/2 (from the in�nite angle ±δ) at the vertex
B′ is contrary to the new hypotenuse AC = bE = b. The quasi-Euclidean Pythagorean
theorem is b2 = g2 + a2. And we have two pseudo-Euclidean Pythagorean theorems with
hypotenuses g and legs a. Now we can realize the covariant sine-tangent (at φ ̸= ±π/2) and
countervariant sine-cotangent (at φ ̸= 0) analogies, together with various functional bonds
of two complementary hyperbolic anges ! Under metric tensor {I±} for 4 angles we obtain:

sinh γ = a/g ≡ tanφ, tan ξ = g/a ≡ sinh υ → sinh γ · sinh υ = 1,
cosh γ = b/g ≡ secφ, sin ξ = g/b ≡ tanh υ → cosh γ · tanh υ = 1,

cosh γ · tanh υ = cosh υ · tanh γ = 1 = sech γ · coth υ = sech υ · coth γ;
(γ, υ = 0⇔ υ, γ = ±∞) ⇔ (φ, ξ = 0⇔ ξ, φ = ±π/2).

 (359)

sinh γ = csch υ = a/g = tanφ = cot ξ, [sinh(γ, υ) = csch (υ, γ)],
cosh γ = coth υ = b/g = sec φ = csc ξ, [± cosh(γ, υ) = coth (υ, γ)],
tanh γ = sech υ = |a|/|b| = sinφ = cos ξ, [tanh(γ, υ) = ±sech (υ, γ)];

(sinh γ = sinh υ = 1 ⇔ coshω = cothω =
√
2 ⇔ γ = υ = ω !)

 (360− I)

cosh2(γ, υ)− sinh2(γ, υ) = +1 = coth2(υ, γ)− csch2(υ, γ)− two invariants !

tanh2(γ, υ) + sech2(γ, υ) = 1 = sech2(υ, γ) + tanh2(υ, γ)− two one-step quasi-invariants !

−1 < tanh(γ + υ) ≡ sinσ < +1 ⇔ {−∞ = −δ < γ + υ < +δ = +∞}− the Theorem!

For γ, υ, with (357), var. (1) and ±dξ = ∓dφ, we obtain useful functional and speci�c bonds:

dυ, γ = −dγ, υ/ sinh γ, υ ≡ −dφ, ξ/ sinφ, ξ = +dξ, φ/ cos ξ, φ↔
↔ +γ,+υ = ln coth(υ/2, γ/2) ≡ ln cot(ξ/2, φ/2) ↔ (331)
↔ −γ,−υ = ln tanh(υ/2, γ/2) ≡ ln tan(ξ/2, φ/2) ↔ (331)

↔ exp(−γ,−υ) = tanh(υ/2, γ/2) ≡ tan(ξ/2, φ/2); (φ, ξ) ∈ [0÷ π/2].

 (360− II)

One of applications of all analogies (360) is a natural introduction of the various
parallel angles in non-Euclidean geometries � see above and in the end of Ch. 1A. The
as if visual parallel angle of Lobachevsky Π(a) [40, 49] is not an angle acting in hyperbolic
geometry, because it has a principal spherical nature and correct only in the universal bases
Ẽ1u, so, in Ẽ1. It is equal to complementary spherical angle ξ = Π(a) in (331-II). In
Lobachevsky form it is gotten by a brief way, with countervariant analogy (360-II) and only
in the universal base Ẽ1 (in fact, in the enveloping binary space ⟨Pn+1⟩) as follows

tan ξ/2 ≡ exp(−γ)⇒ ξ ≡ 2 arctan[exp(−γ)] ≡ π/2− φ ≡ arccos(tanh γ) (360− III).

(See it in well-known monograph by H. S. M. Coxeter [49, p. 208] with more complex infer.)
From (360-II) we get the parallel and complementary angle υ = P (a) correct in any bases Ẽk,
with their exact connection:

tanh υ/2 = exp(−γ)⇒ υ = 2 artanh[exp(−γ)] ⇔ γ = 2 artanh[exp(−υ)] (360− IY ).

sinh γ · sinh υ = 1 ⇔ cosh2 γ · cosh2 υ = cosh2 γ + cosh2 υ (360− Y ).
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Rule 4 (sect. 5.8) stays valid also for hyperbolic principal rotations, re�ections and one-step
deformations. For instance, after an change in (324) of angle Γ by complementary angle Υ
with the use of formulae in (360), the new rotational function of Γ gives the rotation at Υ:

Roth Υ =


. . .

cosh υi sinh υi

sinh υi cosh υi

. . .

 = Roth Γ =


. . .

coth γi csch γi
csch γi coth γi

. . .

 . (361)

And two invariant relations above correspond to these two types of rotations!

6.5 Hyperbolic tensors of rotation and deformation with frame axis

Consider matrices of quart circle (341). If a certain matrix structure in this quart circle is
known, then other ones (spherical and hyperbolic) may be quickly evaluated with the use
of abstract or speci�c spherical�hyperbolic analogies (for the latter, initially in the common
universal base Ẽ1). So, with the same natural re�ector tensor as (17A-I), from spherical
rotations (313), (314) or deformations (319), (320) obtained in Ch. 5 in canonical E-forms,
the analogous structures for such hyperbolic matrices in canonical E-forms follow (with their
useful Invariants and quasi-Invariants as above in (360)):

{roth (±Γ)}4×4 (362)

1 + (cosh γ − 1) cos2 α1 (cosh γ − 1) cosα1 cosα2 (cosh γ − 1) cosα1 cosα3 ± sinh γ cosα1

(cosh γ − 1) cosα1 cosα2 1 + (cosh γ − 1) cos2 α2 (cosh γ − 1) cosα2 cosα3 ± sinh γ cosα2

(cosh γ − 1) cosα1 cosα3 (cosh γ − 1) cosα2 cosα3 1 + (cosh γ − 1) cos2 α3 ± sinh γ cosα3

± sinh γ cosα1 ± sinh γ cosα2 ± sinh γ cosα3 cosh γ

{roth (±Γ)}(n+1)×(n+1) (363)

In×n + (cosh γ − 1) · eαe′α ± sinh γ · eα
± sinh γ · e′α cosh γ

(eαe
′
α =
←−−−
eαe

′
α).

Such tensor function realizes the hyperbolic rotations at ±Γ also similar to acting S-arm!

{defh (±Γ)}4×4 (364)

1 + (sech γ − 1) cos2 α1 (sech γ − 1) cosα1 cosα2 (sech γ − 1) cosα1 cosα3 ∓ tanh γ cosα1

(sech γ − 1) cosα1 cosα2 1 + (sech γ − 1) cos2 α2 (sech γ − 1) cosα2 cosα3 ∓ tanh γ cosα2

(sech γ − 1) cosα1 cosα3 (sech γ − 1) cosα2 cosα3 1 + (sech γ − 1) cos2 α3 ∓ tanh γ cosα3

± tanh γ cosα1 ± tanh γ cosα2 ± tanh γ cosα3 sech γ

{defh (±Γ)}(n+1)×(n+1) (365)

In×n + (sech γ − 1) · eαe′α ∓ tanh γ · eα
± tanh γ · e′α sech γ

(eαe
′
α =
←−−−
eαe

′
α).

Indicated 4 × 4 E-forms (362), (364) with frame axes as hyperbolic analogs of (313),
(319) may be also inferred directly from their original 2 × 2-cells (324), (326) as the same
analogs of (259), (292) with the scheme similar to (315), (316).

An inversion of E-forms (363), (365) of elementary rotational and deformational matrices
consists in application of the simplest re�ective operations: eα → (−eα) equivalent here to
rotation rot Π · eα = −eα and analogical Γ → (−Γ). Generally, orthospherical rotational
change of an universal base rot Θ · Ẽ1 = Ẽ1u leads only to change of the directional cosines
unity vector: rot′ Θn×n · eα = rot (−Θn×n) · eα = eα′ within the same Euclidean subspace.



Chapter 7

Tensor trigonometric interpretation of prime matrices
commutativity and anticommutativity

7.1 Commutativity of prime matrices

Two biorthogonal prime matrices P1P2 = P2P1 = Z are commutative and anticommutative
simultaneously: P1P2 = +P2P1 = −P2P1 = Z. By the reason, they always are singular:
r1 + r2 ≤ n. Due to commutativity, the biorthogonal matrices P1, P2 as prime ones may
be converted also into their D-forms D1, D2 in a certain common base, where D1D2 = Z.
Consequently, such multiplications P1P2 may be analyzed from the trigonometric point of
view enough only for nonsingular prime matrices (they have not such biorthogonal blocks!).

Commutative prime matrices P1 and P2 are diagonalized always in some common base:

D(P1) D(P2)
. . .

aj
ak

. . .

 ,


. . .

bj
bk

. . .

 , D(P ) = V −1
col PVcol.

Indeed, if u is any eigenvector of the matrix P1 with the eigenvalue µ, i. e., P1 · u = µ · u,
then the commutativity of the matrices P1 and P2 implies the equalities:

P1P2 · u = P2P1 · u = P2 · (µ · u) = µ · (P2 · u)→ P2 · u = ν · u.

From where the same eigenvector u of P1 relates to P2 too. Further, we must continue this
process onto the rest invariant subspaces as the direct complements to u1,u2, ...,u(n−1).
This property determines a set of common k transections of invariant subspaces of P1, P2

(see them in sect. 2.2) with the eigenvalues of the prime matrix P = P1P2 as µk · νk, which
uniquely determines the set of common bases of diagonal forms for commutative P1 and P2.
Contrary, if prime matrices of the same size P1 and P2 in some common basis have their
diagonal forms, then they are commutative in it and, therefore, in the original basis too.

This diagonal structures in the common base with commutativity of prime matrices are
invariant under the following modal transformations of the pair binary (j, k)-th cells, that
are compatible, in their a�ne three W-forms:

W1 W2 W3
. . .

±c 0
0 ∓c

. . .

 ,


. . .

0 ∓d
±d−1 0

. . .

 ,


. . .

0 ±id
±id−1 0

. . .

 .
The �rst matrix is similar to a�ne re�ection, it merely changes pairly directions of the
coordinate axes, in general with their deformation. The second and third matrices are
similar to rotations, they permute pairly the diagonal elements as well as coordinate axes
(with their compression-stretching).
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All compositions of such transformations of these three types form the complete set of
modal matrices with respect to the invariant D-forms given above. Eigenvalues of P1 and P2

are supposed to be distinct, otherwise the set should be widen, it should contain base changes
in the intersection of P1 and P2 invariant eigen subspaces with multiple eigenvalues.

The three a�ne types of modal matrices indicated above give rise to their admissible
trigonometric W -forms in ⟨En⟩ (i. e., at d = 1):

Ref{I±} Rot (±Π/2) Roth (± iΠ/2)
. . .

±1 0
0 ∓1

. . .

 ,


. . .

0 ∓1
±1 0

. . .

 ,


. . .

0 ±i
±i 0

. . .

 . (366)

Main corollaries

1. According to (366), the following trigonometric Rule is valid: for commutative prime
matrices P1, P2, . . . their common bases of D(P1), D(P2), . . . may di�er in ⟨En⟩ namely by
admissible and compatible modal re�ections or rotations at spherical angle-arguments k ·Π/2
or at pseudohyperbolic angle-arguments k · iΠ/2, (k = 0,±1,±2, . . .) under their modal
transformation as bivalent tensors.

2. According to Corollary 3 in sect. 5.7, such modal transformations are identical for the
coordinates axes (similar to re�ectors) to their real rotations or re�ections at double spherical
angle-arguments k ·Π or pseudohyperbolic angle-arguments k · iΠ, (k = 0,±1,±2, . . .) under
their modal transformation as monovalent tensors (either from the left or from the right).

7.2 Anticommutativity of prime matrices pairs

If a pair of prime matrices P1 and P2 are anticommutative, i. e., P1P2 = −P2P1, then

P 2
1P2 = P2P

2
1 , P1P

2
2 = P 2

2P1, P 2
1P

2
2 = P 2

2P
2
1 .

Suppose that the pair of anticommutative prime matrices P1, P2 have no biorthogonal blocks
(see sect. 7.1). Thus, in �rst, sizes of these nonsingular matrices are even and, in second, the
matrices and their multiplications are nonsingular. According to the principle of binarity
(sect. 5.7), they may be converted into the compatible W -forms in a certain common base
Ẽ = VW {Ẽ1} with the result:

W (P1) W (P2) W (Pi) = V −1
W PiVW , i = 1, 2.

. . .

· ·
· ·

· ·
· ·

. . .

 ,


. . .

· ·
· ·

· ·
· ·

. . .

.

Execute such modal transformation VW of W (P1) and W (P2) together, in order to
convert P1 into its diagonal form. In the new common base, P1 and P2 as before are
anticommutative.
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Now the property is valid i� their compatible j-th 2×2-cells have diagonal and contradiagonal
forms (it is proved by the action D(P1)P2 = −P2D(P1):

. . .

+a 0
0 −a

. . .

 ,


. . .

0 b12
b21 0

. . .

 . (367)

If the matrix P2 rather than P1 is diagonalized, then 2× 2-cells in the new base are
. . .

0 a12
a21 0

. . .

 ,


. . .

+b 0
0 −b

. . .

 . (368)

In addition in the both cases there holds: a =
√
a12a21, b =

√
b12b21 at all indices j.

(The special case when both the matrices may be in contradiagonal forms � see later.)

Indeed, for the variant Π1 = P1 · P2, in general case, we have:

Π1 =


. . .

a1 0
0 a2

. . .

 ·


. . .

p11 p12
p21 p22

. . .

 =


. . .

a1p11 a1p12
a2p21 a2p22

. . .

 .

And, for the variant Π2 = P2 · P1 = −Π1, in general case, we have:

Π2 =


. . .

p11 p12
p21 p22

. . .

 ·


. . .

a1 0
0 a2

. . .

 =


. . .

a1p11 a2p12
a1p21 a2p22

. . .

 .

We give P1 in its diagonal form, and then it is necessary to �nd the form of P2.
Obviously, we have the initial conditions: a1 ̸= 0, a2 ̸= 0 (as well as b1 ̸= 0, b2 ̸= 0).

Further, there hold:

a1p11 = −a1p11, a2p22 = −a2p22 → p11 = p22 = 0,

a1p12 = −a2p12, a2p21 = −a1p21 → a1 = −a2 = +a; p12 ̸= 0, p21 ̸= 0.

Analogously, for diagonal elements of P2 there hold: b1 = −b2 = +b.

After permutation of aj in (367), for its two contradiagonal elements there holds:
det P1 = −a2 = −a12 · a21. Analogously, there holds: det P2 = −b2 = −b12 · b21 !
The covariant column matrix converting the contradiagonal form in (367) or (368) into

D-form may be evaluated, for example, with the use of results in sect. 2.2.
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This modal matrix may be represented in the following general a�ne trigonometric form,
for example, for contradiagonal form of P2 in (367) as its j-th 2× 2-cell:

W−1
col ·W (P ) ·Wcol =

=


√
2
2 +

√
2
2

√
b12
b21

−
√
2
2

√
b21
b12

√
2
2


 0 b12

b21 0




√
2
2 −

√
2
2

√
b12
b21

+
√
2
2

√
b21
b12

√
2
2

 =

=

 +
√
b1b2 0
0 −

√
b1b2

 =

 +b 0
0 −b

 = D(P ), (369)

Wcol = {Rot π/4}af =W−1 · {Rot π/4} ·W, (370)

D(P ) =W−1
col ·W (P ) ·Wcol =W−1

col · V
−1
W · P · VW ·Wcol = V −1

col · P · Vcol. (371)

Here det{Rot π/4}af = 1, µ1,2 = cosπ/4± i sinπ/4. Formula (370) determines a spherical
rotational matrix in a certain a�ne base. In the real Cartesian base, this matrix is Rot π/4;
in complex binary Cartesian base (271), it is Roth (−iπ/4). Besides, due to (366)�(368),
the diagonal and contradiagonal W -structures are preserved under the base rotations and
re�ections of their W-forms as in (366), i. e., at compatible right tensor angles.

Consider most important special cases of normal matrices anticommutativity what are
related to the tensor trigonometry in ⟨En⟩. In general, a12 = ±a21, b12 = ±b21, and then
VW = RW . Suppose P1 = M1, P2 = M2 are anticommutative real-valued normal matrices
(or complex-valued adequately normal ones � sect. 4.2). They may be either symmetric (S),
or skew-symmetric (K). Three trigonometric variants (S1 and S2, S and K, K1 and K2)
are exposed with the use of (367) and (368). One else variant corresponds to the case when
the matrices S and K may be together in contradiagonal forms. (But it is combination of
two simple variants.) All these variants are:

A) a12 = a21 = +a, b12 = b21 = +b; P1 = S1, P2 = S2, S1 · S2 = −S2 · S1. This
corresponds in (183) to S1 = cos Φ̃, S2 = sin Φ̃ (a2 + b2 = 1, S2

1 + S2
2 = I). Then

Vcol = RW ·


. . . √

2/2 −
√
2/2

+
√
2/2

√
2/2

. . .

 = Rot π/4 ·RW .

B) a12 = a21 = +a, −b12 = +b21 = +b/i; P1 = S, P2 = K, S ·K = −K · S. This
corresponds in (209) to S = sec Φ̃, K = i tan Φ̃ (a2 − b2 = 1, S2 −K2 = I). Then

Vcol = RW ·


. . . √

2/2 −i
√
2/2

−i
√
2/2

√
2/2

. . .

 = Roth iπ/4 ·RW , (see in scheme (322)).

We have in (204) S = cos Φ̃, K = i tan Φ̃; and the unusual pair S = cos Φ̃, K = i sinΦ (in
the last case: cos Φ̃ sinΦ = (cos Φ̃ sinΦ)′ = sin′ Φcos Φ̃ = − sinΦ cos Φ̃).
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C) a12 = a21 = +a = ic, −b12 = +b21 = +b/i; K1 · K2 = −K2 · K1; −c2 − b2 = 1,
−K2

1 −K2
2 = I. This variant is given for completeness.

D) Begin with conditions from (B), then transform the base Ẽ for both the matrices
by Rot π/4. Now the matrix P1 and the matrix P2 (invariant to this rotation) have two
di�erent contradiagonal forms with the j-entries a12 = a21 = +a, , −b12 = +b21 = +b/i.
This corresponds in (204) to S = sin Φ̃, K = i tan Φ̃ (or S = sin Φ̃, K = i sinΦ). The
bases of such anticommutative trigonometric matrices in their diagonal forms are di�ered
by amalgamated rotation Roth iπ/4 ·Rot π/4 or Rot π/4 ·Roth iπ/4 (or by the tensor angles
algebraic sum). For the matrices there hold a12b21 = −a21b12.

The main result in the trigonometric forms is the following.

1. Nonsingular prime matrices P1, P2 are anticommutative i� bases of their D-forms are
connected by compatible rotations or re�ections at tensor angles ±π/4 or / and ±iπ/4.

2. Sizes of nonsingular anticommutative prime matrices P1, P2 are even.

3. Anticommutative singular prime matrices P1, P2 have compatible biorthogonal blocks,
what may be converted into biorthogonal D-forms in their common sub-base.

Note, as in the end of sect. 7.1, that the rotation angles ±π/4 and ±iπ/4 correspond to the
deformational angle ±ω or ±iω (nonperiodic) in universal bases � see in Ch. 6.

* * *

Further consider some trigonometric examples of the complex-valued Hermitean normal
matrices N1, N2 corresponding to examples A, B, C, exposed above. We have

b1 = ρ1(cosβ1 + i sinβ1), b2 = ρ2(cosβ2 + i sinβ2), ρ1 > 0, ρ2 > 0, β1, β2 ∈ [0; 2π],

b =
√
b1b2 =

√
ρ1ρ2 exp[i(β1 + β2)/2],√

b2/b1 =
√
ρ2/ρ1 exp(iβ12),

√
b1/b2 =

√
ρ1/ρ2 exp(−iβ12), β12 = β2 − β1.

As above, variants b1j = ±b2j , a1j = ±a2j , VW = RW are possible. And more complicated
cases |b1j | = |b2j | = ρb, |a1j | = |a2j | = ρa; VW = UW are possible too.

Let P1 = N1, P2 = N2 be anticommutative Hermitean normal matrices. Here they may
be Hermitean or skew-Hermitean, this corresponds to three anticommutative pairs: H1 and
H2, H and Q, Q1 and Q2. The a�ne spherical unitary modal matrix Vcol is

.
.
. √

2
2

−
√

2
2

· exp(−iβ12)

+

√
2

2
· exp(+iβ12)

√
2

2

.
.
.

 =

{
Exp
−iβ12

2
·Rot π/4 · Exp+iβ12

2

}
, (372)

(it is more general rotational complex modal matrix, then ones used above), where

Exp(+iβ12/2) = {Rot (+β12/2)}c = UW ·


. . .

exp(+iβ12/2) 0
0 exp(−iβ12/2)

. . .

 · U∗
W .

And if β12 = β2 − β1 = π/2, then the modal matrix is Roth iπ/4 in variant (B) above.
It corresponds to the complex-valued binary Cartesian base � see (287) in sect. 5.9.
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More generally, formula (372) expresses Rot π/4 in a Hermitean orthogonal base with
imaginary shift at the angle iβ12 in formulae (367) and (368):

N1 N2
. . .

+ρa exp[i(α1 + α2)/2] 0
0 −ρa exp[i(α1 + α2)/2]

. . .

 ,


. . .

0 ρb exp(iβ1)
ρb exp(iβ2) 0

. . .

 ;

N1 N2
. . .

0 ρa exp(iα1)
ρa exp(iα2) 0

. . .

 ,


. . .

+ρa exp[i(β1 + β2)/2] 0
0 −ρa exp[i(β1 + β2)/2]

. . .

 .

For the pair N1 ·N2 = −N2 ·N1 three important special cases as above are possible.
A) β1j + β2j = α1j + α2j = 0. Then N1 and N2 are the anticommutative Hermitean

matrices P1 = H1, P2 = H2. In the special case a2j + b2j = 1, then these matrices are the

projective Hermiteized cosine and sine, and H2
1 +H2

2 = I, H1 ·H2 = −H2 ·H1.
B) β1j + β2j = π, α1j + α2j = 0. Then N1 and N2 are the anticommutative Hermitean

and skew-Hermitean matrices P1 = H, P2 = Q. In the special case a2j − b2j = 1, then
these matrices are the projective Hermiteized secant and skew-Hermiteized tangent, and
H2 +Q2 = I, H ·Q = −Q ·H.

C) β1j+β2j = α1j+α2j = π. Then N1 and N2 are the anticommutative skew-Hermitean
matrices P1 = Q1, P2 = Q2., and −Q2

1 −Q2
2 = I.

Thus, all most important types of anticommutative prime matrices types are described!

Of course, according to Corollary 3 in sect. 5.7, such modal transformations are identical
for the coordinates axes (similar to re�ectors) also to their real rotations or re�ections at the
double spherical angle-arguments k · Π/2 or the pseudohyperbolic angle-arguments k · iΠ/2,
(k = 0,±1,±2, . . .) under their modal transformation as monovalent tensors (either from
the left or from the right).

Therefore, in any case, anticommutativity of prime matrices P1 and P2 is �xed at the
trigonometric divergence of their diagonal forms with the principal angle exactly half that
for the case of their commutativity!



Chapter 8

Tensor trigonometric spectra with general inequalities

8.1 Trigonometric spectrum of a null-prime matrix

Matrix characteristic coe�cients of higher orders, as well as eigenprojectors, are prime sin-
gular matrices with a unique eigenvalue (see Ch. 1 and 2). Consider a null prime matrix B
with its coe�cient K2(B, r) of the highest order r and angle Φ̃B . Represent K2(B, r) as an
algebraic orthogonal sum over eigen trigonometric subspaces of Φ̃B :

K2(B, r) =

r−ν′∑
i=1

−→
Si ·K2(B, r) ·

−→
Si +

−→
Sm ·K2(B, r) ·

−→
Sm, (373)

where
−→
Si =

−−−−−−−−−−−−−−→
cos2 Φ̃B − cos2 φi · I is the orthogonal projector into the i-th trigonometric

eigen plane ⟨Pi⟩ � see (240),
−→
Sm =

−−−−−−−→
cos Φ̃B − I is the orthogonal projector into the subspace

⟨Pm⟩ ≡ ⟨im B⟩ ∩ ⟨im B′⟩ of dimension ν′ (see Figure 2). Here ν′′ = 0 as the matrix B is
null-prime! The orthoprojectors form too the complete algebraic sum;

r−ν′∑
i=1

−→
Si +

−→
Sm +

−→
Sq = I,

where
−→
Sq =

−−−−−−−→
cos Φ̃B + I is the orthogonal projector into the subspace ⟨Pq⟩ ≡ ⟨ker B⟩ ∩

⟨ker B′⟩ of dimension n−2r+ν′ (Figure 2). The entire sum of these dimensions 2(r−ν′)+
ν′+(n−2r+ν′) = n is equal to dimension of the whole Euclidean space. In the direct sum,
according to the principle of binarity (see sect. 5.7), we have the following. The coe�cient
K2(B, r) in the subspace ⟨Pi⟩ is a singular matrix of rank 1 and of size 2× 2, the coe�cient
K2(B, r) in the subspace ⟨Pm⟩ is a nonsingular matrix of size ν′ × ν′, and the coe�cient
K2(B, r) in the space ⟨Pq⟩ is the zero (n− 2r + ν′)× (n− 2r + ν′)-matrix. Thus,

K2(B, r) =

r−ν′∑
i=1

⊞ B2×2
i ⊞ det Bν′×ν′

m · Iν
′×ν′

⊞ Z(n−2r+ν′)×(n−2r+ν′), (374)

where mark ⊞ stands for direct orthogonal summation; r − ν′ ≥ 0, n − 2r + ν′ ≥ 0 and,
consequently, there hold:

2r − n ≤ ν′ ≤ r. (375)

If B is a null-normal matrix (see sect. 2.4), then formula (374) is the simplest:

K2(B, r) = det Br×r
m · Ir×r ⊞ Z(n−r)×(n−r).

We used especial notation beginning with formula (374):

B2×2
i for a 2× 2-matrix of rank 1, its highest matrix coe�cient is, according to (29), the

matrix itself, its highest scalar coe�cient is the trace of the matrix;

Bν′×ν′

m stands for a ν′ × ν′-matrix of rank ν′, its highest matrix and scalar coe�cients
are det Bν′×ν′

m · Iν′×ν′
and det Bν′×ν′

m respectively

Z(n−2r+ν′)×(n−2r+ν′) is the zero matrix of indicated size not intersecting with B2×2
i .

The total singularity of B and of K2(B, r) is (r − ν′) + (n− 2r + ν′) = n− r.
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Formula (374) may be transformed, with the use of (62) for r = 2 and r = n, into the

direct trigonometric spectrum of the eigen oblique projector
←−
B , it is called the trigonometric

spectrum of a null-prime matrix B:

←−
B =

K2(B, r)

k(B, r)
=

r−ν′∑
i=1

⊞
B2×2

i

tr B2×2
i

⊞ Iν
′×ν′

⊞ Z(n−2r+ν′)×(n−2r+ν′). (376)

Similar algebraic representation of the coe�cient K2(BB
′, r) of the highest order and

the eigen orthoprojector
←−−
BB′, as the trigonometric spectrum of a multiplicative matrix BB′,

are derived, according to the principle of binarity (see sect. 5.7):

K2(BB
′, r) =

r−ν′∑
i=1

−→
Si ·K2(BB

′, r) ·
−→
Si +

−→
Sm ·K2(BB

′, r) ·
−→
Sm, (377)

K2(BB
′, r) =

r−ν′∑
i=1

⊞ B2×2
i (B′)2×2

i ⊞ det2 Bν′×ν′

m · Iν
′×ν′

⊞ Z(n−2r+ν′)×(n−2r+ν′), (378)

←−−
BB′ =

K2(BB
′, r)

k(BB′, r)
=

r−ν′∑
i=1

⊞
B2×2

i (B′)2×2
i

tr [B2×2
i (B′)2×2

i ]
⊞ Iν

′×ν′
⊞ Z(n−2r+ν′)×(n−2r+ν′). (379)

Note, that for a null-prime matrix B′. we use similar algebraic representations of the

coe�cient K2(B
′B, r) and the eigen orthoprojector

←−−
B′B.

From direct spectra (374), (376) and (378), (379) we infer multiplicative formulae for the
highest scalar coe�cients for matrices B (or B′) and BB′ (or B′B):

k(B, r) =

r−ν′∏
i=1

tr B2×2
i det Bν′×ν′

m =

r−ν′∏
i=1

tr (B′)2×2
i det (B′)ν

′×ν′

m = k(B′, r), (380)

k(BB′, r) =

r−ν′∏
i=1

tr [B2×2
i · (B′)2×2

i ]det2 Bν′×ν′

m = k(B′B, r). (381)

8.2 The general Cosine inequality

For null-prime matrices rank{cos Φ̃B} = n (ν′′ = 0), and due to (186), (194) we have

←−−
BB′ =

←−
B ·
←−
B′ · cos2 Φ̃B = (

←−
B · cos Φ̃B) · (

←−
B · cos Φ̃B)

′. (382)

In
←−
B ·
←−
B′ ·cos2 Φ̃B , represent all the matrices as direct spectra, obtain the following inequal-

ities for each trigonometric cell with the use of the principle of binarity:

0 ≤ cos2 φi =
tr2 B2×2

i

tr [B2×2
i · (B′)2×2

i ]
≤ 1. (383)

From (380), (381), and (383) the general cosine inequality in the normalized form for a
square matrix (where φi ∈ (0;π/2]), i. e., in variant (138), follows:

0 ≤
r−ν′∏
i=1

cos2 φi = |{B}|2cos = |det cos Φ̃B | =
k2(B, r)

k(BB′, r)
≤ 1. (384)
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Here |{B}|cos de�nes the cosine norm of Φ̃B and ΦB . Its extremal special cases are:
|{B}|cos = 0 if B is a null-defected matrix, |{B}|cos = 1 if B is a null-normal matrix. In
terms of the dianal and the minorant of B (see Ch. 3) the general cosine inequality and the
cosine norm of Φ̃B and ΦB (or the cosine ratio for B) are expressed as

0 ≤ |Dl(r)B|
Mt(r)B

= |{B}|cos =
|Dl(r)B|√
Dl(r)BB′

≤ 1.

Consider (
←−
B · cos Φ̃B) · (

←−
B · cos Φ̃B)

′ in (382) and obtain similar cosine inequalities in the
sign form (where φi ∈ (0;π]):

−1 ≤ cosφi =
tr B2×2

i√
tr {B2×2

i · (B′)2×2
i }

≤ +1. (385)

The cosine ratio |{B}|cos is supplemented by the signed cosine ratio as in variant (137):

−1 ≤
r−ν′∏
i=1

cosφi = {B}cos =
k(B, r)√
k(BB′, r)

=
Dl(r)B
Mt(r)B

=
Dl(r)B√
Dl(r)BB′

≤ +1. (386)

The extreme cases (at values ±1) correspond to the null-normal matrices B with the
positive or negative dianals � see in (138), Ch. 3. Note (!), that Inequality (386), as new
one, is independent on the Inequality of Hermann Weyl for the eigen and singular numbers
of n×n-matrix B [7]. Both Inequalities intersect in the trivial case of non-singular matrix B.

The cosine distinct ranges of the angles is similar to that for the angle between two
undirected vectors and the angle between two directed vectors (or straight lines). (But the
sine distinct ranges of the angles give algebraically φi ∈ [−π/2;+π/2] � Ch. 3.)

Corollary. For spherical functions of tensor angles Φ̃B and ΦB, their eigen angles φi

have the following trigonometric sense: they are the scalar angles between planars or
lineors, given by matrices B2×2

i and B′2×2
i of rank 1 in the trigonometric spectra of the eigen

projectors
←−
B and

←−
B′ (see (186)�(189), (190)-(193) and Figure 1).

|{B}|cos is the cosine ratio for the planars ⟨im B⟩, ⟨im B′⟩ as well as the planars ⟨ker B⟩,
⟨ker B′⟩; but {B}cos is the cosine ratio for lineors determined by B and B′.

If a binary tensor angle Φ̃12 is determined by equirank lineors A1, A2 or planars ⟨im A1⟩,
⟨im A2⟩, then scalar angles φi in cells have the similar sense. Suppose, for B = A1A

′
2

condition (224) holds, and consequently bijection (226) between eigen orthoprojectors takes
place. The trigonometric spectra for external multiplications are

K2(AA
′, r) =

r−ν′∑
i=1

−→
Si ·K2(AA

′, r) ·
−→
Si +

−→
Sm ·K2(AA

′, r) ·
−→
Sm ≡

≡
r−ν′∑
i=1

⊞ (AA′)2×2
i ⊞ det (AA′)ν

′×ν′
· Iν

′×ν′
⊞ Z(n−2r+ν′)×(n−2r+ν′), (387)

K2(A1A
′
2, r) =

r−ν′∑
i=1

−→
Si ·K2(A1A

′
2, r) ·

−→
Si +

−→
Sm ·K2(A1A

′
2, r) ·

−→
Sm ≡

≡
r−ν′∑
i=1

⊞ (A1A
′
2)

2×2
i ⊞ det (A1A

′
2)

ν′×ν′
· Iν

′×ν′
⊞ Z(n−2r+ν′)×(n−2r+ν′), (388)

←−−
AA′ =

K2(AA
′, r)

k(AA′, r)
=

r−ν′∑
i=1

⊞
(AA′)2×2

i

tr ((AA′)2×2
i

⊞ Iν
′×ν′

⊞ Z(n−2r+ν′)×(n−2r+ν′), (389)
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←−−−
A1A

′
2 =

K2(A1A
′
2, r)

k(A1A′
2, r)

=

r−ν′∑
i=1

⊞
(A1A

′
2)

2×2
i

tr ((A1A′
2)

2×2
i

⊞ Iν
′×ν′

⊞ Z(n−2r+ν′)×(n−2r+ν′), (390)

k(AA′, r) =

r−ν′∏
i=1

tr (AA′)2×2
i det (AA′)ν

′×ν′
= det (A′A), (391)

k(A1A
′
2, r) =

r−ν′∏
i=1

tr (A1A
′
2)

2×2
i det (A1A

′
2)

ν′×ν′
= det (A′

1A2). (392)

According to (132) there holds det2 (A1A
′
2)

ν′×ν′

i = det (A1A
′
1)

ν′×ν′

i ·det (A2A
′
2)

ν′×ν′

i . Then
further, from (186), (187), (196), and (226) we obtain

←−−−
A1A

′
1 ·
←−−−
A2A

′
2 =
←−−−
A1A

′
2 · cos2 Φ̃12 = (

←−−−
A1A

′
2 cos Φ̃12) · (

←−−−
A2A

′
1 · cos Φ̃12). (393)

In addition, intermediately, by (68) in its special case for n = 2, and the obvious relation
[A′

2A1]i = [A′
1A2]i, for the i-th 2× 2-cells of rank 1 there holds

(A1A
′
2)

2×2
i · (A1A

′
2)

2×2
i = tr (A1A

′
2)

2×2
i · (A1A

′
2)

2×2
i = (A1A

′
1)

2×2
i · (A2A

′
2)

2×2
i . (394)

Represent the matrices in (393) as direct spectra and apply (394) in all the i-th cells,
obtain the i-th elementary cosine inequalities

0 ≤ cos2 φi =
tr2 (A1A

′
2)

2×2
i

tr (A1A′
1)

2×2
i tr (A2A′

2)
2×2
i

≤ 1, (395)

and the general cosine inequality for equirank lineors A1, A2 in the normalized form:

0 ≤
r−ν′∏
i=1

cos2 φi = |{A1A
′
2}|2cos = |det cos Φ̃12| =

Dl2(r)(A1A
′
2)

Mt2(r)A1 · Mt2(r)A2
≤ 1, (396)

where φi are the scalar angles between the planars ⟨im (A1A
′
1)

2×2
i ⟩ ≡ ⟨im (A1A

′
2)

2×2
i ⟩ and

⟨im (A2A
′
2)

2×2
i ⟩ ≡ ⟨im (A2A

′
1)

2×2
i ⟩. Under condition (224) there holds (sect. 3.3):

0 ≤
r−ν′∏
i=1

cos2 φi = |{A1A
′
2}|2cos = |det cos Φ̃12| =

det2 (A′
1A2)

det (A′
1A1) · det (A′

2A2)
≤ 1,

(for non-orthogonal lineors: rank{cos Φ̃12} = n (ν′′ = 0)). The extremal cases are
|{A1A

′
2}|cos = 1 if the lineors are entirely parallel, {A1A

′
2} is null-normal;

|{A1A
′
2}|cos = 0 if the lineors are orthogonal, may be partially, {A1A

′
2} is null-defected.

This general cosine inequality is a direct product of the particular Cauchy Inequalities [24].
It is inferred through the external or internal multiplications of cosine type of two lineors.

The signed forms of these inequalities and the cosine ratio are

−1 ≤ cosφi =
tr (A1A

′
2)

2×2
i√

tr (A1A′
1)

2×2
i · tr (A2A′

2)
2×2
i

≤ +1, (397)

−1 ≤
r−ν′∏
i=1

cosφi = {A1A
′
2}cos =

Dl(r)(A1A
′
2)

Mt(r)A1 · Mt(r)A2
≤ +1. (398)

The numerators and denominators in (384) and (396) under condition (224) are the same
in accordance with (132). (If r1 ̸= r2, then the cosine ratio formally is 0.)
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In general cosine inequality (396), the value |{A1A
′
2}|cos determines the cosine norm of

Φ̃12 and Φ12. In the special case r = 1, formula (396) is the module form of the geometric
Cauchy Inequality for two vectors [24]. The Cauchy Inequality is used in analytical geometry
for normalizing the angle between two vectors in [0;π/2]. The sign form of the inequality
similar to (141) determines the signed cosine of the angle between two directed vectors in
[0;π]. It is the same special case of (398). Initially, the Cauchy Inequality had the pure
algebraic character. General inequalities (384), (386), and (396), (398) may be considered
from the algebraic point of view too if they are applied to scalar elements of matrices.

From (229), (230) the following internal multiplication criterion for at least the partial
orthogonality of two equirank n× r-lineors is inferred:

det C12 = det (A′
1A2) = 0 ⇔ {A1A

′
2}cos = 0. (399)

So, we see (or those who wish to see it) that the generalization of the classic algebraic
and trigonometric Inequality of Cauchy for a pair of vectors onto the above matrix geometric
objects, and which we previously anticipated in Chapter 3, is now strictly justi�ed for such
general objects in fundamental (386) and (398), thanks to our discovery and application of
the tensor trigonometric spectrum of matrices.

We also revealed that the cosine inequality (386) in its form using eigenvalues for a zero-
normal matrix, in fact, only very successfully complements the well-known Inequality of
Hermann Weyl [7] for the eigen and singular numbers of n×n-matrix B [7], but at the same
time, it is completely independent on it and has the relation not only to matrix algebra,
but also to the geometry of lineors, as a generalization of vectors or vector-columns. of a
matrix in our Tensor Trigonometry. However, both Inequalities intersect in the trivial case
of non-singular matrix B.

8.3 Spectral-cell presentations of tensor trigonometric functions

Now it is possible to consider in details the structures of tensor trigonometric functions at
the level of elementary 2×2-cells. It was shown in Ch. 5 that the eigen trigonometric planes
corresponding to 2 × 2-cells are the same for projective and motive tensor angles. That is
why from the left side of (301) and spectral formula (389) we obtain the following rotational
connection between two equirank planars[

cosφi − sinφi

+sinφi cosφi

]
· (A1A

′
1)

2×2
i

tr (A1A′
1)

2×2
i

·
[

cosφi +sinφi

− sinφi cosφi

]
=

(A2A
′
2)

2×2
i

tr (A2A′
2)

2×2
i

.

Further, represent the 2 × 2-cell [
←−−
AA′]2×2

i of rank 1 for the eigen projector
←−−
AA′ as the

following exterior multiplication of the unity 2× 1-vector ei:

[
←−−
AA′]2×2

i =
(AA′)2×2

i

tr (AA′)2×2
i

= eie
′
i =
←−−
eie

′
i.

Here the unity 2× 1-vector ei determines the i-th basic line of the planar ⟨im A⟩ in the i-th
eigen plane of the binary tensor angle Φ̃12. Respectively the two sides of this tensor angle
between planars ⟨im A1⟩ and ⟨im A2⟩ of rank r at the level of 2×2-cells may be represented
as two unity eigenvectors (straight lines). They may be transformed into each other with
rotation or re�ection due to (301). Express the Cartesian coordinates of these vectors as

e1 =

[
cosφ1

sinφ1

]
, e2 =

[
cosφ2

sinφ2

]
.

Then their rotational transformation is

e2 =

[
cosφ12 − sinφ12

+sinφ12 cosφ12

]
· e1, φ12 = φ2 − φ1.
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The vector e1 and each of two its orthoprojections are rotated at the same angle. And
according to de�nition (171), the tensor cosine at the level of elementary 2× 2-cells is

[cos Φ̃12]
2×2 =

←−−
e1e

′
1 +
←−−
e2e

′
2 − I2×2 = e1e

′
1 + e2e

′
2 − I2×2.

This initial trigonometric de�nition (171) with (165 - II) and (177) gives correct �nal result:

[cos Φ̃12]
2×2 = cosφ12 ·

[
+cos(φ1 + φ2) sin(φ1 + φ2)
sin(φ1 + φ2) − cos(φ1 + φ2)

]
= cosφ12 · {

√
I2×2}c =

= cosφ12 · [cos (Φ̃1 + Φ̃2) + sin (Φ̃1 + Φ̃2)] = cosφ12 ·Ref⊞{+(Φ̃1 + Φ̃2)}. (400)

Here
cos(φ2 − φ1) · cos(φ2 + φ1) = cos2 φ2 + cos2 φ1 − 1,
cos(φ2 − φ1) · sin(φ2 + φ1) = cosφ2 sinφ2 + cosφ1 sinφ1.

Consider a 2× 2-cell of the tensor sine. And according to de�nition (163) it is

[sin Φ̃12]
2×2 =

←−−
e2e

′
2 −
←−−
e1e

′
1 = e2e

′
2 − e1e

′
1.

This initial trigonometric de�nition (163) with (165 - I) and (176) gives corrrect �nal result:

[sin Φ̃12]
2×2 = sinφ12 ·

[
− sin(φ1 + φ2) cos(φ1 + φ2)
cos(φ1 + φ2) + sin(φ1 + φ2)

]
= sinφ12 · {

√
I2×2}s =

= sinφ12 · [cos (Φ̃1 + Φ̃2)− sin (Φ̃1 + Φ̃2)] = sinφ12 ·Ref⊞{−(Φ̃1 + Φ̃2)}. (401)

Here
sin(φ2 − φ1) · sin(φ2 + φ1) = sin2 φ2 − sin2 φ1,
sin(φ2 − φ1) · cos(φ2 + φ1) = cosφ2 sinφ2 − cosφ1 sinφ1.

Condition φ1 + φ2 = 0 and its tensor form Φ̃1 + Φ̃2 = Z̃ determines the Cartesian base of
the diagonal cosine, i. e., the trigonometric base for angles Φ̃ and Φ. Under this condition
all tensor angles and their trigonometric functions as well as all their eigenre�ectors have
canonical forms determined in Ch. 5. Secants and tangents of tensor angles have similar
representations. The mirror of the mid-re�ector (253) is the mid-subspase of a tensor angle,
it is clearly seen in the 2× 2-cells considered above.

8.4 The general Sine inequality

The sine ratio (135) de�nes the sine trigonometric norm of a tensor angle. It is nonzero if
the two lineors are completely linearly independent. From (227), (228) the following internal
multiplication criterion for at least partial parallelism or linear dependence of two lineors of
sizes n× r1 and n× r2 or planars ⟨im A1⟩ and ⟨im A2⟩ is derived:

det G1,2 = det [(A1|A2)
′(A1|A2)] = 0 ⇔ |{A1A

′
2}|sin = 0. (402)

Similar to the cosine ratio, the sine ratio may be represented as direct product of sine ratio
(124) in each eigen planes according to the lineors sine trigonometric spectrum.

If lineors A1 and A2 are linearly independent, the superposition matrix (A1|A2) has
rank r1 + r2 ≤ n. Its external homomultiplication B1,2 = [(A1|A2)(A1|A2)

′] is a symmetric
positive (semi-)de�nite n× n-matrix. Due to (120) and (402) we have

k(B1,2, r1 + r2) = det G1,2 ≥ 0. (403)
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Then, by the analogy with (135), through the external multiplication {B1,2, r1 + r2} (or
internal multiplication {G1,2}) of these two lineors of sine type, we obtain

|{A1|A2}|2sin =
Mt2(r1 + r2){A1|A2}
Mt2(r1)A1 · Mt2(r2)A2

=
k(B1,2, r1 + r2)

k(A1A′
1, r1)k(A2A′

2, r2)
. (404)

In addition, due to (62), (159), and (163), for two completely linearly independent lineors
A1 and A2 (ν

′ = 0), in the subspace of non-zero values of sin Φ̃12, there holds

←−−−−
sin Φ̃12 =

←−−
B12 =

K2(B1,2, r1 + r2)

k(B1,2, r1 + r2)
, (ν′ = 0→ rank{sin Φ̃12} = r1 + r2 ≤ n). (405)

Consider the trigonometric spectrum of the coe�cient K2(B1,2, r1 + r2) and express it
as the following algebraic sum with the use of the principle of binarity:

K2(B1,2, r1 + r2) =

r1−ν′′∑
i=1

−→
Si ·K2(B1,2, r1 + r2) ·

−→
Si +

−→
Sd ·K2(B1,2, r1 + r2) ·

−→
Sd. (406)

Here
−→
Sd is the orthogonal projector into the defect subspace of intersections

⟨Pd⟩ ≡ ⟨⟨im A2 ∩ ker A′
1⟩ ∪ ⟨im A1 ∩ ker A′

2⟩⟩ of dimension (r2 − r1 + 2ν′′).

This coe�cient may be represented also as the direct orthogonal sum

K2(B1,2, r1 + r2) =

r1−ν′′∑
j=1

⊞ det [(A1|A2)(A1|A2)
′]2×2
j · I2×2

j ⊞ det (A1A
′
1)

ν′′×ν′′
· Iν

′′×ν′′
⊞

⊞ det (A2A
′
2)
(r2 − r1 + ν′′)× (r2 − r1 + ν′′) · I(r2 − r1 + ν′′)× (r2 − r1 + ν′′) ⊞

⊞ Z(n− r1 − r2)× (n− r1 − r2), (407)

where (as the illustration see Figure 2):
[(A1|A2)(A1|A2)

′]2×2
j is the nonsingular 2 × 2-matrix of rank 2, which corresponds to j-th

trigonometric cell, its highest matrix coe�cient is evaluated by (29), and the highest scalar
coe�cient is its determinant (their summary dimension here is 2(r1 − ν′′);
(A1A

′
1)

ν′′×ν′′
and (A2A

′
2)

ν′′×ν′′
are the nonsingular matrices in the spectrum corresponding

to the subspaces ⟨im A1 ∩ ker A′
2⟩ and ⟨im A2 ∩ ker A′

1⟩, their highest coe�cients also are
speci�ed as determinants;

Z(n− r1 − r2)× (n− r1 − r2) is the zero block; if ν′ ̸= 0, the dimension rises by 2ν′.
In the direct sum, the orthoprojector onto the image of homomultiplication B1,2 is

←−−
B1,2 =

r1−ν′′∑
j=1

⊞ I2×2
j ⊞

⊞ I(r2 − r1 + 2ν′′)× (r2 − r1 + 2ν′′) ⊞ Z(n− r1 − r2)× (n− r1 − r2). (408)

With the use of the principle of binarity, from (407), (408) and (378), (379) we may infer
relations between higher scalar coe�cients and direct products over the trigonometric
subspaces as in sect. 8.1. But the two latter for lineors A1 and A2 transform into analogous
formulae (387) and (389). Suppose in the sequel r2 ≥ r1 (see Figure 2). If lineors are
completely linearly independent, then r1 + r2 ≤ n and ν′ = 0.
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For the i-th trigonometric cell, due to (124) there holds

0 ≤ sin2 φi =
det [(A1|A2)(A1|A2)

′]2×2
i

tr (A1A′
1)

2×2
i tr (A2A′

2)
2×2
i

≤ 1, (409)

where φi is the eigen angle between the planars ⟨im (A1A
′
1)

2×2
i ⟩ and ⟨im (A2A

′
2)

2×2
i ⟩ of

rank 1 (similar to one in cosine variant (395)).
Further, evaluate the highest scalar coe�cient of matrix B1,2 with the use of (407)�(409).

k(B1,2, r1 + r2) =

=

r1−ν′′∏
i=1

det [(A1|A2)(A1|A2)
′]2×2
i · det (A1A

′
1)

ν′′×ν′′

i · det (A2A
′
2)

(r2−r1+ν′′)×(r2−r1+ν′′)
i =

=

r1−ν′′∏
i=1

{sin2 φi·tr(A1A
′
1)

2×2
i ·tr(A2A

′
2)

2×2
i }det(A1A

′
1)

ν′′×ν′′
det(A2A

′
2)

(r2−r1+ν′′)×(r2−r1+ν′′) =

=

r1−ν′′∏
i=1

sin2 φi · k(A1A
′
!, r1) · k(A2A

′
2, r2) (410)

(here ν′′ values of sin2 φi = 1, for i > r1 − ν′′, are omitted.
Finally, the general sine inequality in the normalized form for lineors A1 and A2 of size

n× r1 and n× r2 follows from (404) and (410) (where φi ∈ (0;π/2]):

0 ≤
r1−ν′′∏
i=1

sin2 φi = |{A1|A2}|2sin =
Mt2(r1 + r2){A1|A′

2}
Mt2(r1)A1Mt2(r2)A2

=

= |Dl(r1 + r2) sin Φ̃12| ≤ 1. (411)

If n > 2, the inequality has only the normalized form. The extremal special cases are:
|{A1|A2}| = 0 if the lineors are at least partially parallel,
|{A1|A2}| = 1 if the lineors are completely orthogonal.
If lineors A1, A2 are equirank, then general inequalities (396) and (411) may be united:

0 ≤ r
√
|{A1A2}|2cos +

r

√
|{A1A2}|2sin ≤ 1. (412)

This is derived with applying the algebraic Cauchy Inequality (sect. 1.2) for the arithmetic
and geometric means to squared eigenvalues of the cosine and sine, and further summating
both the results. The right equality in (412) holds i� |φi| = const, i = 1, . . . r.

If two planars have the same rank 1 (straight lines) or n − 1 (hyperplanes), then the
tensor angle between these planars has exactly one trigonometric cell, it corresponds to
the unique trigonometric eigen plane. Then inequalities (412) are transformed into usual
identity cos2 φ+ sin2 φ = 1.

Consider a n × r-matrix A of rank r and its arbitrary partition into j column blocks
A = {A1|A2| . . . |Aj}. This form of the matrix corresponds to the polyhedral tensor angle,
the sides of the angle are determined by the lineors A1, . . . , Aj . If each block consists of
exactly one column, then the polyhedral tensor angle is r-edges. Apply the general sine
inequality j times sequentially to this block-matrix A, obtain

Mt(r)A ≤Mt(r)A1 · Mt(r)A2 · · ·Mt(r)Aj . (413)

Equality holds i� the lineors (the vectors) are mutually orthogonal. Inequality (413) is the
most complete generalization of the Hadamard Inequality [25] of sine nature.



Chapter 9

Geometric norms of varied orders for matrix objects

9.1 Quadratic and hierarchical norms

Norms for matrices and matrix objects have as usually positive or non-negative values.
The geometric norms must be invariant under admissible geometric transformations in the
space containing the objects, including parallel translations. For example, homogeneous
transformations in ⟨Qn+q⟩ are determined by a re�ector tensor: they are trigonometrically
compatible with pure rotations and re�ections. In ⟨En⟩ the re�ector tensor is an unity
matrix. As both these basis spaces have the same Euclidean metric (see in sect. 5.7), the
geometric norms, de�ned in ⟨En⟩, may be used in ⟨Qn+q⟩ too.

For objects of rank 1 (vectors) in arithmetic space ⟨En⟩, the Euclidean norm of length
is naturally used. However, for objects of rank r greater than 1, the Frobenius norm (i. e.,
a norm of the same order 1 similarly to Euclidean one) is only the �rst special norm from
the set of geometric norms of orders t (1 ≤ t ≤ r). That is why de�ning geometric norms
of higher orders (up to r) for objects of rank r is the problem of great interest. In principle,
there are two ways for de�ning a geometric norm of a r×n-lineor A as the geometric object
(or a r × n-matrix A as the algebraic transformation).

Way 1. At �rst, an intermediate norm of homomultiplicationA′A is evaluated, it depends
on eigenvalues σ2

i > 0 of this matrix. Then the norm of the original matrix A may be
obtained as the positive square root of the intermediate norm for A′A.

Way 2. A norm is de�ned in terms of positive eigenvalues σi of the arithmetic square
root

√
A′A. But evaluating this square root is a long and complicated process.

(If A = S is a symmetric matrix, then the results of both ways are equivalent.)
Thus, in the book, we use only way 1. Norms constructed with this method are called

quadratic, as they are based on the set of eigenvalues σ2
i . For example, symmetric matrix

functions cos Φ̃, sin Φ̃, tan Φ̃, sec Φ̃ are sign-inde�nite. Their nonzero quadratic norms depend
on squared eigenvalues of cos2 φi, sin

2 φi, tan
2 φi, sec

2 φi. Consequently, they are the same
for trigonometric functions of motive and projective tensor angles. (For tensor angles, the
general cosine and sine norms were de�ned in previous chapter.)

Correct de�nition of general and particular quadratic norms will be given with the use
of geometric analogies similar to (126), (127) in sect. 3.1 and of the general inequality of
means, more precisely, its chain (11) for algebraic means expressed in terms of positive Vi�ete
coe�cients (sect. 1.2). Our analysis of (126), (127) in section 3.1 gave clear interpretation
of the positive Vi�ete coe�cients for matrices homomultiplication. Remember, that algebraic
means (and other ones), inferred from the positive Vi�ete coe�cients, form a hierarchical
sequence. (As before, we use a bar to denote means.)

Let A be a r × n-matrix A and rankA = r. De�ne its parametric and hierarchical
geometric norms of order t and degree h as

||A||ht = [ 2t
√
k(A′A, t)]h > 0, (414)

||A||ht = [ 2t
√
k(A′A, t)/Ct

r]
h > 0. (415)

Formally all these norms are regarded to be zero if t > r and unity if t = 0.
Parametric norm (414) with h = t may be consider geometrically as t-dimensional vol-

ume parameter for the lineor A, and with t = 1 as its length parameter � see (127) in sect. 3.1.
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Hierarchical norms (415) may be consider as hierarchical medians of order t = 1, . . . , r
and degree h, according to original chain (11) for scalar coe�cients of the matrix B = AA′

(see the general inequality of means in sect. 1.2). In particular, both these norms of highest
orders are identical

||A||rr =
√
det (A′A) =Mt(r)A = ||A||rr.

Accordingly, for quadratic nonsingular and singular matrices B, there hold:

||B||nn =
√
det (B′B) =

√
det (BB′) = |det B| = ||B||nn,

||B||rr =
√
k(B′B, r) =

√
k(BB′, r) =Mt(r)B = ||B||rr.

By the de�nition, any general norms for a matrix have maximal order t equal to its
rank r. If in (414), (415) h = r, then the general norm of a matrix is its minorant.

In that number, this de�nition belongs to general norms for the tensor cosine and the
tensor sine (projective and motive). For example, general quadratic trigonometric norms of
degree h = 1 are de�ned similarly with maximal order, according their ranks:

0 ≤ || cosΦ12||1n = 2n
√
det cos2 Φ12 = n

√√√√r−ν′∏
i=1

cos2 φi =
n
√
(A1|A2)|2cos ≤ 1, (416)

0 ≤ || sinΦ12||1r1+r2 =
2(r1+r2)

√
Dl(r1 + r2) sin

2 Φ12 =

= r1+r2

√√√√r1−ν′′∏
i=1

sin2 φi =
r1+r2

√
|(A1|A2)|2sin ≤ 1. (417)

These norms characterize binary tensor angles Φ̃12 and Φ12 between the lineors A1 and A2

or between the planars ⟨im A1⟩ and ⟨im A2⟩ (the planars ⟨ker A′
1⟩ and ⟨ker A′

2⟩).
In its turn, the scalar characteristic

0 ≤ || cosΦB ||1n = n
√
|{B}|2cos ≤ 1 (418)

is the general trigonometric norm of degree 1 for the cosine of binary tensor angles Φ̃B and
ΦB between the planars ⟨im B⟩ and ⟨im B′⟩ (the planars ⟨ker B⟩ and ⟨ker B′⟩).

According to the Le Verrier-Waring direct recurrent formula or the Newton system of
equations (see in sect. 1.1), there exist only r independent geometric norms of each type.
Just norms (414) and (415) completely determine scalar properties of a linear matrix object
of rank r by these two set of its geometric invariants. The quadratic geometric norm of
degree 1 and order 1 is the Frobenius norm, for example:

||A||11 =
√
tr (A′A) =

√√√√ n∑
k=1

r∑
j=1

a2jk =

√√√√ r∑
i=1

σ2
i = ||A||F > 0, (419)

where ajk � elements of A, σ2
i � eigenvalues of A′A. The Euclidean norm ||a||E is similar.

Note, that a power manner for norms de�ning (in terms of eigenvalues of
√
A′A) give the

Euclidean and Frobenius norms as degree norms of order θ with θ = 2:

θ√Sθ(σi) =
θ

√√√√ r∑
i=1

σθ
i , θ = 1, . . . , r.
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On the other hand, both these ways (1 and 2) of norms de�ning (see above) are equivalent
only for norms of the highest order, i. e., for general ones:

||
√
A′A||1r = 2r√sr(σi) = 2r√det (A′A) = r√Mt(r)A = r√sr(σi) = r

√
det
√
A′A.

(In particular, this holds, if r = 1.) Way 1 de�nes norms in terms of scalar characteristic
coe�cients of the same internal homomultiplication A′A (i. e., not directly in terms of
eigenvalues of A′A). Way 2 of norms de�ning demands computing a matrix arithmetic
square root through eigenvalues of A′A. This is the essential di�erence between these two
ways and the main reason for choosing by us only the manner corresponding to way 1.

The Frobenius norm of order 1 and degree 1 is the invariant of length. The general
norm of order r and degree r (the minorant), is the invariant of r-dimensional volume.
The characteristic ||A||1r = ||A||1r is the invariant of degree 1 of this volume (the general

hierarchical norm). The geometric norms ||A||1t (the small medians) form the hierarchy in
order of t values (1 ≤ t ≤ r) corresponding to inequality chain (11) � see sect. 1.1.

The hierarchical quadratic trigonometric norms of order t = 1 are de�ned similarly:

|| cosΦ||11 =

√
tr cos2 Φ

n
, || sinΦ||11 =

√
tr sin2 Φ

n
.

Taking into account (182) and (264), we obtain also with t = 1 the simplest invariant:

|| cosΦ||21 + || sinΦ||21 = 1. (420)

Quadratic trigonometric norms of the highest order are de�ned as (416) and (417). So, if
chain (11) consists of mean invariants of a tensor trigonometric function, then (12) contains
mean invariants of the inverse function (with respect to multiplication). The hierarchical
invariants of the spherical cosine and sine range in [0; 1], that of the spherical secant and
the tangent range in [1;∞) and [0;∞).

9.2 Absolute and relative norms

Consider de�nitions and properties of various geometric norms for matrix objects. Let A
be a complex-valued n×m-matrix of rank r. It represents algebraically a certain geometric
object such as either as an 1-valent tensor in ⟨An⟩, m < n, or as a 2-valent tensor in ⟨An×n⟩,
m = n.

For a complex-valued n ×m-matrix A of rank r, its absolute geometric norm of order
t, 0 ≤ t ≤ r, and degree h is the scalar characteristic ||A||ht with the following de�ning
conditions:

(a) ||A||ht = [||A||1t ]h > 0 if 1 ≤ t ≤ r,

(a') ||A||h0 = 1 if t = 0,

(a�) ||A||ht = 0 if t > r,

(b) ||c ·A||ht = |c|h · ||A||ht ,

(c) ||U1 ·A · U2||ht = ||A||ht ,

(d) ||A∗||ht = ||A||ht .



130CHAPTER 9. GEOMETRIC NORMS OF VARIED ORDERS OF MATRIX OBJECTS

For example, (414)�(419) are de�nite absolute geometric norms. If the symbol " >" in
de�ning condition (a) is replaced above by " ≥ " , then such norms are called semi-de�nite
absolute geometric norms of order t and degree h. They are used only for square matrices
B representing 2-valent tensors and denoted as |{B}|ht . Their examples are

|{B}|tt = |k(B, t)| ≥ 0, |{B}|rr = |k(B, r)| ≥ 0, |{B}|11 = |tr B| ≥ 0. (421)

A relative norm of order t and degree h is the ratio of a semi-de�nite absolute norm and
de�nite one. They are always dimensionless and have here trigonometric nature. Examples
of relative norms of order t = r are the cosine and sine ratios introduced in Ch. 3. These
geometric norms are called general if t = r and particular if t < r. General norms were
interpreted before. Reveal the geometrical sense of particular ones.

9.3 Geometric interpretation of particular norms

Consider particular norms, using as clear model, the particular cosine ratio (i. e., under
condition t < r). The general cosine inequalities (396), (398) and the cosine ratios corres-
ponding to these inequalities may be further developed and their quasi-analogs for orders
t < r may be inferred.

Let A1 and A2 be n× r-lineors. For each j-th subset of t columns, j = 1, . . . , Ct
r, choose

the pair of n×t-submatrices {A1}j and {A2}j with the same subset of columns. Write down
all the submatrices {A1}j one under another and do the same with {A2}j . This operation
transforms A1 and A2 into the pair of ranged nC

t
r × t-lineors of rank t.

For each pair {A1}j and {A2}j , the cosine inequalities similar to (396), (398) hold:

−1 ≤ det {A′
1A2}j/

(√
det (A′

1A1)j ·
√
det (A′

2A2)j

)
≤ +1.

The numerator of the fraction is the j-th principal minor of order t of {A′
1A2}, as the internal

multiplication of {A1}j and {A2}j . Summate separately j numerators and j denominators
of these inequalities, we obtain from two sums a united inequality (that is generally a Rule
of summing homogeneous fraction inequalities, i. e., with constant left and right constraints
and positive denominators, in a united fraction inequality):

−1 ≤
∑Ct

r
j=1 det {A′

1A2}j∑Ct
r

j=1

√
det {A′

1A1}j ·
√
det {A′

2A2}j
≤ +1.

Further, apply to the denominator the geometric cosine Cauchy Inequality (sect. 3.3) for a
paired set of positive numbers, obtain the following intermediate inequality:

−1 ≤
∑Ct

r
j=1 det {A′

1A2}j√∑Ct
r

j=1 det {A′
1A1}j ·

∑Ct
r

j=1 det {A′
2A2}j

≤ +1.

Using (120) and (121), obtain the particular quasi-cosine inequalities in the sign form:

−1 ≤ k(A′
1A2, t)√

k(A′
1A1, t) ·

√
k(A′

2A2, t)
=

k(A1A
′
2, t)√

k(A1A′
1, t) ·

√
k(A2A′

2, t)
≤ +1. (422)

The quasi-cosine inequalities in the signless form de�ne the particular relative norms:

0 ≤ |{A1A
′
2}|1t

||A1||1t · ||A2||1t
≤ 1. (1 ≤ t < r) (423)
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Trigonometric sense of the quasi-cosine ratio as a norm of order t < r is explained with
its inference, it is connected with ranged lineors. If t = 1, then

−1 ≤ tr (A′
1A2)√

tr (A′
1A1) ·

√
tr (A′

2A2)
=

tr (A1A
′
2)√

tr (A1A′
1) ·
√
tr (A2A′

2)
≤ +1, (424)

0 ≤ |{A1A
′
2}|11

||A1||11 · ||A2||11
≤ 1. (425)

From these inequalities the classical triangle and parallelogram inequalities for the Frobenius
norms (t = 1) of the original n× r-lineors follow:

||A1 +A2||11 ≤ ||A1||11 + ||A2||11. (426)

∣∣ ||A1||11 − ||A2||11
∣∣ ≤ ||A1 ±A2||11 ≤ ||A1||11 + ||A2||11. (427)

These particular inequalities are of linear nature. They de�ne the Frobenius norm of lineors
as an invariant of extent (or length for vectors). However, particular inequalities (422), (424)
and (426), (427) characterize the lineors A1 and A2 if r > 1 not directly, but in terms of
ranged nCt

r× t-lineors {A1} and {A2}. For illustrations, get Frobenius norms: they describe
these lineors in terms of ranged nr × 1-vectors a1 and a2:

||A1||11 = ||a1||E , ||A2||11 = ||a2||E , ||A1 ±A2||11 = ||a1 ± a2||E ;

tr (A′
1 ·A2) = tr (A1 ·A′

2) = a′1a2.

Consequently, the Pythagorean Theorem for the Frobenius norms of the lineors A1 and A2

holds i� ranged vectors a1 and a2 are orthogonal:

a′1a2 = 0 = tr (A′
1A2) ↔ ||A1 ±A2||21 = ||A1||21 + ||A2||21. (428)

Similarly, from the trigonometric point of view, particular quasi-cosine ratios (423) and
(425) as relative norms characterize also tensor angles Φ̃12 and Φ12 between the lineors A1

and A2 not directly, but only in terms of ranged lineors {A1} and {A2}.

9.4 Lineors of special kinds and some �gures formed by lineors

In the lineor Euclidean space ⟨En⟩, according to (130) in sect. 3.1, an n × r-lineor
(of rank A = r) may be represented in the unambiguous quasi-polar decomposition:

A = {A · (
√
A′A)−1} ·

√
A′A = Rq · |A|,

where |A| =
√
A′A is the r × r-matrix module of the original n × r-lineor A, and matrix

Rq = {A · (
√
A′A)−1} is its own quasi-orthogonal lineor. This decomposition is similar to

one for a vector: a = e · |a|, where |a| =
√
a′a = ||a||E . The r × r-matrix module of the

lineor is similar to the scalar module of a vector, but with respect to the set of r basis unity
vectors {ei} = Rq in ⟨En⟩. These vectors determine independent directional axes in ⟨En⟩ of
the given n× r-lineor A. Consequently, there hold

←−−
AA′ =

←−−−−−
Rq ·Rq′ = Rq ·Rq′, Rq′ ·Rq = Rq+ ·Rq = Ir×r, (Rq′ = Rq+).

Each lineor formally belongs to its basis planar: A ∈ ⟨im A⟩ (as a ∈ ⟨im a⟩). The
condition (154) determines the set of coplanar lineors with respect to the basis planar ⟨im A1⟩
(for the vector a2 this condition is a2 ∈ ⟨im A1⟩).
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Equirank lineors (rA = r = const) with the same basis planar ⟨im A⟩ form the complete
set of colplanar lineors with respect to the basis planar ⟨im A⟩. If r = 1, they are collinear
vectors. Two equirank lineors are colplanar i� they satisfy (153). The complete set of
colplanar n × r-lineors ⟨AC⟩ with respect to the basis planar ⟨im A⟩ is parametrically
determined with a free nonsingular r × r-matrix C by relation

←−−
AA′ =

←−−−−−−−−
(AC)(AC)′ = Const. (429)

Colplanar lineors Ak are de�ned by the following invariant relations:

←−−−
AkA

′
k =
←−−−−−
RqkRq

′
k = Rqk ·Rq′k =

←−−
AA′ = Constn×n, Rq

′
k ·Rqk = Ir×r = Constr×r. (430)

Further, in the set of colplanar lineors ⟨A⟩, separate the subset of coaxial lineors. They
are de�ned stronger with additional condition Rqk = Rq = Const = {ei}. Such lineors di�er
only by their matrix moduli |Ak|. If A1, A2 are coaxial lineors, then

|A1 ±A2|2 =
∣∣ |A1| ± |A2|

∣∣2 = (|A1| ± |A2|)2, A′
1A2 = |A1| · |A2|, A′

2 ·A1 = |A2| · |A1|.

Let A1 and A2 be equirank lineors, may be linearly entirely independent or not, but
under the same conditions (224) and (230), and lying in their own basis planars ⟨im A1⟩
and ⟨im A2⟩. Then the oblique projector

←−−−
A1A

′
2 exists. Using formulae (186) and (187) from

sect. 5.2, and (226) from sect. 5.4, we obtain:

←−−−
A1A

′
2 =
←−−−−−
Rq1Rq

′
2 = Rq1 Rq

′
1 · sec Φ̃12 = sec Φ̃12 ·Rq2 Rq′2. (431)

Expressions (430) and (431) may be useful in QR-factorizations of lineors with similar
conditions � see (129), (130) in sect. 3.1. They can be illustrated easily and visually on the
simplest unity lineors e1 and e2, as we have done earlier too.

In conclusion, de�ne also rotationally congruent lineors:

A2 = Rot Φ12 ·A1 ⇒ {Rq2 = Rot Φ12 ·Rq1, |A1| = |A2| = |A|}. (432)

Such lineors di�er only by their quasi-orthogonal lineors Rqk.
For these lineors A1 and A2 we have these symmetric matrix module expressions:

|A1 ±A2|2 = 4 · |A|2 · [(I ± cosΦ12)/2],
|A1 +A2|2 = 4 · |A|2 · sin2(Φ12/2),
|A1 −A2|2 = 4 · |A|2 · cos2(Φ12/2).

 (433)

With the use of parallel translations, rotationally congruent lineors A1 and A2 form a 2r-
dimensional rhombus. In particular, centered equimodule vectors are rotationally congruent.
If Φ12 = π/2, then these lineors form the following 2r-dimensional square:

|A1 +A2| =
√
2 · |A|.

One may construct from such lineors corresponding triangles, parallelograms and so on.
Thus lineors, as well as vectors, can form, but more complex, geometric �gures with various
geometric properties. Euclidean and quasi-Euclidean spaces of lineors (lineor spaces) have,
as well as vector spaces, valency 1.
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Complexi�cation of tensor trigonometry

10.1 Adequate complexi�cation

Complex-valued projective and motive spherical angles are expressed adequately in terms
of real-valued spherical and hyperbolic tensor angles with their binary eigen angles in the
following forms

Ψ̃ = Φ̃ + iΓ̃, (Ψ̃′ = Φ̃− iΓ̃); Ψ = Φ + iΓ, (Ψ′ = −Φ+ iΓ); ψj = φj + iγj , (434)

where Φ̃′ = Φ̃, Γ̃′ = −Γ̃; Φ′ = −Φ, Γ′ = Γ (see the angles in Chs. 5 and 6).

In the adequate complex n-dimensional Euclidean space, complex tensor trigonometry is
realized in the complex Cartesian bases with the use of adequate complexi�cation (sect. 4.2).
Complex tensor angles have their transposed forms indicated above. All geometric notions
and formulae except norms and inequalities stay valid and do not change. In particular,
complex minorants and complex matrix modules are de�ned with the use of transposing.

Complex numbers +c and −c have the analogous adequate complex module, and it is
evaluated also in terms of c2 by Moivre formula:

±c = ±ρ(cosα+ i sinα), 0 ≤ α < π,

(±c)2 = c2 = ρ2(cos 2α+ i sin 2α) = ρ2(cosβ + i sinβ), 0 ≤ β < 2π,

| ± c| = |c| = ρ(cos(β/2) + i sin(β/2)) = ρ(cosα+ i sinα). (435)

It is seen that |c2| = c2.

The adequate matrix Euclidean module |A| =
√
A′A of a complex matrix A (sect. 9.4)

is evaluated with intermediate diagonalization of its interior multiplication and complex
orthogonal modal transformation:

R′ ·A′A ·R = D{A′A} = {σ2
j }, σ2

j = ρ2j (cosβj + i sinβj) = |σj |2, 0 ≤ βj < 2π.

From this, by Moivre formula, we obtain

|σj | = ρj [cos(βj/2) + i sin(βj/2)], |A| = R · {|σj |} ·R′, |A|2 = A′A.

In the adequate complexi�cation variant, all geometric characteristics, as complex angles
and their trigonometric functions, are decomposed into real and imaginary parts, though
each whole characteristic may be represented in the most suitable adequate form. The
adequate variant in its simplest form is used in complex-valued Euclidean plane geometry,
in particular, in scalar complex Euclidean trigonometry. In general case, complex squared
identity (142), in that number in its variant of the sine-cosine Lagrange Identity for two
vectors, does not change. The scalar sine and cosine ratios in (124) and (141) may be used
for evaluating of the complex angles between two vectors and their trigonometric functions.
The general scalar ratios (135) and (140) have also their adequate complex-valued forms.
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10.2 Hermitean complexi�cation

In the Hermitean space, Hermitean complexi�cation of real-valued Euclidean geometry with
tensor trigonometry is used (sect. 4.3). A projective spherical tensor angle is an Hermitean
matrix H̃ = Φ̃+ iΓ̃ = H̃∗, where Φ̃∗ = Φ̃, Γ̃∗ = −Γ̃. Its eigenvalues are real spherical angles
±ηj and zero. A motive spherical tensor angle is a skew-Hermitean matrix K = Φ + iΓ =
−K∗, where Φ∗ = −Φ, Γ∗ = Γ (Chs. 5, 6). Its eigenvalues are imaginary pseudohyperbolic
angles ±iηj and zero. Hermitean modules of linear objects are positive de�nite. Normalized
general inequalities (Ch. 8), geometric and trigonometric norms (Ch. 9) preserve their real
positive forms in the Hermite's variant.

The principle of binarity also stays valid in complex adequate and Hermitean variants of
tensor trigonometry, as all its preliminaries do hold.

Hermitean analogs of cell formulae (399) and (400) in sect. 8.3 are inferred with analogous
complex-valued unity vectors. Here the two sides of the tensor angle H̃12 between planars
⟨im A1⟩ and ⟨im A2⟩ of rank r are represented at the level of elementary trigonometric
2× 2-cells as unity eigenvectors:

u1 =

∣∣∣∣ cosα1

sinα1

∣∣∣∣ , u2 =

∣∣∣∣ cosα2

sinα2

∣∣∣∣ ,
where

cosα · cosα+ sinα · sinα = 1,

cosα = cos η · exp iβc, sinα = sin η · exp iβs,

cosα · cosα = cos2 η, sinα · sinα = sin2 η;

[cos H̃12]
2×2 =

←−−−−
u1 · u∗

1 +
←−−−−
u2 · u∗

2 − I2×2 = u1 · u∗
1 + u2 · u∗

2 − I2×2 =

=

[
cosα1 · cosα1 + cosα2 · cosα2 − 1 cosα1 · sinα1 + cosα2 · sinα2

cosα1 · sinα1 + cosα2 · sinα2 sinα1 · sinα1 + sinα2 · sinα2 − 1

]
=

=

[
+|c1| s1
s1 −|c1|

]
;

−det [cos H̃12]
2×2 = |c1|2 + s1 · s1 = cos2(η2 − η1)−∆ = cos2 η12,

∆ = (1/2) · sin(2η1) · sin(2η2) · [1− cos(βc1) cos(βc2) cos(βs1) cos(βs2 ];

[sin H̃12]
2×2 =

←−−−−
u2 · u∗

2 −
←−−−−
u1 · u∗

1 = u2 · u∗
2 − u1 · u∗

1 =

=

[
cosα2 · cosα2 − cosα1 · cosα1 cosα2 · sinα2 − cosα1 · sinα1

cosα2 · sinα2 − cosα1 · sinα1 sinα2 · sinα2 − sinα1 · sinα1

]
=

[
−|s2| c2
c2 +|s2|

]
;

−det [sin H̃12]
2×2 = |s2|2 + c2 · c2 = sin2(η2 − η1) + ∆ = sin2 η12.

For the residue ∆ we have ∆ = 0 ⇔ cos(βc1) cos(βc2) cos(βs1) cos(βs2) = 1 = | cosβk|;

∆ = 0 ⇔ η12 = η2 − η1, ∆ ̸= 0 ⇔ η12 ̸= η2 − η1. (436)

The cell forms with respect to the trigonometric base (see sect. 5.5) are

[cos H̃12]
2×2 = cos η12 ·

[
+1 0
0 −1

]
, [sin H̃12]

2×2 = sin η12 ·
[

0 +1
+1 0

]
. (437, 438)
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In the Hermitean variant, all canonical W-forms of tensor trigonometric functions are
real-valued and do not change. They are constructed with complex unitary modal matri-
ces UW . In an Hermitean plane and with respect to the trigonometric base (of the diagonal
cosine), Hermitean shift of paired functions (cosine-sine, secant-tangent) at a phase angle β
may take place � see respectively (179) and (259):

Exp (−iβ/2) ·Ref {B∗B}r · Exp (+iβ/2) = Ref {B∗B}c, (439)

Exp (−iβ/2) ·Rot {H}r · Exp (+iβ/2) = Rot {ε}c, (440)

i. e.,


.
.
.

exp
(−iβ

2

)
0

0 exp
(
+iβ
2

)
.
.
.

 ·
 .

.
.

+cos η sin η
sin η − cos η

.
.
.

 ·


.
.
.

exp
(
+iβ
2

)
0

0 exp
(−iβ

2

)
.
.
.

 =

=

 .
.
.

+cos η sin η · exp(−iβ)
sin η · exp(+iβ) − cos η

.
.
.

 ,


.
.
.

exp
(−iβ

2

)
0

0 exp
(
+iβ
2

)
.
.
.

 ·
 .

.
.

cos η − sin η
+ sin η cos η

.
.
.

 ·


.
.
.

exp
(
+iβ
2

)
0

0 exp
(−iβ

2

)
.
.
.

 =

=

 .
.
.

cos η − sin η · exp(−iβ)
+ sin η · exp(+iβ) cos η

.
.
.

 .

That is why the Hermitean trigonometric base should lead to the diagonal cosine as
before and also to real-valued W-forms. In each eigen Hermitean plane (at the level of each
2× 2-cells), Hermitean shift at a phase angle β may be eliminated with the special unitary
rotational modal transformation Exp (iβ/2), and as �nal result with reducing in real-valued
canonical forms of tensor trigonometric functions.

Hermitean analogs of Cauchy and Hadamard Inequalities of cosine and sine nature (see in
Ch. 3) and their cosine and sine tensor forms (see in Ch. 8)) with complex Lagrange Identity
(142) for coordinates of two vectors or in general two lineors are inferred with the use of
Hermitean transposing in their internal products. Hermitean spherical angle is a composite
function of the linear objects coordinates. But in its trigonometric base, the tensor angle
have the real-valued canonical form.
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10.3 Pseudoization in binary complex spaces

Consider pseudoization as the important special case of adequate complexi�cation of real-
valued algebraic and geometric notions (see Ch. 4). Fix a binary complex a�ne space
⟨An+q⟩c of index q. In any admissible binary a�ne base, this space may be considered as
linear one. In particular, with respect to a certain pseudounity base Ẽ0, the space ⟨An+q⟩c
is the direct sum of the following real and imaginary a�ne subspaces:

⟨An+q⟩c ≡ ⟨An⟩ ⊕ ⟨iAq⟩ ≡ CONST. (441)

Here the sum space and dimensions of summand subspaces are constant. In ⟨An+q⟩, we
admit linear transformations V preserving the binary structure:

V Ẽ0 Ẽ[
V11 iV12
iV21 V22

]
·
[
In×n Zn×q

Zq×n ±iIq×q

]
=

[
V11 ±V12
iV21 ±iV22

]
, det Vjk ̸= 0. (442)

First n columns of the base matrices generate ⟨An⟩, other q columns generate ⟨iAq⟩. The
modal matrix V −1 has the same structure, this matrix transforms an arbitrary binary base Ẽ
into simplest one, i. e., into diagonal (pseudounity) base Ẽ0 and performs passive modal
transformation of a linear element: z{Ẽ} = V · z{Ẽ0}.

The binary local complex trigonometric bases are expressed in the left and right mutual
forms connected with the local real-valued trigonometric base Ẽ1 = {I} by pseudounity
passive modal matrices (see initially in sect. 5.9 and sect. 6.1):

Ẽ01 =


. . .

1 0
0 +i

. . .

 · Ẽ1 = (
√
I±)D · {I} = Rc1 · {I} = {Rc1}, (443)

Ẽ02 =


. . .

1 0
0 −i

. . .

 · Ẽ1 = (
√
I±)−1

D · {I} = Rc2 · {I} = {Rc2}. (444)

With respect to an admissible binary complex base Ẽ, a linear element and the whole
space are direct sums of their real and imaginary a�ne projections:

z = x⊕ iy =

[
x
iy

]
. (445)

The space ⟨An+q⟩c is a�ne, and hence the translations in it at linear elements (445) are
admissible, and hence the space is homogeneous.

Right local base (443) is identical to one in (271) and used in canonical forms of pseudo-
hyperbolic trigonometric matrices with angle eigenvalues −iφj = φj/(+i) (see sect. 5.9).
The sign "minus" at angles is due to the multiplier +i at ordinates.

Left local base (444) represents canonical forms of trigonometric matrices in the
pseudospherical variant of tensor trigonometry with binary eigen angles ±iγj = ±γj/(−i) �
primary and mutual. This base is identical to inverse (271), i. e., with the multiplier −i at
ordinates.
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The modal transformation translates into base Ẽ01 (443) similarly (322):

(
√
I±)−1

√
I±

. . .

1 0
0 −i

. . .

 ·


. . .

cosφj − sinφj

+sinφj cosφj

. . .

 ·


. . .

1 0
0 +i

. . .

 =

=


. . .

cosφj −i sinφj

−i sinφj cosφj

. . .

 =


. . .

cosh(−iφj) sinh(−iφj)
sinh(−iφj) cosh(−iφj)

. . .

.
And the modal transformation translates into base Ẽ02 (444) similarly to (323):

√
I± (

√
I±)−1


. . .

1 0
0 +i

. . .

 ·


. . .

cosh γj sinh γj
sinh γj cosh γj

. . .

 ·


. . .

1 0
0 −i

. . .

 =

=


. . .

cosh γj −i sinh γj
+i sinh γj cosh γj

. . .

 =


. . .

cos(iγj) − sin(iγj)
+ sin(iγj) cos(iγj)

. . .

.
Accordingly, in Ẽ01 and Ẽ02 of ⟨Qn+q⟩c, we have the mixed pseudoized angles in two forms:
γk ⊞ (−iφj) and φj ⊞ iγk (at the counter-clockwise angle φ) � see sect. 6.1 too.

Express coordinates of linear elements (445) in ⟨An+q⟩c with respect to base (444).
De�ne in Ẽ02 the same and invariant under passive modal transformations scalar product
for elements z (445) in ⟨Qn+q⟩c as in a usual Euclidean space:

z′1{I+}z2 = z′1z2 = x′
1 · x2 + iy′

1 · iy2 = x′
1x2 − y′

1y2 = const.

This is valid in the special complex quasi-Euclidean space with index q, its metric is as if
Euclidean-like; but it is either real-valued or zero or imaginary-valued. First this construction
(with n = q = 1) was made by H. Poincar�e in his group variant of the relativistic theory [63].
The space is binary, it is the direct spherically orthogonal sum of the real-valued Euclidean
subspace and the imaginary-valued anti-Euclidean one:

⟨Qn+q⟩c ≡ ⟨En⟩⊞ ⟨iEq⟩ ≡ CONST⇔ ⟨Pn+q⟩ ≡ ⟨En⟩⊠ ⟨Eq⟩ ≡ CONST. (446)

Here ⊞ and ⊠ stand for direct spherically and hyperbolically orthogonal summation.
Admissible transformations in these binary space are determined by the simplest re�ector
metric tensors {I±} and {I∓} � see initially in Chs. 5 and 6. In particular, ⟨iEq⟩ degenerates
into the axis iy or

−→
iy or into the time arrow

−−→
i · ct according to H. Poincar�e.
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Tensor trigonometry of general pseudo-Euclidean spaces

11.1 Reali�cation of complex quasi-Euclidean spaces

Return to binary complex quasi-Euclidean space (446). It is de�ned by the unity metric
tensor {I+} and the re�ector tensor {I±}; its trigonometric base is Ẽ02 (444). Further, apply
to complex-valued space ⟨Qn+q⟩c realifying passive transformation (443) as Rc = (

√
I±)D

(here passive transformation Rc has a geometric sense contrary to Rc (271) in sect. 5.9):

Ẽ02 = {(
√
I±)−1

D } → (
√
I±)D · Ẽ02 = Ẽ1 = {I}, (

√
I±)−1

D · z02 = u. (447)

The modal matrix is not admissible as
√
I±

′
·
√
I± ̸= {I+}; it transfers into a reali�cated

pseudo-Euclidean space ⟨Pn+q⟩ of index q with the metric and re�ector tensor {I±}. Its
quadratic metric is pseudo-Euclidean. The scalar product for the same element is

z′02 · z02 = [(
√
I±)D · u]′ · [(

√
I±)D · u] = u′ · {I±} · u = const. (448)

So, the spaces ⟨Qn+q⟩c and ⟨Pn+q⟩ are isometric and expressed only in di�erent forms!
Now the same element is expressed in the base Ẽ1, and it is denoted as u. The new metric
tensor {I±} in this coaxially oriented space ⟨Pn+q⟩ is also its re�ector tensor! Reali�cation
⟨Q3+1⟩c → ⟨P3+1⟩r with introducing the metric tensor {I±} at q = 1 was suggested by
Hermann Minkowski in 1909 [65], at the beginning into physical 4D space-time with ⟨x, ct⟩.

Further, realize next and also isometric passive modal transformation in the similar
binary space, but with an a�ne base Ẽ, connected with Ẽ1 = {I} by the constant binary
real-valued modal matrix V . It is not compatible again with the former metric tensor {I±}.
In result we have the sequential transformations of the original base and element

Ẽ = V · Ẽ1, Ẽ1 = (
√
I±)D · Ẽ02, (449)

w = V −1 · (
√
I±)−1

D · z02 = [(
√
I±)D · V ]−1 · z02. (450)

Now the original element z02 is expressed in the a�ne base Ẽ, it is denoted asw. The inverse
modal matrices of the passive transformations are written in direct order for sequential ones.
The scalar product of this element, as its immanent characteristic at passive isometric base's
transformations, does not change with respect to the new and now a�ne base Ẽ, and hence
the metric re�ector tensor (with the same re�ector tensor) {I±} does change into the new
certain symmetric metric re�ector tensor:

z′02 · z02 = [(
√
I±)D · V ·w]′ · [

√
I±)D · V ·w] = w′ · {V ′ · I± · V } ·w = const. (451)

What is important, in fact, the binary basis space ⟨Pn+q⟩) is preserved again, because
we introduced in it only other (a�ne) base with one-valued linear transformation V.

Let V ̸= Const and respectively to its changing the metric re�ector tensor does change
too, because it is subjected to the permanent general congruent transformation

{G±} = {V ′ · I± · V } = {V ′ · I± · V }′ = {G±}′. (452)
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Then the new metric tensor operates in Special curvilinear coordinates in the binary space
with Riemannian local metric due to function {G±}(w). Its mutual tensor is

ˆ{G±} = {G±}−1 = {V −1 · I± · V ′−1}. (453)

This binary space with variable local metric and zero Riemannian�Christo�elian curvature
is isometric and topologically equivalent to ⟨Pn+q⟩, where latter is the basis space by the
de�nition. Curvilinear and pseudo-Cartesian coordinates act in fact in the same �at space.
However, if the curvature is non-zero, we have the pseudo-Riemannian space. Both these
binary spaces (�at and curve) will be used in Chapter 9A. The geometry, if V = Const, may
be considered as linear mapping of pseudo-Euclidean one in admissible a�ne bases

⟨Ẽaf ⟩ ≡ ⟨Taf ⟩ · Ẽ (454)

with the constant metric re�ector tensor G±. There holds

T ′
af · {V ′ · I± · V } · Taf = T ′

af · {G±} · Taf = {G±}. (455)

Equalities det Taf = ±1 follow from (455). We de�ne the group of a�ne continuous
trigonometric transformations ⟨Taf ⟩ with respect to G± by more exact conditions:

T ′
af · {G±} · Taf = {G±} = Const, det Taf = +1. (456)

Due to (448), the metric tensor {I±} is identical to its mutual analog. This condition,
generally, is G = G′ = G−1 → {G±} = {

√
I}S . Hence, in any metric spaces ⟨Pn+q⟩ and

only in them, contravariant and covariant coordinates are identical, in particular if q = 0 or
n = 0. That is why pseudo-Cartesian bases are uniquely applicable in ⟨Pn+q⟩. The metric
re�ector tensors {

√
I}S are the general variant of ones for pseudo-Euclidean spaces, when

their metric is quadratic and has no distortions.

11.2 The general Lorentzian group of pseudo-Euclidean rotations

In (452) put V = R, this spherically orthogonal transformation is not compatible with the
simplest metric re�ector tensor {I±} too (sect. 6.3). Then we obtain the following metric
re�ector tensor in the general form, what is identical to its mutual analog:

{R′ · I± ·R} = {
√
I}S = {

√
I}′S = {

√
I}−1

S . (457)

Here {
√
I}S is a symmetric and hence prime certain square root of I (see more about these

in sect. 5.9). Formula (457) describes a metric re�ector tensor of the non-coaxially oriented
pseudo-Euclidean space ⟨Pn+q⟩ as well as a re�ector tensor of the similar quasi-Euclidean
space (see their common de�nition in sect. 6.3).

The complete group ⟨T ⟩ of rotational trigonometric transformations in ⟨Pn+q⟩ is deter-
mined by conditions similar to (456) with the new metric re�ector tensor {

√
I}S as follows:

T ′ · {
√
I}S · T = {

√
I}S = T · {

√
I}S · T ′ = Const, det T = +1. (458)

In space ⟨Pn+q⟩, admissible transformations may be de�ned in terms of internal or external
products, what is equivalent to the identity of contravariant and covariant coordinates:

T ′ · {
√
I}S · T = {

√
I}S ↔ T ′ · {

√
I}S · T · {

√
I}S = I ↔

↔ T ′ · {
√
I}S · T · {

√
I}S · T ′ = T ′ ↔

↔ {
√
I}S · T · {

√
I}S · T ′ = I ↔ T · {

√
I}S · T ′ = {

√
I}S .

 (459)
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The relation T ′ · {
√
I}S · T = T · {

√
I}S · T ′ = {

√
I}S is pseudo-analog of Euclidean one

R′ ·R = R ·R′ = I. But, if V = I in (452), we have again the coaxially oriented space with
the metric re�ector tensor {I±} and admissible trigonometric transformations:

T ′ · {I±} · T = {I±} = T · {I±} · T ′ = Const, det T = +1. (460)

In (458)�(460) the set ⟨T ⟩ is called the Lorentz group of homogeneous transformations
in ⟨Pn+q⟩ � in accordance with the initial de�nition of Poincar�e [63]. (Its complex analog
exists for the binary complex pseudo-Euclidean space ⟨Pn+q⟩c!) The groups ⟨T ⟩ and ⟨Taf ⟩
are isomorphic and homothetic:

(V −1 · T · V )′ · {V ′ · I± · V } · (V −1 · T · V ) = {V ′ · I± · V }, ⟨Taf ⟩ = V −1 · ⟨T ⟩ · V. (461)

An absolute pseudo-Euclidean space with respect to its metric re�ector tensor {
√
I}S

may be represented in any its pseudo-Cartesian base Ẽk by the hyperbolically orthogonal
direct sum of the two real-valued relative Euclidean subspaces:

⟨Pn+q⟩ ≡ ⟨En⟩(k) ⊠ ⟨Eq⟩(k) ≡ CONST. (462)

Moreover, the real-valued subspace ⟨Eq⟩ is obtained as result of reali�cation (447) from the
imaginary anti-Euclidean subspace ⟨iEq⟩. In original complex variant, the absolute quasi-
Euclidean space ⟨Qn+q⟩c is represented in any its quasi-Cartesian base {Ẽk}c as a spherically
orthogonal direct sum of the Euclidean and anti-Euclidean subspaces:

⟨Qn+q⟩c ≡ ⟨En⟩(k) ⊞ ⟨iEq⟩(k) ≡ CONST. (463)

Here and in the sequel, ⊞ and ⊠ stand for spherically and hyperbolically orthogonal direct
summation with respect to a metric re�ector tensor. In the indicated both absolute spaces
decompositions, these paired summands as the orthogonal complements of each other (in
admissible bases Ẽk) are connected one-to-one rigorously functionally, as ⟨Eq⟩ ≡ Y ⟨En⟩ and
⟨En⟩ ≡ Y −1⟨Eq⟩. These subspaces are relative, but the whole space is absolute ! Here Y (X)
is some matrix function, connected one-to-one these two spaces. So, for example, we have
y(x) = a− x↔ x(y) = a− y, where a is an absolute.

Due to relation (462), the pseudo-Euclidean space has binary structures determined
generally by the re�ector metric tensor {

√
I}S and pseudo-Cartesian bases Ẽk. In this type

space, an 1-valent tensor is decomposed in the two hyperbolically orthogonal projections into
⟨En⟩(k) and ⟨Eq⟩(k); a 2-valent tensor is decomposed in the homogeneous n× n-biprojection
into ⟨En⟩(k) and q × q-biprojection into ⟨Eq⟩(k)), and the mixed n× q and q × n projections
into ⟨En⟩(k) and ⟨Eq⟩(k) transposed to each other.

For 1-valent tensor objects (under uni�ed compatible binary structure with {I±} and T ),
the internal and external multiplications in the base Ẽ = T · Ẽ1) are determined as follow:

a′1 · {I±} · a2 = c12, A′
1 · {I±} ·A2 = C12;

√
I± · T · (a1a2′) · T ′

√
I± = B12,

√
I± · T · {A1A

′
2} · T ′

√
I± = B12.

 (464)

These multiplications are translated into original complex quasi-Euclidean space (463).
Thus they may be used in Euclidean geometry including its tensor trigonometry!
Hence, a metric re�ector tensor in the space ⟨Pn+q⟩ executes the following operations:
• it de�nes the space binary structure,
• it determines the admissible transformations,
• it translates internal and external products into the original space ⟨Pn+q⟩c.



11.2 The general Lorentzian group of pseudo-Euclidean rotations 141

In particular, by this way the following analogs of (120) and (121) are inferred:

c12 = tr B12, k(C12, t) = k(B12, t);

a′ · {I±} · a = tr (
√
I± · T · aa′ · T ′ ·

√
I±);

k[(A′ · {I±} ·A), t] = k[(
√
I± · T ·AA′ · T ′ ·

√
I±), t].

 (465)

These scalar characteristics of admitted vector and lineor objects in a pseudo-Euclidean
space are their real-valued pseudonorms, in addition to semi-de�nite norms of sect. 9.2.

For t = r, de�ne the pseudominorant and the pseudodianal:

Mp2(r)A = k[(
√
I± · T ·AA′ · T ′ ·

√
I±), r] = det (A′ · {I±} ·A),

Dl(r)B12 = k(B12, r) = det C12.

 (466)

Rotational matrices and re�ectors compatible with a metric tensor do not change internal
multiplications (464) and scalar angles in W -forms of projective trigonometric functions
of tensor angles between linear objects (vectors, lineors, planars). Note, that in ⟨Pn+q⟩,
re�ectors as well as projectors may be also spherically, hyperbolically, or, generally, pseudo-
Euclidean orthogonal. The same relates to geometric objects too.

1-valent tensor objects are pseudo-orthogonal if C12 = Z, this is similar to (155); and
they are at least partially pseudo-orthogonal if detC12 = 0, this is similar to (229).

If two objects are spherically orthogonal, then they both are either in ⟨En⟩, or in ⟨Eq⟩!
If two objects are hyperbolically orthogonal, then one of them is in ⟨En⟩ and another one is
in ⟨Eq⟩! The latter is true for decompositions of ⟨Pn+q⟩ into its relative subspaces.

Also hyperbolic and spherical analogs of eigenprojectors considered in Ch. 2 operate in
this space as shown, for example, in sect. 6.3.

The set of universal bases is identical to the set of orthospherical rotational matrices
compatible with I± with respect to the trigonometric base Ẽ1 = {I} � see (352):

⟨Ẽ1u⟩ ≡ ⟨Rot Θ⟩ · {I} ≡ ⟨{Rot Θ}⟩,
Rot′ Θ · {I±} ·Rot Θ = {I±} = Rot Θ · {I±} ·Rot′ Θ.

}
(det Rot Θ = +1) (467)

The scalar angles in trigonometric rotations (460) and invariant scalar angles between
linear objects (in W-forms) are real-valued numbers, they may be spherical (θk) or hyperbolic
(γj) compatible separately with the constant-sign or alternating-sign parts of the metric
re�ector tensor I±. In their W-forms, these structures correspond to exactly pure rotational
trigonometric types considered in Ch. 5 and 6:

T = {Rot (±Θ)}can {I±}


. . .

cos θk ∓ sin θk
± sin θk cos θk

. . .

 ⇔


. . .

±1 0
0 ±1

. . .

 , (468)

T = {Roth(±Γ)}can
. . .

cosh γj ± sinh γj
± sinh γj cosh γj

. . .

 ⇔


. . .

±1 0
0 ∓1

. . .

 . (469)
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These structures generate with not admissible modal transformation R′
W two pure types

of general rotational matrices determined with respect to re�ector tensor (457) as in (458)
and a certain new base. These types are orthospherical and hyperbolic:

RW · {Rot Θ}can ·R′
W = Rot Θ = T(1), (T ′

(1) · T(1) = T(1) · T ′
(1) = I),

T ′
(1) · {I

±} · T(1) = {I±} = T(1) · {I±} · T ′
(1), det T(1) = +1;

}
(470)

RW · {Roth Γ}can ·R′
W = Roth Γ = T(2), (T(2) = T ′

(2)),

T(2) · {I±} · T(2) = {I±} = T(2) · {I±} · T(2), det T(2) = +1.

}
(471)

Modal matrices R′
W not compatible with {I±} change it as in (457) and condition (460)

into (458). Thus the group ⟨T ⟩ contains as pure types Rot Θ and Roth Γ (Ch. 6).
Generally, an arbitrary transformation T may be a composition of them with respect to

certain unity base Ẽ1 of their de�nition:

T = · · ·Rot Θ(t−1)t ·Roth Γ(t−1)t · · · . (472)

Hyperbolic rotations in trigonometric cells, by (469), must correspond to two di�erent blocks
from the positive and negative unity parts of a re�ector tensor. If q = 1, the elementary
hyperbolic rotations with their frame axes are (363) and (364). Orthospherical rotations
must be compatible with the positive and negative unity parts of a re�ector tensor as below:

Rot Θ I±[
Rot Θn×n Zn×q

Zq×n Rot Θq×q

]
,

[
+In×n Zn×q

Zq×n −Iq×q

]
. (473)

The zero quadratic Minkowski invariants ρ2(u) = 0, centralized with respect to any centered
admissible bases Ẽ, partitions the pseudo-Euclidean space into three subspaces. For metric
tensor {I±}, the middle of them is the following dividing conic hypersurface of the 2-nd order:

ρ2(u) =

n∑
s=1

x2s −
q∑

t=1

y2t = ρ2(x)− ρ2(y) = 0, or ρ2(u) = u′ · {I±} · u = 0.

The hypersurface is invariant with respect to Lorentz passive bases transformations (460).
According to this equation, the metric ρ(u) is zero over all of the dividing conic hypersurface.
Its generating lines are central middle straight rays. This hypersurface divides ⟨Pn+q⟩ into
its invariant conic internal and external cavities (if n > q) called the internal and external
isotropic cones. The vertex of these two isotropic cones with this dividing hypersurface is
the common origin of all the centralized admissible pseudo-Cartesian bases Ẽk.

For visuality and determinacy, we choose an universal base Ẽ1 for tensor trigonometric
descriptions with the use sometimes of the dividing hypersurface and two cones at n > q. The
external isotropic cone (ρ2(u) > 0) is the open region outside the dividing conic hypersurface,
it is also the union of the subspaces ⟨En⟩(k) in decompositions (462). The internal isotropic
cone (ρ2(u) < 0) is the open region inside the dividing conic hypersurface, it is also the
union of the subspaces ⟨Eq⟩(k) in decompositions (462).

The set of admissible rotations in the space ⟨Pn+q⟩ with respect to any centralized
pseudo-Cartesian base consists of the two connected subsets of Lorentz homogeneous
transformations inside and outside the dividing conic hypersurface, what stipulates isotropy
of these internal and external cones. In general, these motions of any tensor objects have
hyperbolically orthogonal homogeneous and mixed projections into instantaneous ⟨En⟩(k)
and ⟨Eq⟩(k), i. e., these motions realized in these two instantaneous isotropic cones.



11.3 Polar representation of general pseudo-Euclidean rotations 143

Hence, ⟨Pn+q⟩ in the whole is isotropic too for any admissible motions. On the other
hand, the parallel translations into its any point are admissible too, and stipulates homo-
geneity of the space ⟨Pn+q⟩.

If q = 1, then ⟨Pn+1⟩ is the Minkowski space (see in Ch. 12) with its internal double
isotropic cone (ρ2(u) < 0) and external circle isotropic cone (ρ2(u) > 0). In special theory
of relativity (STR), the double internal isotropic cone, where u is time-like, is formed by the
upper and lower conic parts as so called the cone of the future and the cone of the past, i. e.,
in accordance with the positive and negative directions of the ordinate −→y (k)-axis. These
parts are situated inside the same dividing conic hypersurface, in STR called the light cone.
They are the union of the ordinate −→y (k)-axes. In its turn, the external circle isotropic cone,
where u is space-like, is the union of the spaces ⟨En⟩(k).

11.3 Polar representation of general pseudo-Euclidean rotations

Any composite continuous transformation (460), for example (472), of geometric objects in
internal and external cavities of an isotropic cone, with respect to an universal base Ẽ1,
may be reduced to the non-commutative product of hyperbolic and orthospherical modal
matrices (and as general measureless tensors of motions) in the following two polar forms:

T = Roth Γ ·Rot Θ = Rot Θ ·Roth
∠
Γ, (474), (475)

where Roth Γ = {
√
TT ′}S+ =

√
Roth 2Γ = Roth′ Γ = Roth−1 (−Γ),

Roth
∠
Γ= {

√
T ′T}S+ =

√
Roth 2

∠
Γ

are one-valued symmetric arithmetic (and trigonometric) square roots (sect. 5.7, 6.2);

Rot Θ =
√
TT ′−1

· T = Roth (−Γ) · T = T ·
√
T ′T

−1
= T ·Roth (−

∠
Γ) = Rot′ (−Θ).

Note (!): the polar representations strictly correspond to de�nition (351) of ⟨Pn+q⟩.
From (474), (475) the simple connection between these two principal rotations as well as

their two motive hyperbolic tensor angles follows:

Roth
∠
Γ= Rot′ Θ ·Roth Γ ·Rot Θ = Rot (−Θ) ·Roth Γ ·Rot Θ. (476)

Polar representation can be inferred with the use of arithmetic roots by the two ways:

1) T = S+ ·R ⇒ TT ′ = S2, T ′T = R′ · S2 ·R⇒ T ′T = R′ · TT ′ ·R ⇒

⇒
√
T ′T = R′ ·

√
TT ′ ·R ⇒ T =

√
TT ′ ·R = R ·

√
T ′T ; det T = +1 ⇒ R = Rot Θ;

2) (460), (267), (325) ⇒ (TT ′) · I± · (TT ′) = I± = (T ′T ) · I± · (T ′T ) ⇒ (471) ⇒

⇒

{
TT ′ = Roth 2Γ,

√
TT ′ = Roth Γ ⇒ (474),

T ′T = Roth 2
∠
Γ,

√
T ′T = Roth

∠
Γ ⇒ (475);

det T = +1 ⇒ (476).

By (476), Γ and
∠
Γ have the same angles eigenvalues spectrum ⟨γj⟩.
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We shall use widely such polar representations of a general rotational transformation for
simple description of polysteps hyperbolic or spherical principal rotations, for example, of
the relativistic motions in STR, and motions in spherical and hyperbolic geometries.

Further consider the polar representation of trigonometric modal transformations:

T =
√
TT ′ ·R = S1 ·R = (S1 ·R · S−1

1 ) · S1 =

= R ·
√
T ′T = R · S2 = (R · S2 ·R′) ·R.

}
(R = Rot Θ) (477, 478)

The symmetric matrices of principal rotations S1 = Roth Γ and S2 = Roth
∠
Γ are expressed

in (474), (475) in canonical form (324) in the unity base Ẽ1 = {I}. But the latter acts in
the base Ẽ1u = Rot Θ · Ẽ1 and then is transformed in it by the rotation R.
The orthospherical rotation Rot Θ is expressed initially in Ẽ1 = {I} too. But Rot Θ acts
really in the base Ẽ1h = Roth Γ · Ẽ1 and then is transformed in it by rotation S1.

According to (477) the matrix S1 acts in the base Ẽ1 and realizes the base rotation at
the angle Γ, and then the orthospherical matrix R acts in this hyperbolically rotated base
Ẽ1h and realizes the base rotation at the angle Θ. According to (478) the matrix R acts in
the base Ẽ1 and realizes the base rotation at the angle Θ, and then the matrix S2 acts in
this spherically rotated base Ẽ1u and realizes the base rotation at the angle Γ. Both these
modal transformations of the base Ẽ1 are formally equivalent.

Similar sense of these two variants of multiplications S and R appears in a passive
transformation of an element u(1) coordinates:

u(2) = (S1 ·R)−1 · u(1) = R−1 · S−1
1 · u(1) = {R′ · S1 ·R}−1 ·R−1 · u(1) =

= (R · S2)
−1 · u(1) = S−1

2 ·R−1 · u(1) = {S−1
2 ·R · S2}−1 · S−1

2 · u(1). (479)

In a linear pseudo-Euclidean space, separate the full set of right pseudo-Cartesian
bases ⟨T · Ẽ1⟩. All these bases are rotationally connected as det T = +1. Transition
from Ẽ1 to a new base Ẽ may be represented, by (474) and (475), in the following two polar
forms � straight and inverse:

Ẽ = T · Ẽ1 = Roth Γ ·Rot Θ · Ẽ1 = (Roth Γ ·Rot Θ ·Roth−1 Γ) ·Roth Γ · Ẽ1, (480)

Ẽ = T · Ẽ1 = Rot Θ ·Roth
∠
Γ ·Ẽ1 = (Rot Θ ·Roth

∠
Γ ·Rot′ Θ) ·Rot Θ · Ẽ1. (481)

These two forms give the two possible sequences of these hyperbolic and orthospherical
rotations execution. For both these variants: in the left multiplications these matrices are
expressed in the base {I} of their de�nitions; in the right multiplications these matrices are
expressed in the bases of their actions! Hence, these two polar forms realize the principal
hyperbolic rotation in di�erent bases: straight polar form (480) in the base Ẽ1 and inverse
polar form (481) in the other universal base Ẽ1u = Rot Θ · Ẽ1.

For any pseudo-Cartesian base Ẽk, �rst n columns of its matrix determine the subspace
⟨En⟩(k), other q columns determine ⟨Eq⟩(k) in hyperbolically orthogonal sum (462). The
matrix Rot Θ has structure (473), that is why only hyperbolic rotations of any pseudo-
Cartesian base Ẽk give new subspaces ⟨En⟩(j) and ⟨Eq⟩(j) determined by the columns of the
new base Ẽj matrix. If the new base Ẽ connected with Ẽ1 = {I} by a modal matrix T or
Roth Γ, then in the base we have the following identities:

⟨En⟩ ≡ im [Ẽ](n+q)×n ≡ im [T ](n+q)×n ≡ im [Roth Γ](n+q)×n,

⟨Eq⟩ ≡ im [Ẽ](n+q)×q ≡ im [T ](n+q)×q ≡ im [Roth Γ](n+q)×q.

}
(482)
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This means that all trigonometric rotations (460) applied to the Euclidean subspaces ⟨En⟩
and ⟨Eq⟩ in the whole as sets of point elements are reduced to their pure hyperbolic rotation
from (474). In particular, for a Minkowski space ⟨Pn+1⟩, the n and 1 columns of the matrices
Ẽ, T , roth Γ determine the space ⟨En⟩ and the axis −→y as the relative subspaces in the base
Ẽ after the base Ẽ1 rotation by the matrix T or roth Γ.

Hence, the polar formula (474) reduces any admissible transformation T of the two
relative subspaces in the whole from the original base Ẽ1 = {I} into any admissible pseudo-
Cartesian base Ẽ till their pure hyperbolic rotation Roth Γ =

√
TT ′.

The polar representation of a general trigonometric transformation of the relative sub-
spaces in the whole as hyperbolic rotation does not hold for subsets of these subspaces, in
particular, the base coordinate axes. This can be seen in (481): the coordinate axes are
subjected to orthospherical rotation and then hyperbolic rotation.

The matrix of a transformation T , due to (460), is a bivalent pseudo-Euclidean quasi-
biorthogonal tensor. This is true for the matrix of the base Ẽ = T · {I} too. The tensor is
splitted projectively into the pair of symmetric homogeneous (n×n and q× q) and the pair
of mutually transposed mixed (n× q and q × n) tensor projections:
[Ẽ]n×n is orthoprojection of space-like unity basis vectors into the subspace ⟨En⟩(1);
[Ẽ]q×q is orthoprojection of time-like unity base vectors into the subspace ⟨Eq⟩(1);
[Ẽ]n×q and [Ẽ]q×n are mutually transposed oblique projections into ⟨En⟩(1) and ⟨Eq⟩(1).
If the base matrix is transposed, then these projections are re�ected with respect to the
matrix main diagonal. This takes place, in particular, under changing the direction of a
multistep hyperbolic rotation sequence (see in next sect.).

If q = 1, then the matrix Rot Θq×q in (473) degenerates into I. Then in the Minkowski
space ⟨Pn+1⟩, an 1-valent tensor is decomposed in two hyperbolically orthogonal projections
into ⟨En⟩(k) and onto −→y (k); a 2-valent tensor is decomposed in an homogeneous projection
n × n-tensor into ⟨En⟩(k), an invariant scalar onto −→y (k)-axis, and two mixed projections �
n × 1-vectors into ⟨En⟩(k) and onto −→y (k). World events in STR are described here from
the view-point of a relatively immobile Observer with respect to an universal base. Among
them, Ẽ1 = {I} is the simplest original one. Any concrete spherical-hyperbolic analogy
(from sect. 6.2) is realized with respect to this base!

In this Minkowski space, Lorentz transformation (460) of a point element on the −→y (1)-
axis is reduced by polar representation up to either it hyperbolic rotation together with
the ordinate axis (under passive transformation), or it hyperbolic rotation o� the ordinate
axis in the direction given by the orthospherical tensor angle (under active transformation).
Consider two examples with elementary matrices useful in STR.

Example 1.

u(j) = {rot′ Θ · roth Γ · rot Θ}−1 · rot′ Θ · u(1) = {rot′ Θ · roth Γ · rot Θ}−1 · u(1), (483)

where u(1) ∈ ⟨−→y (1)⟩ is a point object with respect to Ẽ1, and u(j) is the same object with
respect to Ẽj = T1j · Ẽ1. However, its pure hyperbolic passive transformation (in brackets)

was realized here from the base Ẽ1u = rot Θ · Ẽ1 into the �nal base Ẽj !

Example 2.

uj = T1j · u1 = {rot Θ · roth
∠
Γ ·rot′ Θ} · rot Θ · u1 = {rot Θ · roth

∠
Γ ·rot′ Θ} · u1, (484)

where u1 ∈ ⟨−→y (1)⟩ is a point element, it generated in Ẽ1 the element uj = T1j · u1. Here
the pure hyperbolic active rotation was realized o� −→y (1) under the angle Θ!
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11.4 Polysteps hyperbolic rotations with polar decomposition

The summarized polysteps hyperbolic rotation is pure hyperbolic if its particular rotations
are trigonometrically compatible with each other (see Ch. 6), i. e., they can be reduced to
cell-forms (324) in common base. In particular, vectors of directional cosines for elementary
hyperbolic rotations in (363) are equal to each other up to coe�cients ±1. If particular
rotational matrices are not trigonometrically compatible (though each of them is compatible
with the given metric re�ector tensor), then a composite formula of non-symmetric (in
general) polysteps hyperbolic rotations can be reduced always till polar forms (474), (475).

Specify the sequence of particular hyperbolic rotations as measureless hyperbolic tensors
of motions, realizing geodesic motions on hyperboloid hypersurfaces, at ρ2(u) = const, and
expressed in the original unity base Ẽ1 = {I}: Roth Γ12, Roth Γ23, . . . , Roth Γ(t−1)t. �
with their canonical form (324) in ⟨Pn+q⟩, either elementary one (363) in ⟨Pn+1⟩.

For descriptive analysis in Ẽ1 = {I}, the matrices in the own bases Ẽk have the new
forms, because the following matrices realize hyperbolic rotations in Ẽk. All these forms
correspond to an adopted tensor {I±}. These sequential bases are transformed as follows:

Ẽ1 = {I}, Ẽ2 = {Roth Γ12}(Ẽ1)
· Ẽ1, . . . , Ẽt = {Roth Γ(t−1)t}(Ẽt−1)

· Ẽt−1.

Translate the matrix Ẽt from the base of its action into the original base Ẽ1 = {I} for
rotations analysis, obtain the dual formula for resulting multisteps transformation:

Ẽt = T1t · Ẽ1 = {Roth Γ(t−1)t}(Ẽt−1)
· · · {Roth Γ23}(Ẽ2)

· {Roth Γ12}(Ẽ1)
· Ẽ1 =

= T1t · Ẽ1 = Roth Γ12 ·Roth Γ23 · · ·Roth Γ(t−1)t · Ẽ1. (485)

It is the Rule of executing multisteps transformations (proved by induction on t ≥ 3).

Ẽ3 = {Roth Γ23}(Ẽ2)
· Ẽ2 = {Roth Γ23}(Ẽ2)

· {Roth Γ12}(Ẽ1)
· Ẽ1 =

= {Roth Γ12 ·Roth Γ23 ·Roth−1 Γ12} · {Roth Γ12} · Ẽ1 = Roth Γ12 ·Roth Γ23 · Ẽ1. (486)

The sequence of the canonical matrices in (485) is inversed (see, for example, [21, p. 428]).
Coordinates of linear objects are transformed passively, but the sequence of the inverse

rotational matrices in their canonical form is direct:

u(t) = Roth (−Γ(t−1)t) · · ·Roth (−Γ23) ·Roth (−Γ12) · u(1) =

= {Roth Γ12 ·Roth Γ23 · · ·Roth Γ(t−1)t}−1 · u(1), (487)

u(3) = Roth (−Γ23) · u(2) = Roth (−Γ23) ·Roth (−Γ12) · u(1) =

= {Roth Γ12 ·Roth Γ23}−1 · u(1). (488)

Active polysteps hyperbolic rotational transformations of generating element u, for example,
in Ẽ1 = {I}, are realized similarly to analogous polysteps hyperbolic transformations of the
base, when particular rotational matrices are ordered inversely (as in (485), because they
are determined and act sequentially with respect to Ẽ1:

ut = Roth Γ12 ·Roth Γ23 · · ·Roth Γ(t−1)t · u1, (489)

u3 = {Roth Γ12 · (Roth Γ23)Ẽ1
·Roth−1Γ12}Ẽ2

·Roth Γ12 · ·u1 =

= Roth Γ12 ·Roth Γ23 · u1 = {Roth Γ23}Ẽ2
· u2. (490)
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Formulae (485)�(490) are special cases of the General rule of polysteps transformations.
Other special cases of the rule relate to similar sequences of principal spherical rotations �
motions in a quasi-Euclidean binary space ⟨Qn+q⟩ (Ch. 8A).

In pseudo-Euclidean geometry, matrices of pure hyperbolic (principal) rotations can be
or not be symmetric, but they are always prime. This depends on the bases of their de�nition
and action. A matrix is symmetric in canonical forms (324), (362), (363) with respect to any
unity base of its de�nition. The matrix T ·Roth Γ · T−1 represents the hyperbolic rotation
with respect to the universal base Ẽ1 and acting in the pseudo-Cartesian base Ẽ = T · Ẽ1.
Prime matrices of hyperbolic rotations also belong to the Lorentz group with the metric
tensor I±. A prime hyperbolic matrix may be represented in Ẽ1 in polar forms (474), (475)
for its analysis. The analogous statements hold for orthospherical rotations Rot Θ and
T ·Rot Θ · T−1 too. They may be expressed with respect to either the original base Ẽ1, or
the base Ẽ = T · Ẽ1 of their action. All pure orthospherical rotations form their complete
continuous subgroup of the Lorentz group of homogeneous (or continuous) transformations.

For a generating or transforming element u, its continuous Lorentz transformations do
not change the value of the invariant ρ2(u) = [T · u]′ · {I±} · [T · u] = u′ · {I±} · u similar
to continuous motions on the hyperboloid surface with invariant ρ2(u) = const!

Further, in order to analyze and reduce the expressions for two-steps and polysteps
hyperbolic rotations, we use again polar representations (474), (475). There hold:

Ẽt = T1t · Ẽ1 = Roth Γ1t ·Rot Θ1t · Ẽ1 = Rot Θ1t ·Roth
∠
Γ1t ·Ẽ1, (491)

Roth Γ13 =
√
TT ′ =

√
Roth Γ12 ·Roth (2Γ23) ·Roth Γ12 =

=
√
Roth (2Γ13),

Rot Θ13 = Roth Γ31 ·Roth Γ12 ·Roth Γ23 = Rot′ (−Θ13) =
= Rot−1 (−Θ13) = Rot′ Θ31 = Rot (−Θ31),

 (t = 3) (492)

u(t) = (Rot′ Θ1t ·Roth Γ1t ·Rot Θ1t)
−1 ·Rot′ Θ1t · u(1) =

= {Roth Γ1t}−1

Ẽ1u
· u(1u),

A(j) = (Rot′ Θ1t ·Roth Γ1t ·Rot Θ1t)
−1 ·Rot′ Θ1t ·A(1) =

= {Roth Γ1t}−1

Ẽ1u
·A(1u).


(t ≥ 3) (493)

The rotation Rot Θ13 is executed separately in the bases of particular rotations actions in
the sequence 31, 12, 23 along of legs of the orthospherical triangle 123 in Euclidean subspace.

So, polysteps hyperbolic geodesic motions of a point element, when ρ2(u) = ρ2 = const,
sequentially produce apices of a certain geometric �gure, for examples, triangle or polygon.
A necessary condition for such entire construction be a geometric �gure is that the sequential
hyperbolic rotations form a closed circuit with summarized hyperbolic angle annihilation:∏

k≥3Roth Γ(k)u1 = Rot Θ1t · u1.
Geometry of such �gures from geodesic hyperbolic segments is realized, for example, on

two invariant hyperboloid hypersurfaces, i. e., generally of maximal dimension, with their
given quadratic centralized Minkowski invariants ρ2(u) = ±R2 (see above in sect. 11.2):

u′ · {I±} · u =

n∑
s=1

x2s −
q∑

t=1

y2t = ρ2(x)− ρ2(y) = ρ2(u) = ±R2, (R = const). (494)
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If R = 0, then, in any admissible to {I± pseudo-Cartesian bases with the same origin,
we have a centralized invariant conic surface dividing the pseudo-Euclidean space into its
internal and external cavities. For pure hyperbolic geometric �gures, their segments are
continuous, that is why, this constructed �gure is contained in exactly one cavity of this
conic surface: either inside the internal cone with ρ2(u) = −R2 (ρ2(y) > ρ2(x)), or inside
the external cone with ρ2(u) = +R2 (ρ2(x) > ρ2(y)).

However from (494) we may get else, as trivial cases, real-valued n- and q-dimensional
spheres with their equations:

∑n
s=1 x

2
s = ρ2(x) = +R2 if we put yt = 0 → ρ2(y) = 0 and

−
∑q

t=1 y
2
t = −ρ2(y) = −R2 if we put xt = 0 → ρ2(x) = 0. They have the usual spherical

geometry for a sphere in Euclidean space. Here the geometry may have place on the spheres
with the radius R in two Euclidean subspaces ⟨En⟩(x) and ⟨Eq⟩(y) in any admissible bases of
the pseudo-Euclidean space ⟨Pn+q⟩.

The active homogeneous Lorentzian transformations perform motions of the generating
element u = T · u1 on this hyperboloid with Minkowski invariant ρ2(u1) = ρ2(u) = const.
If this circuit of hyperbolic motions is complete and closed at t = 3 or t ≥ 3 in (485), i. e.,
these principal hyperbolic motions form on it a closed geometric �gure (hyperbolic triangle
or hyperbolic polygon) with the quadratic Minkowski invariant ρ2(u), then here as the result
is the appearance of the induced secondary orthospherical precession Rot Θ. In Appendix
we'll prove that its orthospherical angle θ is equal to the angular deviation of Gauss�Bonnet
in such a closed �gure in non-Euclidean geometries of constant radius-parameter R, and the
precession is the deviation algebraic cause explained by tensor trigonometry!

In the Minkowski space-time ⟨P3+1⟩ of STR, the orthospherical rotation in (491) is the
result of summing motions (velocities) with di�erent directions eα and eβ . In STR, this is
a secondary rotation. Its well-known case is a Thomas precession. The principal hyperbolic
motion is called a boost. The feature of velocities summation law is explained by hyperbolic
nature of principal motions in this space.

In conclusion of this Chapter note, that the sum of motions is invariant under a choice
either passive or active transformations of coordinates. We choose T for the original base Ẽ1

transformation as a more descriptive variant, and we shall use this in Appendix.



Chapter 12

Tensor trigonometry of Minkowski pseudo-Euclidean
space with geometries of two embedded hyperboloids

12.1 Trigonometric models of bi-associated hyperbolic geometries

Now consider more in details the coaxially oriented pseudo-Euclidean space ⟨Pn+1⟩, i. e., as
geometric Minkowski space and as Minkowski space-time of STR at n = 3 [65]. Due to (462)
at q = 1, it is expressed in the base Ẽk as such a hyperbolically orthogonal direct sum

⟨Pn+1⟩ ≡ ⟨En⟩(k) ⊠−→y (k) ≡ ⟨En⟩(k) ⊠−→ct (k) ≡ CONST {under acting I± or I∓ (17A)}.

Tensor trigonometry in this pseudo-Euclidean space are realized in elementary forms of the
tensor angle Γ and its trigonometric functions (362)-(365) with the frame ordinate axis −→y ,
as q = 1, � see this in sect. 6.5. Note, in any pseudo-Euclidean and quasi-Euclidean spaces
� see in sect. 6.3., the tensor trigonometry in its di�erent kinds is realizable and applicable
due to homogeneity and isotropy of these spaces! First homogeneity and isotropy to the
space-time of events were stated by H. Poincar�e [63, 64]. We use two quadric relations for
de�nitions in the base Ẽ1 of ⟨Pn+1⟩ of two perfect hyperboloidal hypersurfaces (Ch. 6A) with
di�erent topologies and Minkowski invariants ρ2(v) = +R2 and ρ2(u) = −R2 at R = const:

v′ ·{I±}·v =

n∑
s=1

x2s−y2 = ρ2(x)−y2 = ρ2(v) = +R2 = (±R)2, (||x||E > |y|P ), (495− I)

u′ ·{I±}·u =

n∑
s=1

x2s−y2 = ρ2(x)−y2 = ρ2(u) = −R2 = (iR)2, (||x||E < |y|P ). (495− II)

Here u and v are the radius-vectors of points on these hyperboloidal hypersurfaces, x is their
vector projection into ⟨En⟩, y is their scalar projection onto −→y (and ||u||P = ||v||P = R).
As invariant geometric objects in Ẽ1 = {I}, they are Minkowski hyperboloids I and II [65].
They have own two non-Euclidean geometries: two-sheets hyperbolic (II) and one-sheet
hyperbolic�elliptical (I) � see further. Their internal geometries are equivalent to their
external tensor trigonometries, with exactness up to coe�cient of similarity "R". (Such a
property relates to all perfect surfaces � see their de�nition in the Introduction.)

Due to equation (I), for any value of the ordinate y it is possible on a hyperboloid I

to realize spherical �gures (till circles) of radius r = +
√
y2 +R2. Due to equation (II),

for the values of the ordinate |y| > R it is possible on a hyperboloid II to realize also

spherical �gures of radius r = +
√
y2 −R2. Their equations are

∑k
s=1 x

2
s = r2, (k ≤ n).

At ρ2 = 0, these equations give an asymptotic invariant isotropic or light cone, dividing
and placing these geometric objects in external and internal cavities of the cone (Figure 4).
Our measureless hyperbolic tensor of motion (363) as roth (±Γ) ≡ F (±γ, eα) determines
homogeneous motions of the points u and v on both these Minkowski hyperboloids, � as well
as our measureless spherical tensor of motion (314) as rot (±Φ) ≡ F (±φ, eα) determines
homogeneous motions of the point u on the Special hyperspheroid. All these main geometric
objects are constructed in the universal base Ẽ1 = {I}, in order to study descriptively on
them various types of motions and equivalent rotations in their enveloping binary spaces,
using various spherical�hyperbolic analogies. (They are trigonometric at parameter R = 1.)
Hyperboloids are invariant to Lorentz transformations (sects. 6.3, 6,5, 11.2). Hyperspheroid
is invariant to new Special transformations, introduced by us in sects. 5.7, 5.12, 6.3. Both
hyperboloids with R = 1 may be seen in cut at n = 2 on Figure 4 with hyperbolic motions
on them. Their initial points (the unique u1 for II and, for example, v1 for I) are rotated
hyperbolically into other ones uk and vk along the pure hyperbolic meridians of II and I.
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Figure 4. Trigonometric models of the hyperboloids II (tangent-secant) and I
(cotangent-cosecant), and of the hyperspheroid (sine-cosine) � in their upper parts.

A. Trigonometric correspondence between points of the Minkowskian hyperboloids I and II
(at R=1) in the cut by centered pseudoplane in ⟨Pn+1⟩. The hyperbolic angles are presented:
acute principal γ, complementary υ, especial ω (sinh ω = 1), right in�nite δ, obtuse υ ⊎ δ.
B. Trigonometric models in the universal trigonometric base Ẽ1 = {I}, or projective models
with respect to the Cayley absolute oval into the projective hyperplane ⟨⟨En⟩⟩.

(I) one-sheet hyperboloid I of ρ = ±R with cylindrical topology and cotangent model,
where coth (γ, υ) = cosh(υ, γ), identical to projective model outside the Cayley oval,
(II) a two-sheets hyperboloid II of radii ρ = +iR (upper) and ρ = −iR (lower) with �at
topology and tangent model identical to projective Klein model inside the Cayley oval,
(3) tangent-cotangent projections with Klein disk and Cayley oval as an isotropic cone,
(4) conjugate parallel straight lines (geodesic) inside and outside the Cayley oval,
(5) correspondences between straight lines (geodesic) inside and outside the Cayley oval.
Rotation of a time-like hyperbola generates the one sheet hyperboloid I (it is seeming as

"horn shaped"). Rotation of two space-like hyperbolae generates the hyperboloid II from two
coupled sheets (they are seeming as two symmetric cups) inside the external double cone.
One sheet hyperboloid I has radii +R (y ≥ 0) and −R (y < 0). Two sheets hyperboloid II
has 1-st sheet radius +iR (y ≥ +R) and 2-nd sheet radius −iR (y ≤ −R). This stipulates
their constant radius-parameter R at constant negative Gaussian curvature KG in ⟨Pn+1⟩.
Rotation of a large circle around the ordinate axis −→y generates a hyperspheroid with radius
R in the base Ẽ1. This stipulates its constant radius-parameter R at constant positive
Gaussian curvature KG. These rotations are executed with (n− 1) degrees of freedom.
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Centered (with the center O) pure hyperbolic motions in Ẽ1 of radius-vectors u1 (space-
like) and v1 (time-like) at Figure 4 on these hyperboloids are expressed by rotational matrix
functions roth Γ = F (γ, eα) due to formulae (362), (363). Non-centered in Ẽ1 hyperboloidal
motions of elements u2 and v2 are presented as purely hyperbolic only as centered in Ẽ2 as
T12{roth Γ23}Ẽ1

T−1
12 � see (490) in sect. 11.4. In both these cases, it is possible to have own

orthospherical rotations dα(1) and dα(2) as independent or secondary induced ones in polar
decomposition (111A). (The angle γ ranges in [0; +∞) if dy > 0 and in [0;−∞) if dy < 0.)
(The angle γ ranges in [0; +∞) if dy > 0 and in [0;−∞) if dy < 0.)

On the hyperboloid II in ⟨Pn+1⟩, the extent of space-like geodesic hyperboloidal arcs is
the pseudo-Euclidean external natural measure of a length λ in the base Ẽ1, expressed in the
centered cutting k-th pseudo-Euclidean plane. On the hyperboloid I in ⟨Pn+1⟩, the extent
of time-like geodesic hyperboloidal arcs is the pseudo-Euclidean external natural measure
of a length λ in the base Ẽ1, expressed in the same centered cutting k-th pseudo-Euclidean
plane; but the extent of space-like extremal ellipsoidal arcs is the pseudo-Euclidean external
natural measure of a length λ in Ẽ1, expressed in the centered cutting j-th pseudo-Euclidean
plane. In all these cases, these cutting planes include the point O and such lines arcs. Since
these hyperboloids are perfect hypersurfaces (see in Introduction and Chs. 6, 6A, 7A, 8A),
their natural λ and angular λ/R Lambert measures expressed proportionally with radius-
parameter R. Their external pseudo-Euclidean geometries are isometric to their internal
non-Euclidean geometries. Hence, both hyperboloids have own isometric external pseudo-
Euclidean and internal non-Euclidean geometries on their perfect superfaces of constant
radius-parameter R with a�ne and cylindrical topologies. They may be simplest descriptive
isometric representations in ⟨Pn+1⟩ of two certain real-valued n-dimensional non-Euclidean
geometries with natural l and angular l/R measures of a length of segments and arcs.

The two-sheets hyperboloid II with space-like hyperbolae as principal geodesics has
natural measures λγ with its angular γ. The upper and lower parts of a hyperboloid II are
reduced by tangent cross projecting to the isomorphic �nite tangent model as the Klein open
disk (ball at n > 2), with its a�ne topology of usual ⟨En⟩, on the projective hyperplane
⟨⟨En⟩⟩ inside the Cayley oval of radius R (trigonometric circle at R = 1), when γ → tanh γ,
cosαk = constk, k = 1, . . . , n (Figure 4). In the Klein disk, hyperbolic and hyperboloidal arcs
are mapped as straight segments in own cross bases (Chs. 4A, 7A). The tangent projections
of two limit circumferences of radius R from two upper and lower parts of a hyperboloid II are
asymptotes inside to Cayley oval (with orthospherical arcs r ≤ R). External geometry of II
is isometric and hence homeomorphic to the internal Lobachevsky�Bolyai geometry [40�42],
with their identical natural measures and the same parameters n and R [52, 53]. Indeed,
tangent or Klein model is also projective map of the Lobachevsky�Bolyai plane or space into
the homogeneous coordinates onto the same projective hyperplane as n-dimensional disk
(ball) of radius R without its border inside the Cayley oval in ⟨⟨En⟩⟩. (This �rst �nite model
of the Lobachevsky�Bolyai plane was anticipated by Eugenio Beltrami in 1868 [44, 45]!)

The geometries on both sheets of a hyperboloid II are di�erent only in the signs of the
hyperbolic angle and of its directional vector in trigonometric matrices for mirror-symmetric
motions with respect to ⟨En⟩. Latter statements must true also for two antipodal parts of
the two-sheets Lobachevsky-Bolyai space and geometry. If R = c, then at n = 3 this radius-
vector, as time-like 4-velocity c of Poincar�e [63], gives proper v∗ and coordinate v velocities
as its hyperbolic sine and tangent orthoprojections into ⟨⟨E3⟩⟩. In the Kleinian model, the
natural measures of a length (for both geometries) are transformed into projective tangent
measure R tanh(λ/R) ≡ R tanh(l/R), identi�able in the projective hyperplane ⟨⟨En⟩⟩ with
Euclidean measure inside the Cayley oval. This projective measure is limited by R. Note,
if R → ∞, then two sides of Klein disk together with two sheets hyperboloid II are trans-
forming into two in�nite antipodal Euclidean spaces ⟨En⟩. On the n-D hyperboloid II in
⟨Pn+1⟩, the hyperbolic n-D space with the Lobachevsky�Bolyai geometry maps without
problems for any n ≥ 2. But this has not place in its real-valued isomorphism � see below.
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On the hyperboloid II (top sheet), diametrical hyperbolic lines inside the Cayley oval
has the center O, which is the center of projecting in Ẽ1 and the origin for counting the
Euclidean tangent measure inside the Caylay oval at R = 1 (Figure 4). If γ → 0 at any R,
the natural measure λ = Rγ and the projective Euclidean tangent measure R tanhλ/R
in the projective Euclidean plane ⟨⟨En⟩⟩ are became identical as Rγ → R tanh γ with the
In�nitesimal Pythagorean theorem on the hyperboloid II (see in detail in Chs. 7A and 10A).
If R = c, then it is the hyperboloid of 4- and 3-velocities.

For the hyperboloid II, the countervariant visual spherical Lobachevsky parallel angle
Π(a) = ξ, correct in universal base Ẽ1, is produced from the chain: tanh γ = sechυ ≡ cos ξ,
where υ and γ are countervariant and covariant hyperbolic parallell angles in hyperbolic
geometries, correct in any admitted pseudo-Cartesian bases � see in detail to the end of Ch. 6.

Corollary 1. The Minkowski hyperboloid II of constant radii +iR and −iR in ⟨Pn+1⟩ has
interal n-D hyperbolic non-Euclidean geometry, with a�ne topology, isometric to the two
separated antipodal Lobachevsky-Bolyai geometries. Its internal geometry is equivalent to its
external tensor trigonometry in ⟨Pn+1⟩ with the exactness up to the similarity coe�cient R.

The one-sheet hyperboloid I with time-like hyperboloidal geodesics and space-like
ellipsoidal extremals is mapped by cotangent cross projecting into the isomorphic in�nite
cotangent model on the projective hyperplane ⟨⟨En⟩⟩ outside the double Cayley oval as the
double ring with two its external radii R and without external borders, when γ → coth γ,
cosαk = constk, k = 1, . . . , n (Figure 4). Its �rst measure λγ with γ associates this cotangent
model of I with the tangent model of II through the double Cayley oval. Indeed, the four
conjugate pure hyperbolic lines on I and II may be interpreted as the quadrohyperbola in the
common cutting pseudoplane on the trigonometric hyperbolic diagram (Figures 3 and 4).
Such a pseudoplane is determined by two coupled eigenvectors along isotropic diagonals of
roth Γ. In result of such projecting, the centered pseudoplane with the quadrohyperbola cuts
the projective two-sided hyperplane [⟨⟨En⟩⟩] along four straight lines as projective maps of the
quadrohyperbola in their United tangent-cotangent projective �at model inside and outside
double Cayley oval. The cotangent projections of two limit circumferences of radius R from
the upper and lower parts of a hyperboloid I are asymptotes outside to Cayley oval, but for
the two sheets hyperboloid II its both limit circumferences of radius R from two upper and
lower parts are asymptotes inside double Cayley oval contrary each to another in tangent
projection of II and cotangent projection of I at R tanh γ = R coth γ = R if γ →∞.

Express simultaneously the equivalent connections of the natural length λ23 of segments
between two points on the hyperbolic lines: on the hyperboloid II with Euclidean tangent
projective length R tanhλ/R and on the accompanied to it hyperboloid I with Euclidean
cotangent projective length R coth γ = R coth(λ/R) as di�erence [−R(coth γ13 − coth γ12)]
outside the Cayley oval for the cotangent projective model. Then, in a collinear case, a length
of the segment between two points on the hyperbolic geodesic with natural hyperbolic and
Euclidean tangent�cotangent projective lengths are calculated in the tvs-forms as follows:

u2 = {roth Γ12} · u1, u3 = {roth Γ12} · {roth Γ23} · u1 → u23 = u3 − u2, Γ23 = Γ13 − Γ12.

v2 = {roth Γ12} · v1, v3 = {roth Γ12} · {roth Γ23} · v1 → v23 = v3 − v2, Γ23 = Γ13 − Γ12.

λ23 = R · ln

√
(1 + tanh γ13)(1− tanh γ12)

(1− tanh γ13)(1 + tanh γ12)
≡ R · ln

√
(coth γ13 + 1)(coth γ12 − 1)

(coth γ13 − 1)(coth γ12 + 1
.

The identical formulae for a distance between points correspond to the Rule of tangent-
cotangent summing collinear hyperbolic motions in Appendix (time-like and space-like).
They are interpreted through Caylay oval the unity of the �at tangent-cotangent common
model with conjugated straight projections in ⟨⟨En⟩⟩, as it is demonstrated at Figure 4.
But all this applies so far only to the hyperbolic part of the hyperboloid I non-Euclidean
geometry. Its internal geometry includes pseudo-normally directed time-like hyperboloidal
geodesics and space-like ellipsoidal extremals, separated by the gorolines with zero metric.
The closed ellipsoidal geodesics lead to the cylindrical topology of the hyperboloid I.
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On the hyperboloid I, these three types of extremal curves exist together: hyperboloidal
with time-like slope, ellipsoidal with space-like slope and gorolines with in�nity slope. In
each point hyperboloidal and ellipsoidal curves are intersected. See more in Chs. 7A and 10A.

The hyperboloid I is also perfect regular hypersurface, but as hyperbolic�elliptical one;
and, maybe, there is corresponding to it a certain real-valued hyperbolic�elliptical perfect
regular surface, with the same hyperbolic�elliptical internal non-Euclidean geometry. This
hyperbolic�elliptical non-Euclidean geometry is 3-rd one and it is additional to the well-
known classic elliptical and hyperbolic non-Euclidean geometries. However it has a feature
as the limited freedom of motions of the geometric �gures due to its cylindrical topology.
Generally, it is clarity seen, how two points on the hyperboloid I can be connected uniquely
with two manners: either by hyperbolic or hyperboloidal segments, and either by circular or
ellipsoidal extremals in two direction, i. e., without restrictions in the base Ẽ1. Of course,
such simple solutions for two points do not relate to motions of �gures.

The projective open ring between two upper and lower Cayley ovals (without them) in
the closed whole two-sides projective hyperplane [⟨⟨En⟩⟩], as the �at cotangent map of the
entire hyperboloid I, is equivalent topologically to cylindrical space ⟨Cn⟩. It is produced
continuously through the conventional in�nitely far border between two sides of the projec-
tive hyperplane (in its upper and lower halves). This border is projected into the in�nite
cotangent map � as if an equator of the hyperboloid I at Figure 4, when γ =∞ (coth γ = 1).
If R → ∞, the hyperboloid I is transforming into the in�nite cylindrical pseudo-Euclidean
space (but its cotangent projection is transforming into in�nite Euclidean double ring).
If`R = c, it is a hyperboloid of cotangent supervelocities (chs. 4A, 6A). Note, that this
hyperbolic-elliptical non-Euclidean geometry is presented in both cavities of isotropic cone.

Corollary 2. The Minkowski hyperboloid I of constant pseudo-normal radii ±R in ⟨Pn+1⟩
has internal n-D hyperbolic�elliptical non-Euclidean geometry, with cylindrical topology, and
in�nitesimally pseudo-Euclidean. Its internal geometry is equivalent to its external tensor
trigonometry in ⟨Pn+1⟩ with the exactness up to the similarity coe�cient R.

The super descriptive, whole and �nite tangent model of the hyperboloid I is realized as
its tangent projection onto the projective cylindrical pseudo-Euclidean hypersurface [⟨⟨Cn⟩⟩]
with the same radius R = 1 and with the heights ±R = ±1 , centered in Ẽ1 along the axis

−→y
upper anf lower of the center O. Its lateral cylindrical surface is bounded from above and
below by two Cayley ovals (trigonometric circles) without them. From the trigonometric
point of view, this model is a tangent map under γ → tanh γ, cosαk = constk, k = 1, . . . , n.
Such map is the descriptive Special cylindrical tangent model of the hyperboloid I, realized on
the lateral cylindrical pseudo-Euclidean hypersurface [⟨⟨Cn⟩⟩], where the original hyperbolic
and hyperboloidal geodesics are mapped as if straight lines on this cylinder under their
visual inclination φR = |π/2| and φR > |π/4|, the original circular and ellipsoidal extremals
are mapped as if elliptical curves on this cylinder under their visual inclination φR = 0
and φR < |π/4| (with horocycles between them at φR → |π/4|). The time-like hyperbolic
angular Lambert measure γ of a length is transformed into the tangent projective measure
R tanh a/R. The space-like spherical angular Lambert measure φ of a length works here
for the elliptical and circular maps. This model is identical topologically also to open
cylindrical region outside and between two Cayley ovals without them. It includes the
centered circular conventional border between its upper and lower parts as if the spherical
n-equator of the hyperboloid I. This cylinder tangent model is ideal for geometric projective
summation of time-like �nite segments of the hyperbolic geodesics and of space-like �nite
arcs of the elliptical extremals.

Both ring and cylindrical models of the hyperboloid I are conventionally two-sided, as
they are divided not topologically into halves, with positive and negative values of y. Passage
from one side to another of the models corresponds to passage through the equator of I.

Metric forms of hyperboloids and hyperspheroid are considered in details in Appendix
(Chs. 6A, 7A, 10A) in connection with the theory of regular curves in ⟨Pn+1⟩ and ⟨Qn+1⟩.
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Main Inference. The United internal non-Euclidean geometry of both conjugated Minkowski
hyperboloids � I with cylindrical topology and II with a�ne topology of its upper and lower
parts, all with the same radius�parameter R, and separated asymptotically by the isotropic
cone, so in the original base Ẽ1, is equivalent completely to the Tensor Trigonometry of the
enveloping Minkowski space ⟨Pn+1⟩ with exactness up to the constant scale parameter R.

Note, that analogous Main Inference is inferred for the Special hyperspheroid, presented
at Figure 4 and having the frame axis −→y (introduced us preliminary in Chs. 5 and 6), its
internal non-Euclidean geometry with spherical topology is equivalent completely to the
Tensor Trigonometry of the enveloping quasi-Euclidean space ⟨Qn+1⟩ with this exactness.

The tangent Whole United Cylinder-model of hyperboloids I and II consists of two parts:
the Special cylindrical tangent model of I as lateral surface of the cylinder with radius R
and, on the heights ±R of this cylinder, the two Kleinian disks of radius R of the �at tangent
model of II, as upper and lower bases of this cylinder. For these concomitant hyperboloids
and their trigonometric models, the dividing asymptotically hypersurface (isotropic cone)
and its �nite tangent-cotangent projection ((n−1)-dimensional Cayley oval or trigonometric
circle at R = 1) are automorphisms. In the base Ẽ1, this oval is determined by the equation:

x21 + · · ·+ x2n = R2.

Let us dissect at n = 2 this �nite tangent projective Whole United Cylinder-model of
hyperboloids I and II by the centered cutting plane under a certain angle φR(γ) to plane ⟨E2⟩.
If this angle is zero, we have an equivalent map as the real equator of the hyperboloid I.
If this angle less π/4, we get on the cylindrical hypersurface one (at n = 2) closed elliptical
curve as a map of the space-like ellipsoidal extremal on the hyperboloid I. If this angle is π/4,
we get on the cylindrical hypersurface two isotropic segments till the two Cayley ovals as a
map of two horocyrcles on the hyperboloid I with zero metric. If this angle more π/4, we get
four one-to-one connected straight segments: two ones on the cylindrical hypersurface as a
map of two time-like hyperboloidal curves on the hyperboloid I and two ones on the two
Kleinian disks as a map of two space-like hyperboloidal curves on the hyperboloid II. Thus,
on this model, they form an united closed projective quadrangle cycle from two pairs of
the connected in�nite parallel lines. Its four apexes lie formally on the two Cayley ovals.
Such a geometric tangent projective sum in the Minkowski space ⟨Pn+1⟩ of both conjugated
complex-valued n-dimensional hyperboloids, dividing asymptotically by isotropic cone, as
the united three sheets non-Euclidean hyperplane with its complete Lorentz group, can be
mapped entirely into the whole two-sided projective n-dimensional hypersurface [⟨⟨En⟩⟩]
with topology of n-sphere.

This closed construction maps the United non-Euclidean hypersurface of three sheets
in ⟨Pn+1⟩ is as if "the world in a water drop". In sect. 6.4 we considered so the hyperbolic
tensor trigonometry on a pseudoplane with solving interior and exterior right triangles,
where time-like and space-like hyperbolae at Figure 3 were as the future prototypes of both
Minkowski hyperboloids in this Chapter.

Note (!!!), that continuing the cylindrical tangent model of I, we'll transfer only to the
non-descriptive and in�nite semi-closed cylindrical cotangent model of II.

Our external tensor-trigonometric approach to analysis of the Minkowski hyperboloids
in pseudo-Euclidean space (q = 1), with vector and scalar projections from the introduced
and used widely tensor trigonometric functions, represents descriptively and correctly these
two objects initially in the unity universal base Ẽ1 = {I}. At the same time, this universal
base is the initial one for similar representation of the hyperspheroid in the quasi-Euclidean
space. See on Figure 4 (at (q = 1). As a result, we can apply or notice the abstract and
speci�c spherical-hyperbolic analogies from Ch. 6 in their connected and understandable
tensor trigonometric considerations - see later in Chs. 6A, 7A, 8A, 10A of the Appendix.

The opportunities of our Tensor Trigonometry in these binary perfect spaces are more
widely! So, we'll see this in Appendix at simplest constructions of various screwed motions!
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Thus, the hyperboloid I and the Beltrami pseudosphere are itself-homothetic objects of
common similarity coe�cient R, i. e., similar to trigonometric variants at R = 1. Besides,
they have the same Gaussian curvature KG = −1/R2 and are homeomorphic. Due to the
Minding Theorem, both these geometric objects must be as if isometric in the large each
to another. But, despite on these properties, there is one essential di�erence between them.
Namely, the Minkowski hyperboloid I is a perfect hypersurface in ⟨Pn+1⟩, but the Beltrami
pseudosphere does not relate to the set of perfect surfaces, as it is embedded correctly in
the Especial quasi-Euclidean binary space with one step principal spherical rotations and
polysteps orthospherical ones, isometric to motions on the pseudosphere. Therefore, both
these geometric objects are only one step isometric in the large! See in detail about the
pseudosphere in Ch. 6A with its construction from the hyperboloid I together with generating
tractrix and their pure trigonometric equations and metric forms also in one parameter R.
Note, that local isometry of the Beltrami pseudosphere with the hyperboloid II, due to the
Beltrami interpretation [44], is based on as if Lobachevsky�Bolyai geometry, as it is realized
in the region of only hyperbolic geodesics motions � see in Ch. 6A. The pseudosphere was
discovered by Ferdinand Minding in 1838 [43] as a surface of constant negative Gaussian
curvature. Its area and volume were occurred by �nite in contrast to these hyperboloids!

The �x idea about a possibility of the rigorous geometry in which the Fifth Euclidean
Postulate may be not hold and the Hypothesis of the acute Saccheri angle [35) can be valid
on "some imaginary sphere" was expressed �rst by Johann Lambert in 1766 [36]. Later it
became more precise: the �rst property is a feature of geometry in the large, the second
property is a feature of geometry in the small. They are bound in geometry with the free
motions of �gures. Carl Gauss made some drafts in this direction [39]. Ferdinand Schweikart
introduced the factor parameter R of this geometry [37]. Franz Taurinus (his nephew)
suggested a model of such geometry on a hypothetic sphere of imaginary radius, revealed
that the sum of angles in its hyperbolic triangle is less π [38] and proved internal consistency
of its planimetry at n = 2. Intuitive Lambert�Taurinus geometry anticipated the completely
developed non-Euclidean geometry by Lobachevsky�Bolyai [40-42] presented in the certain
hyperbolic plane and space. Many later, in XX century, this hyperbolic geometry as its
complex-valued analog was presented by H. Jansen on the Minkowski hyperboloid II in
1909 [52]. In 1868 Eugenio Beltrami realized it in 1868 [44, 45] locally, but as time-like, on
real-valued pseudosphere as a peculiar surface (Ch. 6A), which was discovered and analyzed
earlier by Ferdinand Minding in 1840 [43] as with constant negative Gaussian curvature. The
Kleinian projective model [48] reduced the problem of its non-contradiction on the whole to
that of Euclidean geometry. David Hilbert proved that 2-dimensional Lobachevsky�Bolyai
geometry can not be realized on the whole on some non-peculiar Riemann surface embedded
into the 3-dimensional Euclidean space, as the Gaussian internal geometry [48]. But it does
not mean that this geometry can not be realized on a saddle Riemann surface in a (3 + k)-
dimensional Euclidean space. Such surface must have constant negative curvature. If its
embedding into an Euclidean space of minimal dimension is possible, then this should mean
solvability of the Beltrami problem. The �rst results in this direction was obtained for ⟨E6⟩
and more for ⟨E6n−5⟩ by D. Blanusha in 1955 [50]. Later also other authors made a lot of
contributions, particularly, E. Rosendorn in 1960 for ⟨E5⟩. The Beltrami problem was solved
peculiarly by the original manner as the same embeddability, but into ⟨Pn+1⟩, � see above.

De�nition of an n-dimensional Riemannian surface and its geometry is not interrupted
of an enveloping Euclidean superspace, but it is interrupted only of its dimension, which
a priori may be in [(n+1),∞). A posteriori the dimension may be quite de�nite. Dimension
of a Riemannian surface is the same for all its homeomorphisms, it is equal to dimension
of a tangent Euclidean space in all its points. The latter generalized an one-dimensional
tangent line to a curve, but dimension of its embedding may be in [2,∞). So, an in�nite
regular curve of constant spherical curvature can not be realized on a plane, however, it is
realizable in the 3-dimensional Euclidean space as a screw line.
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A similar curve of constant hyperbolic curvature is realizable in a pseudoplane as the
hyperbola. Ulisse Dini, else in XIX century, with solving a problem posed by Beltrami of
representing one surface on a second surface in such a way that geodesic lines in the �rst
correspond to geodesic lines in the second [46] (in our Ch. 6A as hyperbola ↔ tractrix),
opened the helical twisting of the Beltrami pseudosphere into pseudospherical helicoid with
constant negative curvature. He eliminated for pseudosphere irregularity in enveloping space,
turning its circular equator in screw transforming in in�nitely far horocycle. Interestingly,
his teacher was Eugenio Beltrami, his favorite student was Ricci Curbastro � 3 geniuses!!!

Isometric images of the hyperbolic non-Euclidean geometry with completely free motions
of �gures in di�erent surfaces (a hyperboloid II upper, a Lobachevsky�Bolyai hyperbolic
space, a real-valued Riemannian surface of constant negative curvature) di�er very much
in visuality and complexity. The cylindrical hyperbolic-elliptical geometry may be clearly
realized isometrically both on the hyperboloid I in ⟨P3+1⟩, and as one step one on the
Beltrami pseudosphere in the real-valued Especial quasi-Euclidean space (see in Ch. 6A).

12.2 Rotations and deformations in their elementary tensor forms

There is isomorphism of the admissible rotations in the enveloping pseudo-Euclidean or
quasi-Euclidean spaces and motions on the embedded into them hyperbolic or spherical
hypersurfaces with radius R, what is inferred by their proportionality with respect to R.

The point elements v and u on the Minkowski hyperboloids I and II in ⟨Pn+1⟩ are
determined by their pseudo-Cartesian coordinates (xk, y), k = 1, . . . , n, as a rule, in the
base Ẽ1 (Figure 4). Any elements on these hyperboloids with radius-parameter R may be
uniquely determined by "n" especial parameters in the base Ẽ1 as follows: u = Ri for the
hyperboloid II (with ρ = +iR) and v = Rp for the hyperboloid I (with ρ = +R), where
i = (sinh γ · eα, cosh γ)′ and p = (cosh γ · eα, sinh γ)′ are the unity time-like and space-like
4-vectors in ⟨Pn+1⟩; eα = ⟨cosαk⟩ is their Euclidean vector of directional cosines cosαk,
k = 1, . . . , n (i. e., for vector sine on II or cosine on I). In brackets, the orthoprojections in
Ẽ1 of these unity vectors are given. For the point u on the hyperboloid II on its upper part,
−→y is the frame axis for counting absolute value of hyperbolic angle γ formed with its radius-
vector Ri. Therefore n independent coordinates are su�cient, because

∑n
k=1 cos

2 αk = 1.
For the point v on the one-sheet hyperboloid I, its frame axis lies in ⟨En⟩, and it is always
symmetrical with the axis −→y with respect to the dividing isotropic conic hypersurface.
It forms the same hyperbolic angle γ with its radius-vector Rp. In the tensor trigonometry
we use scalar, vectorial and most general tensor angles of motive and projective types � see
their initial de�nitions and connections in Chs. 5 and 6.

Tensor functions of the motive complementary angles Γ and Υ, including rotation and
deformation, can be reduced in ⟨Pn+1⟩ with {I±} to their canonical hyperbolic forms (31A).
With decompositions (324)-(327) and formulae (360), (361), we obtain the useful relations:

roth Γ = coshΓ + sinhΓ = coth (±Υ) + csch Υ = roth Υ,

defh Γ = sech Γ + tanhΓ = tanh(±Υ) + sech Υ = defh Υ.

}
(where eαe

′
α =

←−−−
eαe

′
α)

roth Γ = roth Υ∣∣∣∣ cosh γ ·
←−−−
eαeα′ +

−−−→
eαeα′ sinh γ · eα · · · coth υ ·

←−−−
eαeα′ +

−−−→
eαeα′ csch υ · eα

sinh γ · e′α cosh γ · · · csch υ · e′α coth υ

∣∣∣∣. (496− I)

defh Γ = defh Υ∣∣∣∣ sech γ ·
←−−−
eαeα′ +

−−−→
eαeα′ − tanh γ · eα · · · tanh υ ·

←−−−
eαeα′ +

−−−→
eαeα′ −sech υ · eα

+tanh γ · e′α sech γ · · · +sech υ · e′α tanh υ

∣∣∣∣. (496− II)
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sinh(Γ,Υ) = csch (Υ,Γ), cosh(Γ,Υ) = coth (Υ,Γ). tanh(Γ,Υ) = sech(Υ,Γ).

cosh2(Γ,Υ)− sinh2(Γ,Υ) = I = coth2(Υ,Γ)− csch2(Υ,Γ)− two invariants.

tanh2(Γ,Υ) + sech2(Γ,Υ) = I = sech2(Υ,Γ) + cosh2(Υ,Γ)− quasi-invariant.

 (496− III)

Corollary 3. In right triangles in ⟨Pn+1⟩ with angles γ, υ and in�nite angle δ there hold:
γ+υ < δ =∞ and in addition γ = υ ↔ γ = ω ↔ υ = ω, Γ = Υ ⇔ Γ = Ω ⇔ Υ = Ω � see
original trigonometric relations (359)-(361) between these complementary angles (Ch. 6).

We used Rules 4 and 5 (Ch. 5) for the tensor functions of motive angles (rotations and
one-step deformations) with expansion in Ch. 6 and here to hyperbolic tensor analogues.

So, after exchanges in the cotangent-cosecant rotational function as in (496-1) of the angle
Γ by its complementary angle Υ as the operation Γ→ Υ, according to these Rules, the new
matrix function in Υ gives rotation again at Γ. This is spread into ⟨Pn+1⟩. Analogous
peculiarity acts for principal spherical rotations and one-step deformations in Ch. 5A.

These one-to-one functional connections of Γ and Υ in tensor variant of relations (360),
Ch. 6, in tensor pseudo-Euclidean right triangles in ⟨Pn+1⟩ rise geometrically thanks to
the fact that the usual hyperbolic cosine-sine orthogonal projecting with the angle Γ is
equivalent to the hyperbolic cotangent�cosecant cross projecting with the complementary
angle Υ, what is shown descriptively at Figure 4.

Factually in the sine-cosine pair the hyperbolic angle γ plays role of an acute angle in
the hyperbolic right triangles (sect. 6.4), but in the cotangent-cosecant pair this hyperbolic
angle plays role of the same, but of complementary hyperbolic angle inside the hyperbolically
obtuse angle as intrinsic one (with in�nite angle +δ) at the contrary vertex of the right
triangle! See this peculiarity in triangles on two sides of Cover to our book. It manifests
itself in an unusual way in several places in the Appendix, explaining the dark places.

As we have seen, tensor trigonometry in its vector projective forms gives descriptive
isometric models of both concomitant hyperbolic non-Euclidean geometries on corresponding
to them the Minkowski hyperboloids I and II of the radius-parameters R or 1. Tangent
and cotangent models display geodesic motions on them in their geometries into rectilinear
mappings onto the projective plane or the projective cylinder. They display a linear part of
motions as 1-st metric forms on the local tangent plane or pseudoplane at these hyperboloids.

Besides, invariants, quasi-invariants or modules for paired vector trigonometric functions
of the same kinds of hyperbolic angles are similar to ones for the scalar functions of angles,
because their valency is equal to 1. Thus, modules of these functions are bound by scalar
relations (359), (360). For instance, all they form the invariants above in the pairs of sine-
cosine and cotangent-cosecant (the latter is true only in hyperbolic geometries).

The vectorial nature of such linear mappings allows us in external geometries to impart
this nature for two- and more steps metric forms of the 1-st order with the preservation
of their scalar characteristics as the module values of the vectors. But their unity vectors
determine the directions of motions in these forms. As we have seen above, such metric forms
of absolute motions or segments on these hyperboloids in their geometries are mapped either
into the tangent Euclidean and pseudo-Euclidean plane, or into the tangent Euclidean and
pseudo-Euclidean cylindrical surface.

The unity hyperboloids I and II are ideal models for displaying metric forms of relativistic
motions � the most varied! Even the cylindrical enveloping surfaces for swirling motions also
�guratively �ts into the vector trigonometric model, in that number, as partial fragments
of its complete model. Examples of such two-step, multisteps and integral motions, with
simplest important types of motions, are studied in Chs. 5A, 6A, 7A, and more generally in
3D and 4D tensor forms in last Ch. 10A.
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In pseudo-Euclidean Minkowskian spaces ⟨Pn+1⟩ admissible hyperbolic deformations, as
one step transformations with respect to the universal base Ẽ1 (where they are commutative),
are of interest too. They have tangent-secant form (496) and canonical structure (364) in
the universal base. Deformations are made in the pseudoplane at the same tensor angle Γ.
With respect to the base of the diagonal cosine Γ, these matrices and the metric re�ector
tensor have the following binary-cell structure in the eigen pseudoplane:

{defh Γ}can {roth Γ}can I± (q = 1)


. . .

sech γ − tanh γ
+tanh γ sech γ

. . .

 ,


. . .

cosh γ sinh γ
sinh γ cosh γ

. . .

 ,


. . .

+1 0
0 −1

. . .

 .

This structure generates, similarly to (471), the pure type of the elementary (as q = 1)
hyperbolic measureless deformational tensors (one step) in the original base Ẽ = R′

W · Ẽ1:

RW · {defh Γ}can ·R′
W = defh Γ,

defh′ Γ · defh Γ = I = defh Γ · defh′ Γ,

 (det defh Γ = +1.)

Modal matrices R′
W are not compatible with {I±} and change it as in (457). And the

deformation do not belong to the Lorentz group as they do not satisfy (458) or (460). Note,
that matrices defh Γ act in sub-pseudoplanes, but matrices rot Θ act in sub-planes.

Recall also the following distinction of tensor deformations: Rule 2 (sects. 5.7, 6.2)
for summing trigonometrically compatible angles-arguments does not hold for deformations,
though any deformational matrices with their compatible angles commute with each other!
However such tensors may be used widely for cross non-Cartesian projecting in ⟨Pn+1⟩. So,
cross projecting in the space ⟨P3+1⟩ gives the mathematical model for Lorentz contraction
of a moving object extents coaxially to the direction of physical motion � see in Ch. 4A.

Spherical�hyperbolic analogy of the two types (abstract in any Ẽ and speci�c in Ẽ1)
generates quart-circle (341), Ch. 6 from elementary motive matrix transformation functions:

rot (iΓ) ≡ defh (−iΦ) ⇔ roth Γ ≡ def Φ
⇕ ⇕

rot Φ ≡ defh Γ ⇔ roth (−iΦ) ≡ def (iΓ).

All the matrices compatible with the metric re�ector tensor act here in the same planes and
pseudoplanes in the universal base Ẽ1. Thus, if the initial conditions act, there hold:

defh Γ · I± · defh Γ = rot Φ · I± · rot Φ = I± = roth Γ · I± · roth Γ = def Φ · I± · def Φ.

And four relations in the circle with respect to the universal base Ẽ1 hold in hyperbolic
as well as spherical geometry. That is why they are represented with angles Γ and Φ of
rotation, and their middle re�ector tensor is I± ≡ Ref {cos Φ̃}⊖ ≡ Ref {cosh Γ̃}⊖.

In the pseudo-Euclidean trigonometry in ⟨Pn+1⟩ and external hyperbolic geometry on
hyperboloids, with respect to admissible pseudo-Cartesian bases, de�ning relations (348),
(349) hold; in quasi-Euclidean trigonometry in ⟨Qn+1⟩ and external spherical geometry on
hyperspheroid, with respect to admissible quasi-Cartesian bases, de�ning relations (257),
(258) hold. Between them, the simple trigonometric relations act with the use of functions
φ(γ) and γ(φ) introduced by us in Ch. 6 with respect to the universal base Ẽ1.
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In process of non-collinear polysteps or integral hyperbolic motions in ⟨Pn+1⟩ and on
both these hyperboloids, we'll deal with the secondary orthospherical rotations of these
non-point geometric objects moving in them. There is a deep distinction between matrix
representations of rot Θ and roth Γ. For roth Γ, the angle γ is counted from the current
time-like frame axis −→y and space-like frame axis xk. Structures (362, 363) and pseudoplane

of rotation γ are determined by directional cosines with respect to Cartesian sub-base Ẽ
(3)
1 .

Representation of rot Θ is de�ned by its general structure (473). So, in ⟨P2+1⟩, the
structure of rot Θ includes the 2 × 2-block as its elementary spherical cell of the rotation
in the Euclidean plane. In ⟨P3+1⟩, the structure of rot Θ includes the 3 × 3-block as its
elementary spherical cell of the rotation in the Euclidean plane inside sub-space ⟨E3⟩. It
represents the orthospherical rotation with �xed normal axis rN [21, p. 447]. This plane of
the rotation, normal to the axis, are determined by the directional cosines of the normal
axis of rotation rN ∈ ⟨E3⟩ with respect to the Cartesian part of the universal base Ẽ1 = {I}:

rot Θ

cos θ +
r21

1+cos θ
−r3 + r1r2

1+cos θ
+r2 +

r1r3
1+cos θ

0

+r3 +
r1r2

1+cos θ
cos θ +

r22
1+cos θ

−r1 + r2r3
1+cos θ

0

−r2 + r1r3
1+cos θ

+r1 +
r2r3

1+cos θ
cos θ +

r23
1+cos θ

0

0 0 0 1

. (497)

Consider the angles Γ and
∠
Γ in polar representations (474�476), Ch. 11 for the cases

of direct and inverse orders of two-step pure hyperbolic motions γ12, γ23 (γ23, γ12) with

their tensor structures (362, 363) and their directional cosines cosσk, cos
∠
σk, k = 1, 2, 3:

eσ = {cosσk}, e∠
σ
= {cos ∠

σk}. Applying structures (362, 363) with formula (476) we obtain:

rot′ Θ3×3 · {eσ · e′σ} · rot Θ3×3 = e∠
σ
· e∠

σ

′,

e∠
σ
= rot′ Θ3×3 · eσ = {e∠

σ
· e′σ} · eσ = sec θ ·

←−−−−−−
{e∠

σ
· e′σ} · eσ,

e′σ · e∠
σ
= e′∠

σ
· eσ = cos θ = tr [rot Θ]3×3/2− 1.

 e2 · e′1 =

←−−−−
e2 · e′1
cos θ12

(498)

In ⟨E3⟩ ∈ ⟨P3+1⟩, the unity vectors eσ and e∠
σ
, by (498), uniquely determine the vector

of spherically normal axis of rotation rot Θ3×3 as the following vectorial sine product:

−→rN (θ) =

 r1
r2
r3

 = e∠
σ
× eσ =

 cos
∠
σ2 cosσ3 − cos

∠
σ3 cosσ2

cos
∠
σ3 cosσ1 − cos

∠
σ1 cosσ3

cos
∠
σ1 cosσ2 − cos

∠
σ2 cosσ1

 = − sin θ · −→eN . (499)

{| sin θ| = ||rN || =
√
r21 + r22 + r23 , tr rot θ = 2(cos θ + 1).}

We have (det{e∠
σ
, eσ,
−→rN} > 0→ θ < 0), i. e., as the triple (e∠

σ
, eσ,
−→eN ) is left-handed. The

orthospherical shift angle θ in (498), (499) is also counterclockwise as the orthospherical angle
ε between unity vectors eα and eβ of 1-st and 2-nd hyperbolic motions. But in ⟨E3⟩ ∈ ⟨P3+1⟩
and in non-Euclidean hyperbolic geometry (Ch. 7A), they are contrary as in (499). A cause
of this fact is explained clear by our tensor trigonometry, as in it scalar and tensor hyperbolic
angles with hyperbolic increments are imaginary-valued due to their nature � see in detail

to the end of Ch. 10A. Therefore, we have here the Rule sgn θ13 = −sgn ε ! (For two-step

spherical principal rotations in ⟨Q2+1⟩ and motions in the spherical geometry with real-

valued angles (Ch. 8A), under the same condition, we get the Rule sgn θ13 = +sgn ε ! .)
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12.3 The Mathematical principle of relativity

All statements concerning ⟨Euclidean, quasi-Euclidean, pseudo-Euclidean⟩ geometry with-
out its a�ne contents have covariant forms in any ⟨Cartesian, quasi-Cartesian, pseudo-
Cartesian⟩ base of ⟨Euclidean, quasi-Euclidean, pseudo-Euclidean⟩ space. So, any geometry
with the simplest quadratic invariant as a set of its own theorems does not depend in part
of these theorems on a choice of its admissible base. In other words, ⟨Euclidean, quasi-
Euclidean, pseudo-Euclidean⟩ geometries conserve covariant forms under their admissible
transformations as ⟨orthogonal, quasi-orthogonal, pseudo-orthogonal⟩ and translations.

The mathematical principle of relativity takes place in any �at geometry with quadratic-
type metric � thus, in the Minkowski geometry. For instance, in STR space-time, it is a
mathematical source for the physical Postulate of Relativity by Galilei-Poincar�e (1636, 1904),
that all physical laws have covariant forms in any uniformly rectilinearly moving frames of
reference up to nearly light velocity, i. e., under Lorentz transformations. The physical-
mathematical isomorphism unites two Principles. Lorentzian transformations do not change
the absolute Minkowskian space-time with dividing asymptotic hypersurface as light cone:

⟨P3+1⟩ ≡ ⟨E3⟩(k) ⊠−→ct (k) ≡ CONST, (n = 3, q = 1); ∆ct > 0 ! (500)

Contrary, k-th ⟨E3⟩ and −→ct are relative, change under the Lorentzian transformations of
the bases, but always complementary! Though they with their coordinate axes stay in own
external and internal cavities of the cone. Although space ⟨E3⟩(k) and time-arrow

−→
ct (k) are

relative, but mutually dependent as direct hyperbolically orthogonal complements in ⟨P3+1⟩.
Due to identity (500), there exists an one-to-one correspondence between them. Therefore,
for STR this formula is the mathematical expression of the Poincar�e�Minkowski inference
about relativity, mutual dependence and unity of the space and the time! Pay especial
attention here to the fact that the Nature's Euclidean subspace is just as relative as the time!

Let Ẽm = roth Γ(v) · Ẽ1, where v is the velocity. In the pseudoplane ⟨P1+1⟩ of this
rotation-motion, time and space coordinates axes in Ẽm are seeming in Ẽ1 as if dilated in the
direction of v with coe�cient cosh γ ≡ secφ(γ) in the Euclidean metric in Ẽ1. Though they
conserve in ⟨P1+1⟩ pseudo-Euclidean metric of length as in the base Ẽ1 too � see at Figure 4.
By this graphic reason, Hermann Minkowski in 1908 [66]) introduced for his new coordinates
of relativistic space-time on such a pseudoplane the terms "dilation" for its time and space
coordinates axes in moving system Ẽm. However on the pseudoplane ⟨P1+1⟩, in Ẽm, we
have relativistic decreasing time and space interval of the given event with the coe�cient
cosh−1 γ(v) (Ch.5A) compared with ones in Ẽ1. Such identical decreasing is caused by
constancy of light velocity in any Ẽm, according to the Einsteinian physical Postulate [67].

Such polysteps decreasing of a space coordinate is not a one step Lorentzian contraction,
Though both are gotten by cosine projection. Lorentzian contraction of space objects is
gotten by cross projecting as a consequence of their seeming hyperbolic deformation (Ch. 4A).

In the 4D Lagrangian space-time ⟨L3+1⟩ ≡ ⟨E3⊕−→t ⟩ ≡ CONST; ∆t > 0, E3 ≡ CONST′,
the Laws of the classical mechanics are form-invariant with respect to a choice of Galilean in-
ertial frames of reference, or under Galilean transformations. It is the physical-mathematical
form of the Galilean Principle of Relativity. The Lagrangian space and time-arrow form an
absolute unity, as their sum is direct, but they are not orthogonal and, hence, not mutually
dependent as in (500). From the mathematical point of view, the Lagrangian space-time
is a simple case (at n = 3, q = 1) of the general a�ne-Euclidean space ⟨En ⊕ Aq⟩ with
the a�ne-Euclidean geometry and the Galilean group of a�ne-Euclidean transformations.
The latter do not change the Euclidean subspace ⟨E3⟩ and the scalar time t: here they are

absolute in Newtonian sense. Time-arrow
−→
t under slope tan v is not constant as a directed

world line in ⟨L3+1⟩. It is subjected to so-called "middle rotations" � between spherical and
hyperbolic ones with respect to ⟨E3⟩ (see more further in Ch. 1A of Appendix).
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From the other side, continuous transformations in Minkowskian space-time ⟨P3+1⟩ carry
out relativistic elementary hyperbolic principal rotations with also elementary orthospherical
induced ones in accordance with its re�ector tensor {I±}. Moreover, the space-time �xa-
tions of any geometric objects are subjected to relativistic hyperbolic deformations, which
are described completely in the cross base Ẽi,j with immobile Observer. Relativistic nature
of the Lorentz transformations takes place according to hyperbolic nature of principal rota-
tions and deformations. With Einsteinian physical approach [67], STR was based, in that
number, with the as if axiomatic de�nition of events simultaneity. Factually this de�nition
corresponds to the theorem in ⟨P3+1⟩, that the median and height in the pseudo-Euclidean
right triangle are identical, which motivated the quadratic metric in the space-time of STR.

The abstract and speci�c spherical�hyperbolic analogies (the latter with respect to the
universal base) connect initially quasi-Euclidean and pseudo-Euclidean geometries, and also
as a consequence the spherical and hyperbolic types of non-Euclidean geometries of the same
radius-parameter R. This enables one to describe them sometimes in the enveloping binary
spaces ⟨Qn+1⟩ and ⟨Pn+1⟩ by similar clear approaches based on the Tensor Trigonometry.

In the Lobachevsky�Bolyai geometry, a magnitude R is called the Gauss�Schweikart
Constant (1/R = K characterizes the distortion with respect to the �at Euclidean space);
iR is the radius of a "hypothetical Lambert imaginary hyperbolic sphere" , realized in 1909
by H. Minkowski as the upper sheet of his hyperboloid II. This J. Lambert's original idea
and its development by F. Taurinus pointed out the simplest and natural way for realization
of the whole hyperbolic non-Euclidean geometry on the hypothetical sphere of imaginary
radius iR. This way became quite possible after introducing pseudo-Euclidean space of q = 1
by H. Poincar�e in 1905 [63] and later in 1909 by H. Minkowski [65] as space-time of STR.

A. Sommerfeld in 1909 established hyperbolic nature of the Poincar�e � Einstein Law
of relativistic velocities summation [86], considered its acting as if on the sphere with the
imaginary radius ic. V. Vari�cak in 1910 conjectured that this Law of velocities summing is
identical to the segments' summing in Lobachevsky�Bolyai geometry [87]. Later F. Klein
constructed the theoretical basis for this Law, when he proved that the Lorentzian group
in STR is equivalent to the group of motions in the Lobachevsky�Bolyai space. Before he
interpreted this geometry in the large (1871) in the purely projective model inside the Cayley
oval on the projective plane, which was anticipated by E. Beltrami in 1868 [44]. In 1928
F. Klein added this projective model on the projective plane, using the hyperboloid II of
radius-parameter R with the sames hyperbolic geometry enveloped in the pseudo-Euclidean
space of Minkowski [48].

The scenario for the further development of events in this area of geometric and physical
researches was predetermined. The decisive role in understanding that di�erent ways of
constructing the same non-Euclidean geometry lead to identical �nal results was played by
the projective models of Klein and Poincar�e. And the choice of the simplest and most visual
way of displaying and analytical study of non-Euclidean geometries with their applications in
physical theories comes to the fore, what, for example, the tensor trigonometry gives by clear
tools. Due to this all, as important applications, the tensor trigonometry interpretations
of various motions in non-Euclidean geometries and in the Theory of Relativity with its
kinematics and dynamics are exposed in Appendix, in addition to its fundamentals in Part II.

For your better understanding the author's presentation of Appendix with comments in
its physical part, which concerns applications of Tensor Trigonometry in Theory of Relativity,
we decided that it will be very useful to refer a little and maximum objectively, i. e. only on
the basis of reliable facts given in the literature sources without some PR, to the history of
the origin of this relativistic theory in the early XX century, in which three extraordinary
personalities participated, each with own contribution in it, as the great scienti�c revolution.
The author �rmly adheres to the Rule that True Science should not be in�uenced by national
and political lobbyists, as was in the twentieth century and, unfortunately, this crown of
thorns of the fundamental Sciences has not up to now been eliminated completely.
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Thus, it is appropriate to cite, thanks to French source [103], a very revealing and useful historically
absentee dialogue between the greatest and most honest scientists of the early 20th century.
Henri Poincar�e from his pioneer and well-known article �Sur la dynamique de l'�electron.� //
Comptes Rendus de l'Acad�emie des Sciences, Paris, v. 140, 5 juin 1905 [63]:

�Le point essential, �etabli par Lorentz, c'est que les �equations du champ �electromagn�etique ne
sont pas alter�ees par une certaine transformation, que j'appellerai du nom de Lorentz et qui est de
la forme suivante: ..................................................... .�
Hendrik Lorentz from his reaction on this pioneer article by Poincar�e:

�Ce furent les consid�erations publi�ees par moi en 1904 qui donn�erent lieu �a Poincar�e d'�ecrire
son article, dans lequel il a attach�e mon nom �a la transformation dont je n'ai pas tir�e tout le parti
possible . . . J'ai pu voir plus tard dans le m�emoire de Poincar�e que j'aurais pu obtenir une plus
grande simpli�cation encore. Ne l'ayant pas remarqu�e, je n'ai pas �etabli le principe de relativit�e
comme rigoureusement et universellement vrai. Poincar�e, au contraire, a obtenu une invariance
parfait . . . et a formul�e le Postulat de relativit�e, terme qu'il a �et�e le premier �a employer.�
Against present situation in the Exact Sciences area, both must be ranked as Saints!
The pseudo-Euclidean space-time with group of Lorentz transformations, introduced and named so
by Henri Poincar�e, and his Postulate of Relativity from 1904 with fundamental relation E = mc2

discovered by him yet in 1900 [62], are the true foundation of the Theory of Relativity in 1904�1905,
what is more, in modern understanding. All other following attributes are became derived concepts.
The name of this new theory was later given by Max Planck as "Theory of Relativity".

Some physicists are proud that Einstein in his article from 30 June 1905 [67] with derivation of
space and time coordinates transformations, but well-known then and without reference to Lorentz,
managed with, as it seems to them, two purely physical Postulates without the serious mathematics,
as Poincar�e did in his works. But what is the Einstein's proof from the point of view of mathematics.

According to the Einsteinian de�nition of simultaneity with two contrary light beams ways for
�xing of the simultaneity of two events in the moving and resting frames Ẽ, they must meet at the
middle point of the path, that is, at the median of the right triangle formed with these light beams.
But then this median must also be the height of this right triangle, since the relative time and space
must be orthogonally additive each other. This fact of identity of the median and the height in
the external and internal right triangles is a Theorem of pseudo-Euclidean geometry (introduced by
Poincar�e initially on the pseudoplane), which was accepted implicitly. Although from such de�nition
it would be possible to substantiate long-known Lorentzian contraction. Inference in similar di�cult
cases as always: �The Devil is in details�. It is Minkowski, Poincar�e's friend and Einstein's teacher,
on advised Einstein to study Poincar�e's theory, which Einstein did without citing Poincar�e [110].
Carried away from youth by Dostoevsky's novels with their extreme heros and philosophy (�If there
is no God, then everything is allowed!�), for a long time Einstein did not attach importance to the
need to refer to previous authors and had be subjected to well-known ostracism from some eminent
German scientists with Nobel laureates, and from England by eminent Edmund Whittaker [106].

In its turn, at the beginning of the 20th century, Poincar�e's writings were very popular and
much larger than those of Ernst Mach with his positivism. In 1904, he was even invited in the USA
to give lecture for American physicists and mathematicians, that popularized his relativistic ideas.

In 1900, in the article �La Th�eorie de Lorentz et le Principe de r�eaction" [48], Poincar�e, with

publication of formula m = E/c2, gives relativistic interpretation to the "temps local de Lorentz":

�C'est le temps d'observateurs mobiles qui r�eglent leurs horloges par des signaux optiques en ignorant

le mouvement de translation dont ils sont anim�es.� In 1902, in own popular book �La Science et l'

Hypoth�ese� he writes: �Il n'y pas d'espace absolu, et nous ne concevons que des mouvements relatifs

. . . Il n'y pas de temps absolu: dire que deux dur�ees sont �egales, c'est une assertion qui n'y pas de

sens par elle-m�eme et qui ne peut en acqu�erir un que par convention . . . Nous n'avons pas l'intuition

directe de la simultan�eit�e de deux �ev�enements qui se produisant sur deux th�e�atres di�erents . . . Nous

pourrions �enoncer les fait m�ecaniques en les rapportant �a un espace non euclidien ..." The essence

of new relativistic theory was published by him yet before his academic publication [63].

Nevertheless, the contribution of the very young at that time and recent student Albert Einstein

(of 26 years), consisted in the facts that he began to operate realistically with time scales in the

di�erent Galilean frames near the light velocity under his physical concept of events simultaneity,

in inferring his Law of summing two relativistic velocities, which seemed fantastic for that era!



APPENDIX

Trigonometric models of motions in STR
and non-Euclidean Geometries

Preface

In Appendix we consider a lot of general or speci�c applications of tensor trigonometry in
geometries and physics. For this we use our tensor trigonometric functions in the so-called
elementary form with its single principal eigen angle and at it the unity vector of directional
cosines eα. This angle determines intensity and direction of geometric or physical motions.
It is accompanied with the orthospherical angle either θ or α caused by rotation of the
directed vector eα. All they are used for complete tensor trigonometric descriptive analysis
of these motions in a�ne-Euclidean, pseudo-Euclidean and quasi-Euclidean spaces with the
index q = 1 and in embedded into them metric spaces of constant radius (and, therefore, of
constant Gaussian curvature) with their non-Euclidean geometries. The main idea of such
approach consists in that tensor trigonometry of these pseudo- and quasi-Euclidean spaces
exist in one-to-one correspondence with non-Euclidean geometries of parameters n and R!
All their common results are represented in the simplest and clear trigonometric forms. So,
the widely used in STR so-called relativistic factors β and γ correspond in our notations to
functions tanh γ and cosh γ of the angle γ with expansion till vector and tensor analogues.

In Chapter 1A, for initial illustration and use of these opportunities, the main Postulates
and notions of the Special Theory of Relativity (STR) in the Minkowski space-time are
represented in hyperbolic forms according to the original group approach of Poincar�e in
June 1905 [47] and then by Minkowski in 1909 [49]. Stated in the Theory of Relativity,
according to our tensor trigonometric approach, isotropy and homogeneity of the space-time
of events allow us to use the trigonometry in most wide aspects, than in its scalar form on the
pseudo- and quasi- planes. This was impossible in the non-isotropic Lagrange space-time.

In the frame of the trigonometric aspects, we give renewed and universal conception of the
parallel angle for both types non-Euclidean geometries in the hyperspaces of constant radius-
parameter R, embedded respectively into quasi-Euclidean and pseudo-Euclidean spaces.
Due to this conception, initial de�nitions of both types non-Euclidean geometries can be
realized through a choice of the parallel angle type, whether spherical or hyperbolic, with
corresponding to their nature two variants of the global behavior of parallel lines. As it was
demonstrated in the Chapter's end, the Lobachevskian parallel angle is strictly correct only
in the case of the spherical type geometry, because it has a spherical nature. The universal
parallel angle is de�ned in the universal base Ẽ1 of the enveloping or tangent space. In
STR the hyperbolic parallel angle is de�ned also in Ẽ1, which corresponds to the immovable
ObserverN1 in the Minkowski space-time. And it is covariant, i. e. identical to the hyperbolic
motion angle γ, de�ned initially in scalar form by velocity as γ = artanh v/c. (Chapter 1A.)

The basic parameters of motions in the tensor trigonometric versions of non-Euclidean
geometries, quasi- and pseudo-Euclidean geometries and also of STR are the tensor angles
of hyperbolic and orthospherical rotations as in (259), (313, 314), (324), (362, 363), (497).
The principal tensor angles Φ, Γ and Θ are arguments of their rotational matrix-functions
rot Φ, roth Γ and rot Θ as measureless tensors of motion. So, in STR the tensor hyperbolic
interpretations of Einsteinian dilation of time and Lorentzian contraction of extent with
concomitant to them relativistic e�ects are expressed very easy through hyperbolic rotation
and deformation of coordinates. The Einsteinian physical Postulates with his de�nition of
events' simultaneity are simplest theorems in the pseudo-Euclidean space-time, introduced
in �rst by Henri Poincar�e in June of 1905 (Chapters 2A÷4A.)
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One-to-one correspondence between kinematic characteristics of relativistic inertial and
uninertial motions of material objects or particles in Minkowski space-time with their tensor
trigonometric models are established and used. For beginning, we constructed trigonometric
descriptive models of various collinear motions (at eα = const) relating to the rectilinear
physical movements. Thus, we exposed the hyperbolic motion at g = const on a time-like
hyperbola with coordinate velocity v, on a kinematic catenary with proper velocity v∗, and,
with our original method, on a kinematic tractrix with supervelocities s and s∗ under trans-
lation from pseudo-Euclidean space into two Special quasi-Euclidean spaces with primary
hyperbolic and real spherical equations for a catenary and a tractrix of two kinds (of Huygens
and of Minding). (In Ch. 10A we'll realize the tensor trigonometric model of pseudoscrewed
motion as the 2-nd type of uniform motion at g = const.) Such Minding tractrix equations
was used for presentation of the Beltrami pseudosphere, realized in the Especial quasi-
Euclidean space ⟨Q2+1

T ⟩↕ with one-step admitted principal spherical motions and polysteps
admitted orthospherical motions. We stated that two catenaries with two catenoids and two
tractrices with two tractricoids are not mapping correctly in the usual Euclidean space, but
only in their four Special quasi-Euclidean binary spaces! We added these surfaces by their
four metric forms in the vector-scalar trigonometric presentations. The result is proved:
The Minkowski hyperboloid I in ⟨Pn+1⟩ is one-step isometric with the Beltrami pseudo-
sphere in 4-th ⟨Qn+1

T ⟩↕ at n ≥ 2 and common R, i. e., only for their one step principal
motions and polysteps orthospherical ones. By passing way, the hyperbolic relativistic analog
of the Ziolkovsky cosmic formula is gotten. We calculated the cosmic travel on the "photon
rocket" with an ideal reversible regime to the nearest Star "Proxima Centauri". However
its disappointing conclusion: similar even optimal travels, but with acceleration g, for the
contemporary people (non-robots) are unreal in reasonable times! (Chapters 5A, 6A)

The general laws of summing two-steps, polysteps and integral non-collinear principal 3D
rotations in ⟨P3+1⟩ and ⟨Q3+1⟩ around their frame axis, limiting by constant radius R = 1
due to the rotational Tensor Trigonometry, were inferred in their scalar, vector, tensor
("tvs") forms with their polar representation and revealing secondary orthospherical shift.
And general tensor trigonometric formulae for the continuous Lorentzian (as a group) and
Special quasi-Euclidean (as also a group!) transformations were inferred. The general laws
of summing 3D two-steps, polysteps, integral angular motions on curvilinear hypersurfaces
in ⟨P3+1⟩ or ⟨Q3+1⟩ under their non-Euclidean geometries of constant radius-parameter R,
with motions (velocities, including superlight) in STR with Looking Glass, are isometric
with the general laws of rotations above with exactness till factor R. Therefore both these
rotations and motions have isomorphic own groups. For two-steps motions, we represented
these laws in non-commutative sine and tangent biorthogonal forms with the Big and Small
Euclidean Relative Pythagorean theorems reduced them to the initial Euclidean subspace.
But in the case of the second di�erential principal motion in two-steps ones, the induced
di�erential secondary orthospherical angular shift is revealed as the Thomas precession. In
our tensor trigonometric analysis in the quasi-Euclidean, pseudo-Euclidean, non-Euclidean
geometries and in the Theory of Relativity, we connected also the secondary and induced
orthospherical angular shift by its common nature: (1) with the Harriot�Lambert angular
deviations (excess or defect) in convex �gures on the non-Euclidean hypersurfaces of the
radius-parameter R; (2) with the relativistic Thomas precession in the STR, and (3) with the
Coriolis acceleration in result of motions in the pseudo-Euclidean space along a curvilinear
trajectory. Our tensor trigonometric compared descriptions in the base Ẽ1 and the base
Ẽm have revealed the most universal and simplest formula for these induced angular shifts,
including in time, as "the di�erence between real local rotation and its cosine orthoprojection
into the original Cartesian subbase". These di�erence and shift are negative for hyperbolic
cosine and positive for spherical cosine. We constructed the tensor trigonometric isomorphic
models for kinematics and dynamics of a material body at integral non-collinear motions
with the induced and oscillating Thomas precession. (Chapters 7A, 8A)
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The main measureless concept of the tensor trigonometry in STR is the hyperbolic tensor
of motion roth Γ(m) = F (γ, eα), generated proportionally with constant coe�cients m0c
the relativistic dynamic tensor of momentum and energy. It produces the pseudo-Euclidean
interior right triangle of three momenta P0 = m0c, P = mc and p = mv = m0v

∗ with the
Absolute pseudo-Euclidean Pythagorean Theorem in ⟨P3+1⟩. The own 4-momentum P0 as
the hypotenuse has own scalar invariant of the Lorentzian transformations. An additional
important concept is the hyperbolic tensor of deformation defh Γ = D(γ, eα) decreasing sizes

of any moving object in the original Cartesian subbase Ẽ
(3)
1 in the direction of velocity from

its own sizes in moving Ẽ
(3)
2 with the Lorentzian seeming contraction. (Chapter 4A, 5A, 7A)

With the use of abstract and speci�c spherical-hyperbolic analogies, a number of similar
notions, formulae and theorems are given and inferred in their spherical kinds in the so-called
quasi-Euclidean space with index q = 1 and on the embedded into it Special hyperspheroid
of the constant radius R with its non-Euclidean spherical geometry. In addition to all these,
we proposed the simple tensor trigonometric model of the geographic globe. (Chapter 8A)

In Chapter 9A, under the enough logical having and new arguments, we adopt that
novel opportunities exist for correct studying and description of various relativistic motions
in the presence of gravitation, with simplest and correct interpretations of all well-known
GR-e�ects, in the same Minkowski space-time, using our tensor trigonometric approach in
its tensor-vector-scalar (tvs) forms and, in addition, of the di�erential tensor trigonometry.
The historical merit that inertia of any massive object is created by the mass of the Universe
as a whole belongs to Ernst Mach [55] � eminent physicist and philosopher of science. True,
the mechanism of action of this fantastic hypothesis remained unclear for a long time. Even
Albert Einstein in his GTR refused it. This unique Mach system, associated with the center
of Mass of the Universe, speci�ed a priori the unique inertial system of Galileo, as Newtonian
too, for example, for space-time, and relative to it all other Galilean systems. In 1964, the
necessary theory was created by Peter Higgs [82], which explained, that during development
of the Universe with formation of its Mass, the latter produces the speci�c Higgs �eld.
It creates the Galileo's inertia of matter as a speci�c force of the Nature. Moreover, just like
in space-time by Poincar�e � Minkowski, the inertia at any point and in any direction of
this �eld in the Universe depends only on the mass of any object, in accordance with the
Galileo's Law! That is, this new material �eld of the Universe is homogeneous and isotropic,
and, therefore, it combines with the space-time by Poincar�e � Minkowski. Furthermore, due
to the Newton's classical Equivalence Principle, inertial and gravitational mass are identical,
and this fact has been repeatedly and accurately con�rmed, starting with Newton's own
experience. The term �uniform rectilinear motion� in the Higgs Theory has also been revived
in the relativistic space-time! His material �eld is, as it were, a reincarnation of the rejected
by Einstein world ether. I hope that this brief explanation commented to readers why the
author develops, since �rst publication of this book in 2004 [15], various applications of his
Tensor Trigonometry in the Theory of Relativity with the Poincar�e � Minkowski space-time.

In Chapter 10A, we developed the di�erential tensor trigonometry of world lines in the
�at Poincar�e � Minkowski space-time ⟨P3+1⟩ with the unity trigonometric accompanied
Minkowski hyperboloids I and II, and of regular curves in the 3D and 4D quasi-Euclidean
spaces ⟨Qn+1⟩ with the unity accompanied hyperspheroid. The pseudo-Euclidean motions
correspond to plane and spatial physical relativistic movements in 3D Euclidean space.
We have identi�ed that the tensor-vector-scalar metric forms of 3D Minkowski hyperboloids
relate one-to-one to the full 3-steps metric form of any world lines. This relates also to the
both connected metric forms of 3D hyperspheroid. These forms were expressed in the 4D
Absolute Euclidean and pseudo-Euclidean Pythagorean theorems and in the 3D Relative
Euclidean Pythagorean theorems. We given tensor trigonometric models of pseudoscrewed
world lines and all quasiscrewed curves. The former correspond to the planetary movements.
In addition to the Frenet�Serret theory in ⟨E3⟩, we created the theory of world lines in ⟨P3+1⟩
and regular curves in ⟨Q2+1⟩ and ⟨Q3+1⟩ with movable tetrahedron and two trihedrons.



Additional notations

{I±} or {R′
W I±RW } = {

√
I }S and {I∓} or {R′

W I∓RW } = {
√
I }−1

S are metric re�ector
tensors of the pseudo-Euclidean space ⟨Pn+1⟩ by Minkowski and of its Looking Glass, or as
only a re�ector tensor of the quasi-Euclidean space ⟨Qn+1⟩,

ζ � dimension of embedding of the given regular curve into binary space ⟨Pn+1⟩ or ⟨Qn+1⟩,

Ẽ1 � the base for canonical trigonometric matrix forms, the initial unity base, in that number,
as the universal unity base for realization of speci�c spherical-hyperbolic analogy (in STR,

it is the base of relatively immovable Observer); Ẽ
(n)
k ⊂ Ẽk is the Cartesian subbase of Ẽk,

l � natural Euclidean measure of length, λ � natural pseudo-Euclidean measure of length,
−→
ct (1) and E3(1) � the time arrow and frame axis with the Euclidean subspace in the initial
pseudo-Cartesian base Ẽ1 of ⟨P3+1⟩,

y(k) or ct(k) at n = 3 and x(k) ∈ En(k) � two projections of element u in ⟨Pn+1⟩ or ⟨Qn+1⟩,
−→
ct (k) = −→cτ � the k-th time arrow and frame axis as current relativistic time directed to future
in the base Ẽk of ⟨P3+1⟩ under hyperbolic inclination Γ to the initial time arrow

−→
ct (1),

τ = t(k) � the proper time along a world line,

x
(k)
j � the j-th space coordinate in the base Ẽk of ⟨Pn+1⟩ or ⟨Qn+1⟩,

Note. Greek symbols as τ and χ are used here for the proper time and proper extent.

Φ, φ, dφ are the principal angles of rotation in the quasi-Euclidean space or identical motion
in the spherical geometry on the embedded hyperspheroid; it is also the angle of latitude
by Lambert's angular measure in the tensor trigonometric model of the Earth globe along
spherical meridians as big circles from the Poles or from the Equator in [0,±π/2],

Ξ, ξ are complementary to motion's angle above spherical angle in the osculating quasiplane
between the tangent or the quasinormal to a regular curve and the χ axis; or de�ned by
simplest formula ξ = π/2− φ (Ch. 5),

Γ, γ, dγ are the reali�cated principal angles of rotation in the pseudo-Euclidean space or
identical motion in the hyperbolic geometry on the embedded one sheet an two sheets
Minkowskian hyperboloids; it is also the angle of latitude by Lambert's angular measure
along hyperbolic meridians from the Poles (for II) or from the Equator (for I) in [0,±∞),

Υ, υ are complementary to motion angle above hyperbolic angle (in the osculating pseudo-
plane between the tangent or the pseudonormal to a world line and the isotropic cone or the
isotropic diagonal; or de�ned by formulae sinh υ · sinh γ = 1 ∼ cosh υ = coth γ (Ch. 6),

A � is internal geometric orthospherical angle at tops of geometric �gures on non-Euclidean
surfaces, in particular, as A123 at the top 2 of the non-Euclidean triangle 123,
α, dα � are external angles of orthospherical motions or identical rotations,
Θ, θ, dθ are external independent or induced orthospherical angles of motions, or as of the
non-Euclidean angular shift, or as the angle of Thomas induced relativistic precession,
ε and ϵ � external orthospherical angles between motions on non-Euclidean surfaces or
identical rotations in enveloping spaces (ε = π −A→ cos ε = − cosA, sin ε = sinA),

w∗
φ(τ) and η

∗
γ(τ) � spherical and hyperbolic angular proper velocities of rotations of a curve,

w∗
α(τ) and wα(t) � orthospherical angular proper and coordinate velocity of eα,

wθ(t) � induced Thomas orthospherical precession in sine normal plane ⟨eα, eν⟩ around eµ,

roth Φ = Fh(φ, eα) � the trigonometric measureless tensor of motion in ⟨Qn+1⟩,

roth Γ = Fs(γ, eα) � the trigonometric measureless tensor of motion in ⟨Pn+1⟩,
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eν = (eβ − cos ε · eα)/ sin ε � unity vector of the sine orthogonal increment of motion,

eµ = (eκ − cos ϵ · eα)/ sin ϵ � unity vector of the cosine orthogonal increment of motion,

eσ, e∠
σ
� unity vectors of summing two- and multisteps motions for direct and inverse orders

of partial motions along a world line, at the hyperboloids II and I, at the hyperspheroid.

r � (n+ 1)× 1-radius-vector of some object in ⟨Pn+1⟩ or ⟨Qn+1⟩ in the universal base Ẽ1,

i and p � (n+ 1)× 1 time-like and space-like vectors in ⟨Pn+1⟩, including for a world line,
t and n � (n+ 1)× 1 analogous vectors in ⟨Qn+1⟩, including for a regular curve,

c = c · iα � vector of 4-velocity or supervelocity by Poincar�e of absolute motion in ⟨P3+1⟩,

v = dx/dt = v · eα = c · tanh γi · eα � coordinate velocity of the physical movement,

v∗ = dx/dτ = v∗ · eα = c · sinh γi · eα � proper velocity of the physical movement,

s = dx/dt = s · eα = c · coth γi · eα � coordinate supervelocity, so, inside "black hole",

s∗ = dx/dτ = s∗ · eα = c · csch γi · eα � proper supervelocity, so, inside "black hole",

P0 = P0 · iα = m0c = m0c · iα � own 4× 1-momentum of a particle M on a world line,

P = mc = P0 · cosh γi � scalar cosine projection of P0 onto
−→
ct (1) (total momentum),

p = m0v
∗ = P0 · sinh γ · eα � 3-vector sine projection of P0 into E3(1) (real momentum),

F = F · pβ = m0gβ � 4× 1 free inner force acting on a material point M in ⟨P3+1⟩ in Ẽm,

gβ = gβ · pβ � 4× 1 free absolute inner acceleration of material point M in ⟨P3+1⟩,

gα = gα ·pα, g
(3)
α = gα · cosh γi · eα � 4× 1 tangential cosine acceleration with 3-projection,

gν = gν · bν � 4× 1 normal sine acceleration with zero time projection,

jκ = jκ · pκ � 4× 1 free absolute inner superacceleration of material point M in ⟨P3+1⟩,

jα = jα · pα, j
(3)
α = jα · sinh γi · eα � 4× 1 tangential sine acceleration with 3-projection,

jµ = jµ · bµ � 4× 1 normal cosine acceleration with zero time projection,

kp = kp +
⊥
kp � 4× 1-vector of pseudocurvature Kβ with quasiorthogonal decomposition,

kq = kq +
⊥
kq � 4× 1-vector of quasicurvature Qκ with pseudoorthogonal decomposition,

iα, iκ � unity 4× 1-vectors of principal and free tangents with curvatures Kα, Qκ,

pα, pβ � unity 4× 1-vectors of principal and free pseudonormal with curvatures Kα, Kβ ,

bν , bµ � unity 4×1-vectors of space-like sine and cosine binormal with curvatures Kν , Kµ,

i1 or t1� 4× 1 binormal of the cosine and sine orthoprocession along frame axis
−→
ct or −→y ,

iν � tangent, perpendicular to principal one, for screwed curves,

pµ � pseudonormal, perpendicular to principal one, for screwed curves,

Ycos,Ysin � cosine or sine orthoprocession at hyperbolic/spherical/orthospherical motions,

Π(a) = ξ � countervariant spherical Lobachevsky parallel angle in the universal base Ẽ1,

P (a) = υ � countervariant hyperbolic Special parallel angle correct in any admitted base Ẽk.



Chapter 1A

Space-times of Lagrange and space-time of Poincar�e and
of Minkowski as mathematical abstractions and physical reality

At �rst, consider the conventionally trigonometric kinematic model of a material point M
physical movement in the 4-dimensional binary Lagrangian space-time ⟨L3+1⟩. Choose its
simplest universal base Ẽ1 = I as an initial unity base with the origin O. In it all these

four coordinate axes x1, x2, x3,
−→
t(1) are de�ned as if Euclidean orthonormal ones. The time

arrow
−→
t(1) at the origin O is the time-like orthonormal axis. The time-arrow

−−→
t(m) at the same

origin O is the directed time-like a�ne axis under scalar slope tan ν = v with the unity
vector of the directional cosines eα. It relates to the centered base Ẽm. But the three space
axes x1, x2, x3 form the Cartesian space-like subbase Ẽ(3) in Ẽ1 and Ẽm. Its axes x1, x2, x3
stay orthonormal under orthospherical rotations rot Θ in constant ⟨E3⟩, they form a right-
handed triple in Ẽ(3). Hence, 3D Euclidean trigonometry with measureless orthospherical
functions is applicable in ⟨E3⟩. Any universal base Ẽ1u = rotΘ·Ẽ1 corresponds to immovable
Observer N1. If the material point M moves with the vector velocity v = v · eα = const,
then its proper centered base is Ẽm = V Ẽ1, where its new time-arrow

−→
t (m) have also the

three particular slopes, with respect to the three space coordinates axes of Ẽ
(3)
1 . The ratios

of these space coordinates and the time arrow are characterized by the tangent vector tan ν
(as a world-line slope in ⟨L3+1⟩) identical to the vector velocity v of the material point M
(if frame center O corresponds to zero (x0 = 0, t0 = 0) and then x = ∆x, t = ∆t > 0):

tan ν = tan ν · eα = x/t ≡ v = v · eα, tan νj = xj/t ≡ vj , j = 1, 2, 3. (1A)

Admissible transformations in linear ⟨L3+1⟩ form the group ⟨VG⟩ of the homogeneous
Galilean transformations. This is the mathematical foundation of the Galilean Principle
of Relativity. The transformation VG is continuous as det VG = +1, and this condition
guarantees preserving base orientation. In Cartesian-a�ne bases Ẽk, the space-time ⟨L3+1⟩
is represented as the direct sum of an Euclidean space and an a�ne time-arrow:

⟨L3+1⟩ ≡ ⟨E3⟩ ⊕ −→t (k) ≡ ⟨E3⟩ ⊕ −→t (1) ≡ CONST, (∆t > 0) (2A)

⟨E3⟩ ≡ CONST ′. (3A)

Seems, there is paradox: const' + variable=const, but it is not valid for a direct sum!

There holds analogy with binary spaces of Ch. 11 (q = 1), but (2A) is not an orthogonal

sum! All time-arrows form the complete set of a�ne axes ⟨−→t ⟩ consisting of time-like lines
with angular slopes to

−→
t(1) ranging in [0;±π/2]. The invariant Euclidean space ⟨E3⟩ consists

of space-like elements. All elements of the Lagrangian space-time are real numbers. The
space-time properties are preserved under Galilean transformations, because ones in general
⟨L3+1⟩ are reduced to exactly three pure types:
1) automorphic orthospherical rotations rot Θ of the space ⟨E3⟩,
2) special parallel (or middle) rotations f(tan ν) of

−→
t , with respect to the space ⟨E3⟩,

3) linear space ⟨E3⟩ and −→t translations p due to this space-time homogeneity.
The general linear transformation VG of a Cartesian-a�ne base Ẽ0 is the following:

VG Ẽ0 Ẽ[
R a
0′ 1

]
·
[
R0 a0
0′ 1

]
=

[
R ·R0 Ra0 + a
0′ 1

]
, R ∈ ⟨rot Θ3×3⟩. (4A)
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For the matrices of the bases, their �rst three columns determine the constant space ⟨E3⟩,
the fourth column determines the variable time-arrow

−→
t . If a0 = 0, then Ẽ0 = E1u⟩ (the

bases are universal), and in particular, if R0 = I, then Ẽ0 = E1. In this case, the inverse
matrix V −1

G (of the same structure) maps a binary Cartesian-a�ne base Ẽ into its simplest

unity form, i. e., the original universal base Ẽ1. The inverse matrix also realizes passive
modal transformation of a linear element from Ẽ1 into an admissible binary base Ẽ. A linear
element of ⟨L3+1⟩ is represented in Ẽ as the radius-vector:

r = x⊕ t =
[

x
t

]
.

Thus homogeneous a�ne-Euclidean Galilean transformations in their trigonometric form
are the non-commutative products of parallel and orthospherical rotations in the polar forms:

VG = F (Θ3×3, tan ν) f(tan ν) rot Θ[
rot Θ3×3 tan ν

0′ 1

]
=

[
I3×3 tan ν
0′ 1

]
·
[
rot Θ3×3 0

0′ 1

]
= rot Θ · f [(tan ν)Θ], (5A)

where det VG = +1, and f(tan ν) is the 4× 4-matrix of principal parallel rotations,

f [(tan ν)Θ] = rot (−Θ) · f(tan ν) · rot Θ, but(!) (tan ν)Θ = rot (−Θ3×3) · tan ν.

An inverse and passive homogeneous Galilean transformation is represented as

V −1
G =

[
rot (−Θ3×3) rot (−Θ3×3) · (−tan ν)

0′ 1

]
=

rot (−Θ) f [tan (−ν)]

=

[
rot (−Θ3×3) 0

0′ 1

]
·
[
I3×3 −tan ν
0′ 1

]
= f{[tan (−ν)]Θ} · rot (−Θ). (6A)

Formula (5A) is the a�ne-Euclidean analog of polar representations (474) and (475) in
sect. 11.3. On the other hand, transformation of the base E1 is similar to (480), (481):

Ẽ = VG · Ẽ1 = f(tan ν) · rot Θ · Ẽ1 = rot Θ · f [(tan ν)Θ] · Ẽ1. (7A)

From the physical point of view, the subbase Ẽ(3) moves, with respect to the subbase Ẽ
(3)
1 ,

at the velocity (1A).

Inverse matrix (6A) transforms passively the coordinates of a world point r ∈ ⟨L3+1⟩ as
follows:

r = V −1‘
G · r(1) = F−1(Θ, tan ν) · r(1) =

[
rot (−Θ3×3) · (x(1) − tan ν · t)

t

]
. (8A)

If Θ = Z in (5A)�(8A), then we deal with pure parallel rotations in their conventional
trigonometric and physical forms as the Galilean transformations of coordinates:

x = x(1) − tan ν · t = x(1) − v · t,

t = t(1).

 (9A)
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In ⟨L3+1⟩, the scalar time is invariant too and may be counted on the original axis
−→
t(1)

and
−→
t(k) parallel to invariant ⟨E3⟩. Due to this fact, so called parallel rotation f(tan ν)

of the time-arrow
−→
t (as the ordinate) is geometrically intermediate between spherical and

hyperbolic ones! Note, that f(tan ν) is expressed above as a 4× 4-matrix with the variable
3 × 1-vector element tan ν. The latter is the tangent of the angle ν. Multistep parallel
rotations lead to the classical law of tangents tan ν or velocities v commutative geometric
summation in the projective Euclidean vectorial space {⟨E3⟩}:

f(tan ν13) = f(tan ν12)f(tan ν23) = f(tan ν23)f(tan ν12) = f(tan ν12 + tan ν23)→

→ f(tan ν) = f(tan
∠
ν) =

∏
f(tan νkj) = f(

∑
tan νkj), (ν =

∠
ν). (10A)

The set ⟨tan ν⟩ is the commutative group in the projective vectorial space of velocities, i. e.,
"tangents". The set of parallel rotations ⟨f(tan ν)⟩ is the kinematic commutative subgroup
of the homogeneous a�ne-Euclidean Galilean group ⟨VG⟩. Its another subgroup is the non-
commutative group of orthospherical rotations. Note, that rot Θ is expressed above as a
4 × 4-matrix with the variable 3 × 3-matrix element rot Θ3×3. The group ⟨VG⟩ consisting
of these two subgroups is the subgroup of the general a�ne-Euclidean Galilean group.

The Lagrange space-time is continuous, but not homogeneous and isotropic entirely (it
is enough for this, that its space and time coordinates have di�erent physical measures),
however its space and time are homogeneous separately due to property of continuity and
equivalence of all their point elements. In particular, any centralized 4 × 1 radius-vector
element in Ẽ1 can be chosen as the new origin of an admitted Cartesian-a�ne base, and
the admissibility does not depend on this choice. Parallel translations in ⟨L3+1⟩ form the
commutative translating subgroup of the general Galilean group. The relations (2A), (3A)
give an a�ne nature of principal transformations and independence of space and time in it!

The Lagrange space-time has a lot of applications in non-relativistic physics. However,
as long ago as to the end of XIX century, experimenters and theorists have encountered some
facts that are inexplicable within its framework. Firstly, it is the "negative result" of the
famous experiment of Michelson�Morley (1887), which contradicted the rule of velocities
summing (in the near-light region). Secondly, the Maxwell electromagnetic wave equation
were proved is no covariant in the Galilean inertial frames of reference, though the latter,
due to Maxwell's theory, explains the nature and spreading of light. This non-covariance of
the given equation to the Galilean transformations has mean the crisis of the fundamental
physics to the end of XIX century. That is why, Lorentz suggested in 1892 the Special space
and time transformations, initially for interpretation of the Michelson�Morley result [58]!

* * *

In 1904 Lorentz, taking into account the Poincar�e physical Postulate of Relativity also
from the same 1904, valid for all physical phenomena, showed that his space and time trans-
formations follow from form-invariance of the Maxwell electromagnetic wave equation [59]!!
And Henri Poincar�e in his pioneer article from June 5 of 1905 established a group nature
of new transformations, discovered before by Hendric Lorentz, and he named them as the
Lorentz transformations [63], with introduction in the Physical Science of the new more
perfect and united space-time of the Nature corresponding to them and having homogeneity
and isotropy, similar to the Euclidean space!!! In addition to Galilei�Poincar�e Postulate
of Relativity (1636, 1904), from the mathematical point of view in June 1905, in fact, the
following quite new physical-mathematical Postulates were introduced by Henri Poincar�e.

Postulate 1: By nature, the space-time with its various physical �elds is homogeneous and
isotropic entirely. (These properties were valid due to speed scale factor ”c”, used by Henri
Poincar�e for the time-arrow as directed 4-th coordinate.)

Postulate 2: This space-time is the binary complex-valued 4D quasi-Euclidean space with an
index q = 1, oriented by the time-arrow i ·−→ct , and with the main hyperbolic angle of motions.
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The new conception of space-time as STR with these two Postulates has no any more
defects of the classical, non-relativistic one. And it realized the opportunity to transfer o�
the non-perfect and non-united Euclidean-a�ne space-time ⟨L3+1⟩ in the homogeneous and
isotropic complex quasi- or real pseudo-Euclidean space-time with its quadratic metric! In
the space-time, we use the opportunities of scalar, vector and tensor trigonometries! Thus,
we may apply the principal hyperbolic angle of motion γ in the universal base Ẽ1, with the
use of speci�c tangent-tangent analogy (355), sect. 6.4, with velocity divided by constant c:

tan ν → tan φR = v/c,
tan φR ≡ tanh γ = v/c.

}
(t→ ct) (11A)

. However, through any initial quasi-Cartesian and pseudo-Cartesian bases Ẽ with the
common re�ector tensor I± of their spaces ⟨Q3+1⟩ and ⟨P3+1⟩, we can introduce the principal
hyperbolic angle with trigonometric functions immediately, with the use of the abstract
analogy from the same sect. 6.2. Due to Postulate 1 and 2, with (322) and (323], there hold:

tan (−φR) = v/ic→ tanh (−iφR) = v/c,
(1) φR → iγ, tan iγ = iv/c; (2) − iφR → γ, tanh γ = v/c.

}
(t→ ict) (12A)

Then, under logical development, the Euclidean vector subspace of tangents (velocities) are
reduced into the hyperbolic tangent (or Kleinian) model inside the Cayley oval (sect.12.1).

Scalar trigonometric functions of iγ in the pseudospherical form were �rst applied by
Poincar�e for presenting Lorentzian transformations in the 2-dimensional trigonometric form.
Then for their reali�cation, Minkowski used the real-valued scalar functions of γ in the
2-dimensional trigonometric form in ⟨P1+1⟩ [65]. Both used the plane trigonometry for
presenting hyperbolic motions by 2 × 2 rotational matrices. Note (!), that the approach of
Poincar�e will give us clear opportunity for right operations with signs of quadric values from
the internal and external cavities of isotropic cone and right chose of metric tensors I±, I∓.

With Poincar�e mathematical approach, STR was founded with his generalized Postulate
of Relativity (1904) acting in the Galilean inertial frames of reference and introduction
of his new complex-valued isotropic and homogeneous space-time. Logically the Galilean
transformations were replaced and named by him as Lorentzian group of this space-time!

With Einstein physical approach, STR was appeared with the use of the similar Principle
of Relativity (1905) and his Postulate of constancy of the light speed in the Galilean inertial
frames of reference with the additional de�nition of events simultaneity.

The Principle of Relativity is traditionally applied only in its physical sense, although
there exists its original mathematical prototype, see in sect. 12.3. Note, that physical space-
time (here ⟨L3+1⟩ and ⟨P3+1⟩) is only a certain mathematical abstraction, and its admissible
coordinates may be used for describing objective laws of matter movement. The adequate
interpretation of these laws in the coordinates maps the "reality" of the space-time.

The new essential renovation of the real space-time conception is realizing in 1964 [82],
by the eminent now Peter Higgs, within the framework of the Standard Model for the set of
elementary particles, put forward a revolutionary, but up to 2012 still hypothetical theory,
that during the formation of the Universe, according to the Big Bang Theory by the eminent
George Gamow, at the stage when its full Mass appears, the latter creates in the Universe
a certain new material �eld with its quantum particle �boson�. It is this �eld creates the
fundamental force of Nature under well-known name �inertia�, which acts, due to Galileo,
proportionally to the mass of any massive object (as its charge), but i� this object deviates
from uniform and rectilinear motion. This theory was strictly con�rmed with the discovery
of the Higgs boson in 2012 at the Hadron Collider in Switzerland. What is very important,
the Higgs material �eld on the whole is homogeneous and isotropic, with respect to acting
Galilean inertia. The Poincar�e � Minkowski space-time on the whole is also homogeneous and
isotropic. Then, with the Newton's Principle of Equivalence of the inertial and gravitational
masses, the Higgs theory proved very strictly a reality of this �at space-time of the Nature.
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Thus, before the renovation, most di�cult problem in relativistic theory of space-time was
correct considerations of di�erent world events taking into account gravitation. Historically
�rst and up to now prevailing geometric conception was the Einsteinian GTR from 1916 [69]
with curved by gravitation pseudo-Riemannian space-time. Alternative BMT conceptions
(Bimetric Theories of Gravitation) are based on the nature of the gravitation as action of
some tensor physical �eld in the Minkowsky space-time. Surprisingly, that historically the
�rst version of BMT was proposed by theorist Nathan Rosen [78], an assistant to Einstein
at Princeton University and later his close colleague! This shows how Albert Einstein was
loyal to alternative points of view in science and even to his GTR. This is an example of the
true and not just in words, attitude to the freedom of scienti�c thought. Beginning from
the 1-st edition of our Tensor Trigonometry [15], we are following to similar bimetric point
of view, i. e., all events are executed in the �at space-time by Poincar�e � Minkowski, but
any Observer see the same events through the lensed gravity �eld as distorted from curving
by the pseudo-Riemannian metric tensor. Our approach is a good compromise that does
not destroy the harmony of the Universe and excludes the positivism in real assessments of
world events. Unfortunately, the aggressive behavior of speci�c apologists of a really curved
space-time still resists such a peace-loving point of view and they continue to make from
Albert Einstein the new Ptolemy as if from the middle Ages. (See the discussion in Ch. 9A).

Vector nature of space-time takes into account admissible directions to the light cone
contains three isotropic geometric parts with respect to their pseudo-Euclidean metric.
They are: (1) the external conic cavity consisting of the space-like elements with their
Euclidean metric, (2) the internal conic cavity consisting of the time-like elements with an
anti-Euclidean imaginary metric, and (3) the degenerated light conic dividing hypersurface
with its zero metric: it separates these external and internal cavities. Therefore rotational
and deformational linear transformations in the space-time may be represented as 4 × 4
tensor trigonometric functions of 4× 4 tensor angles Γ and Θ (Chs. 6 and 10�12).

Generally, tensor trigonometric language (with hyperbolic and orthospherical functions)
may be used for explaining all e�ects of STR connected with the time and the Euclidean
subspace. Tensor trigonometric functions of the angle Γ, i. e., in their hyperbolic form
in ⟨P3+1⟩ (they were described in Chs. 6, 11 and 12) give us the 4-dimensional tensor
trigonometric forms for describing kinematics and dynamics of STR (see Chs. 5A, 7A, 10A).

The pseudo-Euclidean trigonometric rotations correspond to homogeneous continuous
Lorentzian transformations. Hyperbolic rotations with the pseudo-Euclidean invariant
sinh2 γ − cosh2 γ = i2, cosh γ > 1, interpret clarity the Einsteinian dilation of time.
The tensor trigonometric hyperbolic deformations with the cross Euclidean quasi-invariant
sech2γ+tanh2 γ = 1, sechγ < 1, interpret clarity the Lorentzian contraction of extent. If the
two phenomena are considered in the pseudoplane corresponding to tensor angle Γ, then a
pseudo-Euclidean right triangle for them is solved completely (see in sect. 6.4). Our special
mathematical principle of relativity for admitted geometric transformations (sect. 12.3) is in
one-to-one correspondence in ⟨P3+1⟩ with the Poincar�e physical Postulate of relativity. The
Poincar�e�Einstein Law of mutual dependence of the space and the time and their relativity
may be explained with the fact that the relativistic Euclidean space and the time-arrow are
hyperbolically orthogonal direct complements of each to other, they change always together
under hyperbolic rotations, and both do not change under orthospherical rotations:

⟨P3+1⟩ ≡ ⟨E3⟩(k) ⊠−→ct (k) ≡ CONST. (13A)

This space-time is the united indivisible 4-dimensional continuum. As a whole set it is
an absolute, but consisting of these two variable together relative summands of index k.
The scaling coe�cient ”c”, introduced by H. Poincar�e for the time, is equal to the light
speed in the cosmic vacuum. Note, this small, but great time modi�cation led to identity of
transformations in the homogeneous and isotropic space-time with the Lorentzian transfor-
mations adopted before for covariancy of the Maxwell electromagnetic wave equation [59].
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Later Paul Dirac generalized the result in his relativistic covariant form of the Schr�odinger
quantum wave equation [61]. Moreover, the fundamental Law of Energy and Momentum
Conservation, in accordance with the Noether Theorems [102], are inferred in STR strictly
from homogeneity and isotropy of its basis Minkowski space-time in clear simplest tensor
trigonometric form (see in Chs. 7A, 10A and in the Kunstkammer).

Also two Einsteinian postulates on maximality of moving matter velocity due to v < c
and on constancy of the light velocity c (only as scalar value) in all the Galilean inertial
frames of reference follows directly from properties of the hyperbolic tangent modulus

||v/c|| = ||tanh γ|| < 1, (14A)

and from these properties of the hyperbolic angle-argument of the physical velocity

±∞± γ = ±γ ±∞ = ±∞, (15A)

valid in any pseudo-Cartesian base Ẽk of ⟨P3+1⟩ with relatively immobile Observer. Second
rule (15A) implies also that the light velocity does not depend on its source movement.
However, the instantaneous proper velocity v∗ of a material object, from the point of view
of Observer moving with it, changes due to relation ||v∗|| <∞, as v∗ = c · sinh γ.

In Ch. 7A, we used our most general law of summing multistep motions in ⟨Pn+q⟩
with polar decomposition proved by us before in Ch. 11 for inferring the relativistic non-
commutative law of summing velocities in STR and segments in hyperbolic geometry in
the general and complete forms. According to similar opportunities, we consider various
relativistic motions with their kinematics and dynamics in Galilean and instantaneously
Galilean accelerated frames of reference (see in detail in Chs. 5A, 6A, 7A and 10A).

* * *

Further, describe the trigonometric approach to representation of physical relativistic
movements in its simplest form. Choose the right universal, i. e., inertial base Ẽ1 = {I}
with immovable Observer N1. Other right universal bases Ẽ1u are linked as follows:

Ẽ1u = rot Θ · Ẽ1 = {rot Θ}, (16A)

where rot′ Θ · I± · rot Θ = I± = rot Θ · I± · rot′ Θ, according to (470).
The set of admissible pseudo-Euclidean bases are determined by the metric tensors of

⟨P3+1⟩ in two possible simplest forms � according to the Hermann Minkowski approach [65]
(but with their right and clear chose on the base of the Poincar�e initial approach with
imaginary principal angle iγ for conjugacy of Minkowski hyperboloids in Ch. 12 and further):

{I±} =


+1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 −1

 , {I∓} =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 +1

 = −{I±}. (17A− I, II)

In the 1-st case, our natural Euclidean space is preserved, in the 2-nd case, it transforms into
anti-Euclidean space, which is very strange for us � see in details in the last Chapter 10A.

In the base Ẽ1 and all universal bases, coordinate axes are quasi-Euclidean and pseudo-Euclidean
orthonormal, hence the speci�c spherical-hyperbolic analogy from sect. 6.2 may be used, and this
is important from theoretical point of view. Till reali�cation of space-time by Minkowski, it was as
a complex quasi-Euclidean base of space-time by Poincar�e (see before in detail in Ch. 10):

Ẽ′ · I± · Ẽ = I± = (
√
I± · Ẽ)′ · (

√
I± · Ẽ), (18A)

where
√
I± is the arithmetic root of type (443). The latter gives an initial variant of Henri Poincar�e

[63] without I±. A new base, according to our polar representations (480), (481), is the result of
a unique combination of a hyperbolic rotation (in Ẽ1) and orthospherical one (in Ẽ1h), or in the
reverse order, where the matrices are compatible with the re�ector tensor I±(17A− I):

Ẽ = roth Γ · rot Θ · Ẽ1 = {rot Θ}Ẽ1h
· Ẽ1h. (19A)
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Suppose that a new pseudo-Cartesian base is the result of a pure hyperbolic rotation

Ẽ1h = roth Γ · Ẽ1 = {roth Γ}. (20A)

The new coordinate axes are, due to (363), completely spherically non-orthogonal as their scales in

the Euclidean metric are dilated (this holds for at least two of the axes, one of them is time-arrow).

These axes dilations in hyperbolic interpretation was introduced by Herman Minkowsky in [66].

Pure hyperbolic base rotation (20A) has the physical sense of uniform rectilinear movement

of Ẽ
(3)
1h with its N1h relatively of Ẽ

(3)
1 with its N1 at the velocity v = c · tanh γ. Hyperbolic

rotation is elementary, it is performed in the rotation eigen pseudoplane ⟨P1+1⟩ ⊂ ⟨P3+1⟩
determined here by the time-arrow

−→
ct (1) and the vector v = c · tanh γ in ⟨E3⟩(1).

In the simplest case of 2× 2-dimensional matrix (324), we have in the pseudoplane

ẼII = {roth Γ}2×2 · ẼI =

[
cosh γ sinh γ · cosα

sinh γ · cosα cosh γ

]
, cosα = ±1. (21A)

It is a hyperbolic rotation of the axes x(1) and ct(1) at the angle γ to the bisectrix of the
1-st quadrant if cosα = +1 and to the bisectrix of the 2-nd quadrant if cosα = −1).

Further, we begin to use the fundamental concept a "world line" as the curve-function
x(
−→
ct), introduced in the Theory of Relativity by Hermann Minkowski in 1909 [65]. It is a

geometric invariant � as two isotropic cones and both Minkowski hyperboloids (Chs. 11, 12).
But all they can be expressed in relative admitted bases of the Minkowski space-time.

In �rst, consider the simplest relativistic physical uniform rectilinear movement of a
material point M . At the moment t = 0 the point passes through the origin O of the frame
of reference Ẽ1, which here is the common origin for all centralized bases ⟨Ẽk⟩. Then this
world line of M is a straight line inside the internal or "light" isotropic cone. The light cone
is the locus of all central light rays proceeding from O. A certain pseudo-Cartesian base Ẽ,
whereM is immobile, has its own time-arrow

−→
ct coinciding with the straight world line ofM

mapped in the original base Ẽ1. (In general, all the new coordinate axes are determined by

columns of the matrix for a new base Ẽk.) This new time-arrow
−→
ct is completely determined

in Ẽ1 by the hyperbolic angle γ with
−→
ct (1) and the �xed directional cosines of the vector

tanh γ ∈ ⟨E3⟩(1) or the point M velocity v = v · eα = c · tanh γ = const.
A world line may be, of course, arbitrary curvilinear one (as a geometric invariant),

but its slope must be less than the slope of the light cone, i. e., of rays of light relatively
to the time-arrow

−→
ct (1). We represent world lines in the universal base Ẽ1 = {I} only

for its geometric visuality and comparison with other world lines, as well as all the other
pseudo-Cartesian bases Ẽ are expressed also with respect to Ẽ1! With these arguments,
the base Ẽ1 is de�ned initially as if Cartesian one too! Such approach was used before
in Ch. 12 for representing the two Minkowskian Hyperboloids with the same purpose. (A
universal base Ẽ1 = {I} is the relative notion de�ned by inertial immovable Observer N1.)

In trigonometric kinematics of STR, the angles γ and Γ of motion tensor in (20A) for
transformations of coordinates always have the sign +. The sign − for the angles is possible
only in mental motions to past with the use of antipodal hyperbolic geometry (sect. 12.1.)
This is equivalent to the Principle of determinism for material phenomena. These facts
distinguish to a some extent hyperbolic kinematics of STR and the laws of hyperbolic motions
in the Lobachevsky�Bolyai geometry. The same time-arrow

−→
ct (and the same world straight

lines) in the two cavities of the light cone are determined with the same matrices roth Γ
corresponding, from the physical point of view, to the same velocity vector and, from the
geometrical point of view, to the same motion:

roth Γ = F (γ, eα) ≡ F (−γ,−eα). (22A)

The last expression here is valid only in antipodal hyperbolic geometry. Another time-arrow
that is symmetric to original one with respect to

−→
ct (1) (and the parallel to it world straight

line) is determined with the inverse matrix.
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It has the physical sense of an additively opposite velocity vector and the corresponding
to it geometric sense:

roth−1 Γ = F (γ,−eα) = roth (−Γ) ≡ F (−γ, eα). (23A)

In (22A), (23A), the principal angle γ is positive for directions of material points motions
along the time arrow to the Future, it is formally negative for mental motions to the Past.

Formulae (20A), (21A) imply that due to hyperbolic rotations the coordinate velocity of
physical movement v along x(1) is expressed trigonometrically from this relation:

v

c
=

∆x

c ·∆t
=

sinh γ · cosα
cosh γ

= tanh γ · cosα, (cosα = ±1). (24A)

Generally, in ⟨P3+1⟩, the Euclidean vector of coordinate velocity v in ⟨E3⟩(1) is determined by
its module ||v|| and the directional cosines cosαj , j = 1, 2, 3; its three Euclidean projections
onto the axes have also physical and trigonometric forms:

vj
c

=
∆xj
c ·∆t

= tanh γ · cosαj , j = 1, 2, 3, (v = {vj} = v · eα = c · tanh γ), (25A)

where v > 0; −1 ≤ cosαj ≤ +1 and cos2 α1 + cos2 α2 + cos2 α3 = 1.
For mapping of the simplest physical uniform rectilinear movement of a point M at

velocity v in the pseudoplane of motion ⟨P1+1⟩, its original base Ẽ1, where M is immovable

with coordinates x(1) and
−→
ct (1), must be hyperbolically rotated at the angle γ = artanh v/c

with −eα into the base Ẽ2, where M has new values of coordinates x(2) and
−→
ct (2). Such

description corresponds to the passive point of view onto modal transformation [21, p. 428].
The speci�c spherical�hyperbolic analogy between γ and φ in the universal base Ẽ1 are

usually either sine-tangent (331-I) or visual at graphic representations tangent-tangent (355):

dx(1)/(dct(1)) = v/c = tanh γ ≡ sinφ = tanφR in Ẽ1, (γ > φ(γ) > φR(γ)).

There is no in�nitesimal distinctions between the very small angles γ, φ, φR, when γ → 0
(v ≪ c). If we analyze in Ẽ1 (with respect to immovable Observer) one-step absolute motion,
then spherical and hyperbolic angles are equally applicable with right signs. But if we deal
with combined or non-collinear principal motions, for example, some motion with respect to
moving Observer, or with more complex multistep and integral motions, then only pseudo-
Euclidean geometry with rotations and hyperbolic non-Euclidean geometry with motions
should be applied with principal hyperbolic and secondary orthospherical angles γ and θ.

By this cause, in STR, with tensor trigonometric approach, the concepts of hyperbolic
with spherical geometry may be useful. It concerns not only to motion and complementary
angles, but and to the various types of parallelism angles, considered in sect. 6.4. Thus,
the spherical parallel angle of Lobachevsky Π(a) [40, 41] up to now is the initial fundament
for construction of the real-valued hyperbolic non-Euclidean geometry. From the point of
view of the enveloping space ⟨Pn+1⟩ with interpretation on a hyperboloid II, the angular
argument Π(a) has a geometric sense on it and in STR only in universal bases Ẽ1u and only
for one-step motions. However the analogous, but purely hyperbolic angle of parallelism υ
in (364-IY), Ch. 6, is consistent in any pseudo-Cartesian bases with tensors {I±} or {I∓}:

γ, φ : sinh γ ≡ tanφ ⇔ tanh γ ≡ sinφ , (φ ̸= ±π/2) ⇒ ξ(γ) = π/2− φ(γ),
γ, ξ : sinh γ ≡ cot ξ ⇔ tanh γ ≡ cos ξ , sech γ ≡ sin ξ, (ξ ̸= 0), dξ = −dφ;
Π(a) ≡ ξ(γ) = π/2− φ(γ) = arccos(tanh γ) = 2 arctan [exp(−γ)],
P (a) = υ(γ) = 2artanh [exp(−γ)− see both ngles from (360-II) in Ch. 6.

 (26A)

In relativistic factors: v/c = tanh γ ≡ sinφ = cos ξ,
√
1− (v/c)2 = sech γ ≡ sin ξ = cosφ.

Both relativistic factors, used up to now by physists in the Past, have not any geometric
senses and are subjected to the operations of mathematical analysis with great di�culty.
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We use all these motion and parallel angles for spherical and hyperbolic geometries and
in STR as clear trigonometric arguments of our tensor trigonometry.
φ = l/R � is the covariant parallel angle in spherical type of non-Euclid ean geometries,
γ = λ/R � is the covariant parallel angle in hyperbolic type of non-Euclidean geometries.
They are correct either in universal bases Ẽ1u or in any Ẽk in the same types of geometries.

In order to get absolute (i. e., not depending on the 5-th Euclid's Postulate) geometry,
the spherical or hyperbolic nature of the parallel angle ±α should not be �xed! Initially put
α ̸= 0 is the angle between Euclidean and abstract parallels in the universal base Ẽ1. (For
example, in the hyperbolic geometry, the spherical type angle α is complementary to the
Lobachevsky parallel angle Π(a)) till the right angle π/2.) And only after this formal �rst
step, we become to the dilemma: what nature of the parallel angle α should be chosen us?

If α > 0, it is chosen as a spherical angle, then non-Euclidean geometry of spherical type
is gotten, and its parallels are intersected on the side of angle α due to G. Saccheri [35].

If α < 0, it is chosen as a hyperbolic angle, then non-Euclidean geometry of hyperbolic
type is gotten, and its parallels converge in∞ on the side of angle α due to Lobachevsky [40].

If α < 0, this corresponds to the Euclidean geometry, Π(a) = π/2.
Moreover, if in the universal base Ẽ1 geodesic motions are realized from the center C on

a hyperspheroid along a big circle or on a hyperboloid II along a hyperbola (see in Ch. 12, at
Figure 4), then both principal angles change covariantly to the motion's direction as follows:
+α(a) = φ ∈ [0 · · · ± π/2], −α(a) = γ ∈ [0 · · · ±∞), realized on quasi- and pseudoplane.
In both plane variants, the single perpendicular to a given line at its given zero point
determining the angle of parallelism Π(a) at the point "a" o� the perpendicular, and the
single Euclidean parallel to a given line, passing perpendicularly through this point "a"
of this perpendicular in order to determine in it the angle of parallelism α are found by
application of Euclidean geometry, for example, using a compass and a ruler in the universal
base Ẽ1, with the universal relation Π(a)− α = π/2!

* * *

Conclude this Chapter with the following very essential remark. The initial mathematical
approach of Poincar�e in 1905 [63] to constructing Theory of Relativity is logically quite
perfect, contrary to the initial physical approach of Einstein in 1905 [67] based on his two
Postulates acting in all Galileo's inertial frames of reference: (1) the extremum and equality
of scalar speed of light "c" and (2) the Principle of Relativity, repeated the same Postulate
of Poincar�e from 1904 (without reference to it). However the Einsteinian Postulate (1) leads
mathematically to constructing an in�nite set of "trigonometries" and their quasiphysical
isomorphisms with pseudo-H�olderian metrics of positive powers p (non-quadratic if p ̸= 2):

|ds|p = |dct|p − {|dx1|p + |dx2|p + |dx3|p} ≥ 0, 1 ≤ p <∞,

where c = max(||dx||p/dt) and only for the speed of light ||dx||p/dt = c, ds = 0.
However, Einstein proposed the graceful physical manner for clear de�nition of events

simultaneity with the use of two light rays, realizing the previous idea of Poincar�e about
using light rays for de�nition of events simultaneity from 1900 [62] (without reference to it),
where also in �rst formula m = E/c2 was inferred and published. Such axiomatic de�nition
of simultaneity as if introduced implicitly the quadratic pseudo-Euclidean metric with p = 2
in the space-time of STR. But this Einsteinian de�nition is only a beautiful theorem (Ch. 4A)
of the Minkowski pseudo-Euclidean geometry from 1909, when he renovated factually the
original mathematical approach of Poincar�e to new space-time. In Ch. 4A we chowed that
the Einsteinian de�nition of events simultaneity leads strictly to discovery of the so-called
deformational transformations of coordinate in the Poincar�e-Minkowski space-time (i. e.,
non-Lorentzian ones). In this space-time, the concept of events simultaneity, with respect
to the given frames of reference, is de�ned by tensor trigonometry highly simply and clarity.
See about such deformational transformations in Ch. 4A, but initially in Chs. 5, 6, 12.



Chapter 2A

Tensor trigonometric model of
Lorentzian homogeneous principal transformations

Let a particleM moves in the space-time ⟨P3+1⟩ uniformly and rectilinearly along its straight
world line passing through the center O of Ẽ1. Due to (21A), its 4 coordinates in the initial
base Ẽ1 and in Ẽ tied with M are expressed in the simplest trigonometric form by the
passive rotation at the hyperbolic angle Γ, identical to original Lorentzian transformation,
found by him in 1895 [58] and named so by Poincar�e in 1905 [63] as of new space-time group:

roth (−Γ) r{Ẽ1} r{Ẽ}. cosh γ 0 0 − sinh γ · cosα
0 1 0 0
0 0 1 0

− sinh γ · cosα 0 0 cosh γ

 ·


x
(1)
1

x
(1)
2

x
(1)
3

ct(1)

 =


cosh γ · x(1)

1 − sinh γ · cosα · ct(1)

x
(1)
2

x
(1)
3

cosh γ · ct(1) − sinh γ · cosα · x(1)
1

 .
Represent the hyperbolic transformation in the 4-dimensional system {t = 0,x = 0}:

x1 = cosh γ · x(1)1 − sinh γ · cosα · ct(1) = x
(1)
1 − tanh γ · cosα · ct(1)

sech γ
,

x2 = x
(1)
2 , x3 = x

(1)
3 ,

ct = cosh γ · ct(1) − sinh γ · cosα · x(1)1 =
ct(1) − tanh γ · cosα · x(1)1

sech γ
.

 (27A)

This is the initial Poincar�e�Minkowski trigonometric form of the (in fact 2-dimensional)
Lorentz homogeneous transformations for space and time in Ẽ1 and Ẽ [63, 65]. The multiplier
cosα = ±1 determines two directions of the sine and tangent vectors. If (24A) are taken
into account, they may be expressed in the physical form [58, 59, 63]:

x1 =
x
(1)
1 − v · t(1)√
1− v2/c2

, x2 = x
(1)
2 , x3 = x

(1)
3 , ct =

ct(1) − (v/c) · x(1)1√
1− v2/c2

.

Take advantage of the hyperbolic rotational matrix with general canonical structure (363) in
the base Ẽ1, then we obtain the general trigonometric linear transformations (pure hyper-
bolic) of the four coordinates of M as the three scalar space-orthoprojections (at i = 1, 2, 3)
and the time-orthoprojection

xi = cosαi · [cosh γ · S − sinh γ · ct(1)] + [x
(1)
i − cosαi · S],

ct = cosh γ · ct(1) − sinh γ · S,
(S = cosα1 · x(1)1 + cosα2 · x(1)2 + cosα3 · x(1)3 ),

 (28A)

and their vectorial-scalar form with an arbitrary direction of sine and tangent vectors

x = [cosh γ · eαe′α · x
(1) − sinh γ · eα · ct(1)] + (I − eαe

′
α) · x

(1)
=

= [cosh γ ·
←−−−
eαe

′
α · x(1) − sinh γ · eα · ct(1)] +

−−−→
eαe

′
α · x(1),

ct = cosh γ · ct(1) − sinh γ · e′α · x
(1)
.

 (29A)

←−−−
eαe

′
α = eαe

′
α =
←−
vv′ = vv′/|v′v| = vv′/||v||

2

, I − eαe
′
α =
−−−→
eαe

′
α =
−→
vv′

are the orthoprojectors in Ẽ
(3)
1 (see in sect. 2.5) into ⟨im v⟩ and ⟨im v⟩⊥ in ⟨E3⟩.
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In its general form, the vector of the directional cosines eα = {cosαi} determines the
direction of the sine and tangent vectors in Ẽ

(3)
1 of Ẽ1 as well as of the velocity.

Transformations equivalent to (29A) were derived by G. Herglotz [84; 76, p. 27] as

x = xv + (x(1) − xv
(1)) =

←−−−
eαeα

′ · x(1) − v · t(1)√
1− ||v||2/c2

+
−−−→
eαeα

′ · x(1), ct =
ct(1) − (v/c)′ · x(1)√

1− ||v||2/c2
.

He decomposed x(1) in ⟨E3⟩ as the relativistic and non-relativistic projections onto v (the
Principle of Herglotz). They are turned into the form (29A) with v/c = tanhγ.

The clear interpretation of these general trigonometric and physical transformations are
seen from their comparison with (27A). When the base Ẽ1 is hyperbolically rotated in the
pseudoplane ⟨v, ct(1)⟩, then only the time projection and the relativistic space projection
←−−−
eαeα

′x(1) are subjected to the modal transformation. The non-relativistic space-projection−−−→
eαeα

′x(1) orthogonal to v is invariant under Lorentzian and Galilean transformations.

In the projective non-Euclidean vectorial tangent subspace of radius R = 1 there hold:

||tanh γ|| = tanh γ = ||v||/c =
√
tanh2 γ1 + tanh2 γ2 + tanh2 γ3 (γ ≥ 0), and

tanh γ = tanh γ · eα = v/c→ tanh γi = cosαi · tanh γ = vi/c, (i = 1, 2, 3), (30A)

where γi are the partial hyperbolic angles with their values in the Euclidean orthoprojections

tanh γi = cosαi · tanh γ of the vector tanh γ in the subbase Ẽ
(3)
1 .

The same we get for sine is sinh γi = cosαi · sinh γ = cosh γ · tanh γi. But the projective
vectorial sine space is Euclidean one, because for it R→∞. In both these especial vectorial
spaces (of tangents and sines), the Pythagorean Theorem for moduli of the projections is
inferred. (By multiplier c, they are transformed into the velocities spaces � see in Ch. 3A).

In the transformations of coordinates of a particle M moving along its world line, as a
rule, two kinds of bases are used: E1u = rot Θ·Ẽ1 = {rot Θ} and Ẽ = roth Γ·Ẽ1 = {roth Γ}.
The �rst base is one of the universal ones (16A). In STR, the initial universal base Ẽ1 = {I}
is a relative notion too. However it is tied to the given immovable in it inertial Observer,

say N1 as if in the Cartesian subbase Ẽ
(3)
1 . Canonical trigonometric matrix forms are

expressed initially usually in terms of the base Ẽ1! The base determines a relation between
Observer N1 and other pseudo-Cartesian base Ẽk = T1k · Ẽ1 with Observer Nk.

The following two pure variants are possible.

(1) T ′
1k · T1k = I. Then Ẽ1k ∈ ⟨rot Θ⟩, it is another universal base, but for N1k.

(2) T2k = T ′
2k. Then Ẽ2k ∈ ⟨roth Γ⟩, this base is another one for inertially moving N2k.

In variant (1), the subbase Ẽ
(3)
k is immovable with respect to N1, it is the result of

orthospherical rotating Ẽ
(3)
1 at the angle Θ1k. In variant (2), the subbase Ẽ

(3)
k is moving

at the velocity v = c · tanh γ with respect to N1. Any general homogeneous Lorentzian
transformation of bases in ⟨P 3+1⟩ may by represented as the product of the two pure types
transformation (1) and (2) due to the polar decomposition (19A).

Lorentzian transformations in matrix form T can be applied actively to pseudo-Cartesian
bases for expression in them of all space-time coordinate for the given particle M or other
some objects, as passive point of view. Then these coordinates are calculated with the
inverse matrix T−1. Lorentzian transformations can be applied with the same matrix T to
the space-time coordinate of the given moving particle M or other some objects in the �xed
base, as active point of view.

The Special physical-mathematical principle of relativity (sect. 12.3) takes place for
them. It consists, for example, in form-invariance of Lorentzian transformations of pseudo-
Cartesian bases for a moving uniformly and rectilinearly material point on a straight world
line. Of course, it is the simplest case for relativistic�geometric transformations in ⟨P 3+1⟩.
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Due to homogeneity and isotropy of the Minkowskian space-time, all Lorentzian trans-
formations may be expressed in the clear trigonometric forms. However, if we deal with a
moving non-point geometric object, then, in addition, the quite another trigonometric type of
relativistic transformations may be used. It determines relativistic contraction of the object
with geometric parameters in the direction of its physical movement. Generally, in scalar and
tensor variants of a trigonometry, projective characteristics of two kinds, either sine�cosine or
tangent�secant, are evaluated. Their kind depends on a problem being solved. So, in tensor
trigonometry of the space-time, the rotational as deformational elementary trigonometric
matrix-functions are used. Their canonical forms in the base Ẽ1 were given by formulae
(362), (363) and (364), (365), for example, in ⟨Pn+1⟩ generally in these fourth-block forms:

roth Γ = Fh(γ, eα), (F = F ′), defh Γ = Dh(γ, eα), (D ̸= D′)∣∣∣∣ cosh γ ·
←−−−
eαeα′ +

−−−→
eαeα′ sinh γ · eα · · · sech γ ·

←−−−
eαeα′ +

−−−→
eαeα′ − tanh γ · eα

sinh γ · e′α cosh γ · · · +tanh γ · e′α sech γ

∣∣∣∣. (31A− I, II)

(31A-I) represents Lorentzian transformation as a pure hyperbolic and hyperbolically
orthogonal bivalent tensor in more general 4D trigonometric form, and (31A-II) represents
the bivalent tensor of trigonometric deformation for expression of the Lorentzian contraction.
See more in detail in Chs. 3A, 4A, 5A, 7A. As the next developing of this topic, we'll represent
in Ch.`7A the homogeneous Lorentzian transformation in its general pseudo-Euclidean form.

These matrices express corresponding symmetric and anti-symmetric tensors of speci�c
transformations in ⟨Pn+1⟩: roth Γ realizes as well as principal hyperbolic rotations at the
angle γ as orthosperical rotations of the unity vector eα of the directional cosines of the
tensor angle Γ with corresponding rotations in the current Euclidean subspace of ⟨Pn+1⟩;
but defh Γ realizes trigonometric deformation at the angle γ in the direction eα (see Ch. 4A).

Rotational hyperbolic matrix (31A - I) and orthospherical matrix (497) from the
sect. 12.2 in these elementary forms are the two pure types of the homogeneous Lorentz
transformations in both their canonical forms with respect to the universal base Ẽ1. And
all their compositions in pseudo-Cartesian bases admissible with re�ector tensor (17A - I)
form the group of continuous homogeneous Lorentz transformations. Such transformations
may be reduced to their polar forms as products of these two matrices of pure types. All
orthospherical rotations form their proper subgroup of the Lorentz group. (In STR and in
non-Euclidean hyperbolic geometry, these two pure types of rotations are geometric motions
and used only in elementary forms with q = 1, and, more clearly, as (362), (363), (497).

The term "Lorentz transformations" was introduced by Henri Poincar�e in his pioneer
paper on the new relativity theory [63] in June of 1905. These rotational homogeneous
transformations play the essential role in his previously suggested in 1904 Physical Principle
of Relativity as development of the classical Galilean Principle of Relativity from 1636.

In two next Chs. 3A and 4A, we give trigonometric interpretations (sine�cosine and
tangent�secant) of the space-time relativistic e�ects of STR. They take place in the internal
and external cavities of the light cone, the latter only with respect to the original base Ẽ1.

In Ch. 7A, (153A), we give the most general and developed (n+1)×(n+1)matrix (mainly,
in particular, at n = 3) canonical and polar forms of arbitrary Lorentzian pseudo-Euclidean
homogeneous transformation also in the original base Ẽ1 in ⟨Pn+1⟩. And in Ch. 8A, (202A),
we addded it by corresponding forms for Special quasi-Euclidean transformations in ⟨Qn+1⟩
(in particular, at n = 2).
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Minkowskian real kinematic dilation of time

as a consequence of the time-arrow hyperbolic rotation

A world line in ⟨P3+1⟩ is connected at each point M with the instantaneous light cone with
its center � a world point M , where two internal cavities of the cone diverge as these cone
of past and cone of future. Any relativistic motion is directed along own proper time-arrow
from past to future. Hence, it is performed inside the light cone of future, where a slope of
a world line at any point satis�es inequalities 0 ≤ | tanh γ| ≤ 1 � Figure 1A(1). In ⟨P3+1⟩,
all physical movements are represented by world lines in homogeneous coordinates [63, 65],
and more clear by Minkowski diagrams. The straight lines represent uniform rectilinear
movement, because the relativistic e�ects of STR mentioned in Chs. 1A and 2A need in
di�erentiation of 1-st order with 1-st di�erentials of increments of space-time coordinates!

In the beginning, let us outline brie�y the historical aspects in discovery of this discussed
relativistic e�ect. In 1887 Michelson�Morley ultra-precise physical experiment in the USA
did not reveal absolute motion of light relatively to the Earth. A crisis arose in the classical
kinematics. In 1895 Lorentz modi�ed Maxwell's equations by introducing a contraction in
size of the electron along its moving. In addition, he introduced the so-called "local time"
for the same coordinate system associated with the moving electron [58]. Factually 1985,
Lorentz during creation of the correct theory of moving electron, hypothesized the local
mutual contractions time and space intervals in the direction of moving, led further to his
relativistic well-known transformations. In 1900, in his article �La Th�eorie de Lorentz et le
Principe de r�eaction" [62], Henri Poincar�e, with formula m = E/c2, gives interpretation to
the "temps local de Lorentz" as: �C'est le temps d'observateurs mobiles qui r�eglent leurs hor-
loges par des signaux optiques en ignorant le mouvement de traduction dont ils sont anim�es.�
(It is the time of mobile observers who regulate their clocks by optical signals, ignoring the
translational movement by which they are animated.) This idea became basis for Einstein
in paper �Zur Elektrodynamik beweter K�oper.� of June 30, 1905 [67], without references to
previous Poincar�e and Lorentz well-known works. Young Albert Einstein accepted reality
of time slowdown in moving systems, however after the pioneer article by Poincar�e �Sur la
dynamique de l' �electron.� of June 5, 1905 [63], where fundamental relativistic notions �
complex pseudo-Euclidean space-time with its Lorentz group were introduced.

The material point representing a real lengthy object is the object inertia center (the
barycenter), i. e., as a particle. A material point M (see Figure 1A) in ⟨P3+1⟩ is physically
immovable with respect to a certain frame of reference Ẽ2 and is physically moving with
respect to Ẽ1. The straight world line of the particle M in ⟨P3+1⟩ with respect to Ẽ1

is its time-arrow parallel to
−→
ct (2) (the light cone inclination does not depend on the base

chosen, as it is invariant). For the movement, the bases Ẽ1 and Ẽ2 are connected by the
hyperbolic rotation Ẽ2 = roth Γ12 · Ẽ1. From the point of view of Observer N1, the particle
M is moving in ⟨E3⟩(1) at velocity v12 = c · tanh γ12. In a neighborhood of M , a certain
process may take place. By the clock of Observer N2, the process takes time interval ∆t

(2)

determined by segmentM ′M ′′ of the world line parallel to
−→
ct (2) with taking into account the

scale in the time-arrow. It is, according to STR, the proper time ∆τ = ∆t(2) of the process,
as it is counted by a relatively immovable clock. Proper time in any moving object is its
absolute characteristic, or a pseudo-Euclidean metric invariant inside the cone of future.
With respect to its rest base Ẽ2, it is identical to coordinate time ∆t

(2). With respect to Ẽ1,
coordinate time of the process counted by Observer N1 is determined by projection of the
segmentM ′M ′′ onto ct(1) with taking into account the scale, it is equal to ∆t(1) [76, p. 109].
Coordinate time ∆t(1) of the process in moving object is its relative characteristic [67].
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Figure 1A. Trigonometric interpretations of the STR relativistic e�ects inside and outside
the light cone in coordinates {x, ct} with angles γ, υ, δ and ν (Ch. 6) in the Minkowski
space-time ⟨P3+1⟩, according to Poincar�e's and Einstein's di�erent interpretations.

(1). Relativistic dilation of time of a moving object with its Poincar�e interpretation on the
pseudo-Euclidean plane (in interior right triangle ABC); coordinate and proper velocities:

g2 = b2 − a2 = ∆2cτ = const ∼ 1 = cosh2 γ − sinh2 γ,

b = ∆ct(1) = cosh γ · g > g = ct(2) → ∆ct(2) = ∆cτ = ∆ct(1)/ cosh γ < ∆ct(1),

a = sinh γ · g = tanh γ · b = ∆x(1) = ∆χ,

v = ∆x(1)/∆t(1) = ∆χ/∆t(1) = c · tanh γ, v∗ = ∆χ/∆τ = c · sinh γ → v∗ > v.

v < c and v < v∗ <∞.
(2). Lorentzian contraction of a moving rod extent with its interpretation in the pseudo-
Euclidean exterior right triangle A′B′C ′; supervelocity of two moving rods contacts:

b2 = g2 + a2 = l20 = const ∼ 1 = sech2γ + tanh2 γ ≡ cos2 φ(γ) + sin2 φ(γ),

g = l = sech γ · b < b = l0 → l = sech γ · l0 ≡ cosφ(γ) · l0 < l0,

a = tanh γ · b = tanh γ · l0 = ∆ct(2) ̸= 0, w = l0/∆t
(2) = c · coth γ = c2/v > c.

(3). The Einsteinian approach to STR on the basis of his de�nition of simultaneity, but with
the use of trigonometrically bonded cross bases (Ch. 4A).

Additionally, the accelerational and gravitational dilations of proper time by Einstein
will be considered us in Chs. 5A ang 9A with both their equivalent cosines.
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For example, with respect to Ẽ1, this time is evaluated with the use of passive rotational
transformation as well as one in the hyperbolic angle Γ12 of Ẽ1 into Ẽ2:

∆r(1) = roth Γ12 ·∆r(2) =

= roth Γ12) ·


0
0
0

∆cτ

 =


sinh γ12 · cosα1 ·∆cτ
sinh γ12 · cosα2 ·∆cτ
sinh γ12 · cosα3 ·∆cτ

cosh γ12 ·∆cτ

 =


∆x

(1)
1

∆x
(1)
2

∆x
(1)
3

∆ct(1)

 , (32A)

where ∆cτ = ∆ct(2), and from the matrices fourth rows we obtain:

∆ct(1) = cosh γ12 ·∆cτ → ∆cτ = ∆ct(1)/ cosh γ12 < ∆ct(1). (33A)

In STR relativistic e�ect (33A) is called Einsteinian dilation of time [67; 76, p. 30, 48].
The notions "proper time" and "time dilation" (see the term interpretation in sect. 12.3)
were introduced by H. Minkowski in his fundamental article [66]. The segment ∆cτ of the
straight world line, i. e., of the process time in M , is expressed in the coordinates of its base
Ẽ2 = {x(2),−→ct (2)}. Geometrically this segment of the world line is a linear tensor element as
the time-like oriented vector in ⟨P3+1⟩. Its quadratic pseudo-Euclidean imaginary invariant
in the four-dimensional form of coordinates with respect to any pseudo-Cartesian base Ẽ is

−(∆cτ)2 = −(∆ct)2 + (∆x1)
2 + (∆x2)

2 + (∆x3)
2 = const, (34A)

where ∆t > 0, ∆τ > 0. Since ∆cτ = const, invariant (34A) may be reduced in the base Ẽ1,
to its sine-cosine form-invariant trigonometric expression, which may be interpreted locally
by the tangent of the unity hyperboloid I, identical to the pseudonormal of the conjugated
unity hyperboloid II from Ch. 12 (see about this correspondence in Chs. 7A and 10A):

(i)2 = −1 = − cosh2 γ + (sinh2 γ′1 + sinh2 γ′2 + sinh2 γ′3) = − cosh2 γ + sinh2 γ. (35A)

Here γ′j (at j = 1, 2, 3) are the particular hyperbolic angles with their values in the
Euclidean orthoprojections sinh γ′j = cosαj · sinh γ of the space-like sine vector sinh γ in

the base Ẽ1. Formula (35A) gives trigonometric quadratic invariant −1 under Lorentzian
transformations of an unit time-like linear element ∆i.

Invariant scalar proper time is expressed in any pseudo-Cartesian base Ẽ as

∆τ = ∆t/ cosh γ = min⟨∆t(k)⟩. (36A)

When one deals with a curvilinear world line, the similar rotational transformation is
instantaneous, and (32A) is applied to its arc di�erential as a linear element:

dr(1) = {roth Γ}(m)dr(m) = {roth Γ}(m) ·


0
0
0

dcτ (m)

 =


dx

(1)
1

dx
(1)
2

dx
(1)
3

dct(1)

 . (37A)

Here the linear element dr(m) is expressed also in coordinates of the instantaneous base
Ẽm = {x(m),−→cτ (m)}. In STR the instantaneous bases, on the di�erential level, are always
inertial, but only from the point of view of inertial Observer, say N1 in Ẽ1. This has place,
because the axes −→cτ (m) and x(m) are instantaneous tangent and pseudo-normal to a world
line at a point M . Hence, the di�erential form similar to (36A) is

dτ (m) = dt(1)/ cosh γ = dλ(m)/(ic) = min⟨dt(k)⟩. (38A)
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Integrating (38A), one obtains ∆τ = ∆λ/(ic), where ∆λ is the pseudo-Euclidean length of
a world line segment [76, p. 110]. Formulae (36A), (38A) express in the clear trigonometric
form the relativistic e�ect of the Minkowski dilation of time at moving object with respect to
immovable Observer, namely of some time process in the object [66]. The e�ect may be easily
interpreted as a consequence of the hyperbolic rotation of −→cτ (m)! But simultaneously the same
dilation of space coordinate x(m) acts in the pseudoplane of this rotation for conservation
of the Minkowski space-time structure!. The e�ect of time dilation was �rst established by
V. Voight in 1887 [80] in his light elasticity theory and correctly by H. Lorentz in 1895 [58].

The segment of a world line ∆r(2) in Ẽ1, due to (32A), has else the space-like projection
a = ∆χ into ⟨E3⟩(1) � Figure 1A. It is the space trajectory of the object M . It is expressed
in terms of coordinate time as well as proper time with the two de�nitions of velocity:

∆ χ =

√
∆2x

(1)
1 +∆2x

(1)
2 +∆2x

(1)
3 = tanh γ ∆ct(1) = v ·∆t(1) = sinh γ ∆cτ = v∗ ·∆τ.

The proper velocity v∗ is de�ned in addition to a coordinate velocity v as a concomitant
relativistic e�ect. It is measured in proper distance dχ = dx(1) by proper time dτ :

v∗ = c · sinh γ = dχ/dτ = v · cosh γ = dχ/dτ > v = c · tanh γ;
v∗j = c · sinh γ′j = c · cosαj · sinh γ > vj = c · tanh γj (j = 1, 2, 3).

}
(39A)

The four vectors v,v∗, tanhγ, sinh γ are collinear. The hyperbolic angles γj and γ′j in
(30A) � Ch. 2A and (35A) are related as follows:

(vj = c · tanh γj = v · cosαj , v∗j = c · sinh γ′j = v∗ · cosαj) → sinh γ′j = cosh γ · tanh γj .

In the pseudoplane of hyperbolic rotation, the given problem is reduced to solving an
"interior hyperbolically right pseudo-Euclidean triangle" (see in sect. 6.4), where ∆cτ is
similar to the hypotenuse g, and ∆χ, ∆ct(1) are similar to the legs a, b.

In products (32A), (37A), the hyperbolic rotational matrix is formally truncated, only
its last row is used, because the original linear element ∆r(2) is parallel to its time-arrow−→
ct (2), and all its points in Ẽ2 have zero abscissa. The whole matrix is used if the original
element is on another time-arrow

−→
ct (3) under an additional angle γ23 from the time-arrow−→

ct (2). It is valid for two- and multistep motions (see in Ch. 7A).
The following important theorem of STR and Minkowski Geometry is enough obvious.
Let M ′ and M ′′ be two causally-connected world points in ⟨P 3+1⟩. Then the straight-

line segment M ′M ′′ inside the light cone of future has the maximal pseudo-Euclidean length
(proper time) among all continuous world lines (directed in future) connecting M ′ and M ′′�:

ct2 − ct1 = ct|t2t1 = ∆ct > ∆ct′ =

t2∫
t1

dct/ cosh γ(t) =

t′2∫
t′1

dct′ ≥ 0,

where t is the time of immovable Observer N1 in Ẽ1, t
′ is the time of moving Observer Nm

in Ẽm � see at Figure 1A. But a continuous world line M ′M ′′ can have the minimal pseudo-
Euclidean length λ = 0 if the points M ′ and M ′′ are connected by the light segments, and
only two of them are enough. The inequality above is also the clear trigonometric illustration
to the well-known relativistic "twins paradox" [85], when in its left part ∆t is interpreted
as the Earth time and in its right part ∆t′ is counted by astronauts. In the end of Ch. 5A,
we comment it on the example of the imaginary cosmic travel to the nearest star system.
Since world lines in ⟨P 3+1⟩ are invariants of the Lorentzian homogeneous transformations,
then the pseudo-Euclidean length of segment M ′M ′′ in Ẽ1 and as a world line M

′M ′′ in the
pseudo-Cartesian Ẽm is invariant too. This kinematic twin paradox has a place only by the
cause, that we compare two di�erent world ways between M ′ and M ′′ with their smaller
and bigger slopes in ⟨P 3+1⟩, with respect to the time-arrow, for example,

−→
ct (1).



Chapter 4A

Lorentzian seeming contraction of moving object extent
as a consequence of the moving Euclidean subspace
hyperbolic deformation

The Lorentzian seeming contraction of moving object's extent with the coe�cient sech γ(v)
(see Figure 1A (2), (3)) is interpreted correctly on the basis of Einsteinian physical de�nition
of simultaneity. The latter is caused by geometric theorem in ⟨P3+1⟩ only due to its pseudo-
Euclidean metric! So, in the external cavity of the light cone in ⟨P3+1⟩ � see at Figure 1A(2),
one usually considers some set of world points belonging on the whole to a certain Euclidean
space ⟨E3⟩(j). In the simplest practical variant, the set consists of two world points as two
events with a space-like interval between them. In general variant, important for subject of
this Chapter, the set consists of points of a concrete geometric object immovable in a certain
Euclidean space ⟨E3⟩(j) and moving with its projective map in another certain base Ẽi from
the point of view of Observer Ni. Of course, in the base Ẽj all the geometric object's points

are simultaneous, as they have always the same time coordinate on its own time-arrow
−→
ct (j).

From the other hand, all world points of a given geometric object belong to their world
lines in ⟨P3+1⟩. If the object is immovable with respect to the base ⟨E3⟩(j) and it is in uniform
rectilinear movement with respect to the base Ẽi, then the world lines of all its points are
parallel to the time-arrow

−→
ct (j). Observer Ni �xes the moving object points in his own

⟨E3⟩(i) at a certain value of time on his own time-arrow
−→
ct (i) although simultaneously, but

with the object's sizes distortion along the moving direction. This space-like phenomenon
is de�ned as an improper world �xation of the world points or of the moving object (as a
set of its world points �xed in ⟨E3⟩(i)).
⟨E3⟩(i) and

−→
ct (j) are hyperbolically orthogonal in ⟨P3+1⟩ i� the object is physically

immovable just in ⟨E3⟩(i) also. Then i = j and the world �xation of the object is proper.
It corresponds to true sizes of the object as immovable one. And this graphical way for
constructing �xations de�nes simultaneity of the world points in a certain base.

The Einstein's de�nition of simultaneity [67] is caused by a graceful geometric theorem
in ⟨P3+1⟩ adopted by him implicitly. In 2-, 3, 4-dimensional cases, it is expressed as follows.

Theorem 1. If a triangle ABC (see Figure 1A) is formed by a space-like segment AB
and two light segments AC and BC (i. e., isotropic zero legs) coming from the opposite
directions, then its median and height passing through the point C are identical.
Corollary. If ABC is such a light triangle in a certain pseudoplane, then its median (a

height) and its base (a hypotenuse) are the time-arrow
−→
ct (k) and the space axis x(k).

Theorem 2. In the cone obtained with any elliptic cut of a light cone in ⟨P3+1⟩, the
median passing through its apex C and 2- or 3-dimensional base are hyperbolically or-
thogonal to each other, hence its height and median passing through the point C are identical.

The theorems with the Einsteinian as if only physical de�nition of simultaneity, motivate
the pseudo-Euclidean quadratic metric in his version of STR! Of course, simultaneity of
events as world points �xation is a relative notion. It is de�ned with respect to a certain
Euclidean space ⟨E3⟩(i) and a certain time-arrow −→ct (j) in ⟨P3+1⟩. This is illustrated clearly at
Figure 1A(2). Here a rod as a geometric object is immovable on the axis x2 (i. e., j = 2), and
it is moving physically along the axis x1 (i. e., i = 1) at velocity ±v (tanh γ = ||v||/c). The
world lines of this rod's points are parallel to the time-arrow

−→
ct (j). That is why, Observer Ni

�xes the rod's points on its axis x1 as their oblique projections parallel to time-arrow
−→
ct (j).

From the mathematical point of view, this improper �xation is a cross projection onto x1
parallel to

−→
ct (j) � see �rst de�nition of cross projections in sect. 5.10. Here we have the

hyperbolic type deformation. Due to this, the moving rod contraction seems to Observer Ni.
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In general, an improper world �xation, with respect to a certain pseudo-Cartesian
base Ẽi, is de�ned as a graphically simultaneous cut of a geometric object world trajectory
parallel to ⟨E3⟩(i) at a certain moment of time t(i). If the object is physically immovable in

⟨E3⟩(j), then its world trajectory in ⟨P3+1⟩ is parallel to time-arrow −→ct (j). Hence de�nition
of an object's world �xation in Ẽi is reduced to its projecting into ⟨E3⟩(i) parallel to −→ct (j),
i. e., to a space-like projection in the cross base Ẽi,j ≡ {x(i)k ,

−→
ct (j)} (sect. 5.10). Single

cross projecting is expressed trigonometrically as the hyperbolic deformation in the pseudo-
plane of rotation. The pseudoplane at cross projecting has some properties of a quasi-
Euclidean plane, but only in the universal base, usually in initial Ẽi, as then the cross
quasi-Euclidean invariant under trigonometric deformations is valid in this pseudoplane �
sect. 5.10 and 12.2. For a geometric object, the volume of its �xation is maximal i� the
�xation is proper:

V = v(i,j)/sech γ = max⟨v(i,j)⟩ = const. (40A)

If a k-dimensional (k ≤ n) geometric object is moving rectilinearly and uniformly, then
exactly four variants of its world trajectory are possible:
1) a line if k = 0, the object is a particle as a world point;
2) a band if k = 1, the object is a rod as a directed segment (a vector);
3) a 3-dimensional band if k = 2, the object is a triangle or a parallelogram;
4) a 4-dimensional band if k = 3, the object is a tetrahedron or a parallelepiped.
We consider only simplest objects, they are represented by 4× k-lineors, see sect. 5.1.

The set of all world �xations for a given object is, from geometrical point of view,
equivalent to the set of all space-like cuts of its world trajectory. So, relatively immovable
Observer N1 �xes a rod simultaneously as its projection into ⟨E3⟩(1) parallel to −→ct (2) (see
Figure 1A). A world �xation, as well as a world trajectory, is a tensor notion, their valency
is 1. World �xations of objects pointed out above are expressed as either 4 × 1-vectors, or
4 × 2-lineors, or 4 × 3-lineors. If an object is immovable in ⟨E3⟩(j), then its proper world
�xation is de�ned with respect to Ẽj .

In the base Ẽj , these one-, two-, and three-dimensional immovable geometric objects
reduced to a current world point (the barycenter of a material body) are expressed initially
as the following space-like 4× k-lineors in the Minkowskian linear space-time:

a(j) =

 ∆x
(j)
1

∆x
(j)
2

∆x
(j)
3
0

 ; A
(j)
4×2 =

 ∆x
(j)
11 ∆x

(j)
12

∆x
(j)
21 ∆x

(j)
22

∆x
(j)
31 ∆x

(j)
32

0 0

 ; A
(j)
4×3 =

 ∆x
(j)
11 ∆x

(j)
12 ∆x

(j)
13

∆x
(j)
21 ∆x

(j)
22 ∆x

(j)
23

∆x
(j)
31 ∆x

(j)
32 ∆x

(j)
33

0 0 0

 . (41A)

With respect to the cross base Ẽj,i, we take out only Euclidean images in ⟨E3⟩(j) of the
lineors as their proper �xations, because they are immovable with respect to Ẽj :

a(j,i) = a(j); A
(j,i)
4×2 = A

(j)
4×2; A

(j,i)
4×3 = A

(j)
4×3. (42A)

If the coordinates of these tensors are subjected to deformational transformation defh Γij

from Ẽj,i into another cross base Ẽi,j (see below), then hyperbolic (tangent-secant) one-time
pseudo-Euclidean quasi-invariant from sect. 12.2 holds (for the one-time transformation).
This quasi-invariant is expressed as follows:

[a(j)]′ · a(j) = [a(i,j)]′ · a(i,j) = ||a||2E = l20 = const > 0, (43A)

[A(j)]′ ·A(j) = [A(i,j)]′ ·A(i,j) = |A|2 = Const, (44A)

where |A| is the k × k-matrix Euclidean module of the 4× k-lineor A (sect. 9.4).
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This one-step quasi-invariant is similar to Euclidean invariant due to spherical-hyperbolic
analogy (341) with respect to the base Ẽi for Observer Ni �xed the Lorentzian contraction:

Ẽj = roth ΓijẼi → Ẽi,j = defh Γij · Ẽj,i, defh Γij ≡ rot Φ(Γij) ≡ defh−1Γji. (45A)

Express with the passive modal transformation the new coordinates of lineors (41A) with
initial equalities (42A) in terms of both the modal matrices:

a(i,j) = defh Γij · a(j) = rot Φij · a(j) =


∆x

(i,j)
1

∆x
(i,j)
2

∆x
(i,j)
3

∆ct(j,i)

 , (46A)

A
(i,j)
4×2 = defh Γij ·A(j)

4×2 = rot Φij ·A(j)
4×2 =


∆x

(i,j)
11 ∆x

(i,j)
12

∆x
(i,j)
21 ∆x

(i,j)
22

∆x
(i,j)
31 ∆x

(i,j)
32

∆ct
(j,i)
1 ∆ct

(j,i)
2

 , (47A)

A
(i,j)
4×3 = defh Γij ·A(j)

4×3 = rot Φij ·A(j)
4×3 =


∆x

(i,j)
11 ∆x

(i,j)
12 ∆x

(i,j)
13

∆x
(i,j)
21 ∆x

(i,j)
22 ∆x

(i,j)
23

∆x
(i,j)
31 ∆x

(i,j)
32 ∆x

(i,j)
33

∆ct
(j,i)
1 ∆ct12

(j,i) ∆ct
(j,i)
3

 . (48A)

Thus we have two equivalent trigonometric de�nitions of a general world �xation with
one-time cross projecting, and respectively two kinds of the modal matrices in relation
(45A): hyperbolic deformational one and spherical rotational one. In the spherical rotational
variant, the angle Γ should be transformed into the angle-analog Φ(Γ) by this analogy. The
second variant is used for visual graphical interpretation of the Lorentz contraction. We
choose mainly the �rst variant with angle Γij connected simply with velocity v. For example,
express by passive modal transformation (46A) the new coordinates of the rod in terms of
original ones from (41A), (42A) with the use of canonical structure (364) for the hyperbolic
deformational modal matrix:

a(i,j) =


∆x

(i)
1

∆x
(i)
2

∆x
(i)
3

∆ct(j)

 =


∆x

(j)
1 − cosα1 · cos ε · l0 · (1− sech γ)

∆x
(j)
2 − cosα2 · cos ε · l0 · (1− sech γ)

∆x
(j)
3 − cosα3 · cos ε · l0 · (1− sech γ)

cos ε · l0 · tanh γ

 =

=

[
eα · [1− cos ε · (1− sech γ)] · l0

cos ε · tanh γ · l0

]
, (49A)

where in the rod �xation, the �rst three rows determine its new Cartesian coordinates in
the base Ẽi, the fourth row determines its non-zero time-like projection onto

−→
ct (j) as the

additional time-like e�ect (explanation in details will be lower);

l0 = ||a(j)|| is the Euclidean length of the rod in its rest state in the subbase Ẽ
(3)
j ,

ε is the angle in Ẽ
(3)
j between the rod and the antivelocity vector vji = (−eα · vij)(j)

with the same unity vector of the directional cosines (formally these cosines are equal to

ones of vij , but expressed in the base Ẽ
(3)
i ). And there holds

cosα1 ·∆x(j)1 + cosα2 ·∆x(j)2 + cosα3 ·∆x(j)3 = e′α · a(j) = cos ε · l0 = ||
←−
vv′ · a(j)||. (50A)
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Note one more relativistic e�ect: the hyperbolic angle between the velocity and antivelocity is
non-zero and equal to γij. If the velocity and the axis x1 are parallel, then cosα1 = 1 = cos ε,
cosα2 = cosα3 = 0, and the new rod coordinates are

a(i,j) =


∆x

(i)
1

∆x
(i)
2

∆x
(i)
3

∆ct(j)

 =


0 + sech γ ·∆x

(j)
1

∆x
(j)
2 + 0

∆x
(j)
3 + 0

0 + tanh γ ·∆x
(j)
1

 , (∆x
(j)
1 = cos ε · l0 = l0). (51A)

Here the non-relativistic and relativistic parts are pointed out as the summands from the
left and from the right respectively. More generally, if in (49A) also the rod and the velocity

are formally coaxial (cos ε = 1) in Ẽ
(3)
j , then there holds

a(i,j) =

[
eα · sech γ · l0

tanh γ · l0

]
. (52A)

The Cartesian coordinates in (51A, 52A) express the relativistic e�ect of so-called Lorentzian
contraction of extent [58, 59; 76, p. 109], which realizes coaxially to velocity:

l(i,j) = l(i) = sech γij · l0 =
√

1− (v/c)2 · l0 < l0. (53A)

Other coordinates are normal to the velocity, they do not change. The original and new
four coordinates of the rod in (49A) and special cases (51A) satisfy (43A), i. e., they form
quasi-Euclidean invariant, this follows from (45A). The sum of all three space coordinates
squares is the squared Euclidean length module of the rod contracted. In this most general
case, for the Lorentzian contracted oriented rod, there holds:

l(i,j) = l(i) = ||∆x(i)|| = l0

√
cos2 ε · sech2γij + sin2 ε =

= l0

√
1− cos2 ε · tanh2 γij = l0

√
1− cos2 ε · (v/c)2 < l0. (54A)

Apply the Herglotz Principle and evaluate its relativistic and non-relativistic summands.
The non-relativistic part (that is normal to the velocity vector) is the Euclidean invariant:

a
(i,j)
inv = a(j) − cos ε · l0 ·

[
eα
0

]
=

[
∆x(j) − eα cos ε · l0

0

]
. (55A)

Subtracting (49A) and (55A) gives the relativistic part:

a
(i,j)
rel =

[
eα · cos ε · sech γ · l0

cos ε · tanh γ · l0

]
=

[
∆x

(i)
rel

∆ct(j)

]
. (56A)

Apply the Pythagorean Theorem to its Cartesian part and obtain the relativistic part
| cos ε · sech γ · l0| for the Euclidean length of a moving rod. From (55A) and (50A) the
non-relativistic part | sin ε · l0| is evaluated too. This is the algebraic way for explaining
structure of (54A), another way is graphical. The Euclidean length of a moving rod is, due
to (54A), the orthogonal sum in ⟨E3⟩(i) of non-relativistic projection sin ε · l0 and relativistic
projection cos ε · sech γ · l0. The �rst summand is normal projection of the rod relatively to
the antivelocity vji. It is invariant under hyperbolic deformation. That is why, this part of
the rod �xation is spherically orthogonal to both vectors vij in ⟨E3⟩(i) and vji in ⟨E3⟩(j).
The second relativistic summand is obtained from parallel projection of the rod with its
cross projecting into ⟨E3⟩(i) parallel to −→ct (j) under condition in (52A) onto velocity vij .
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Squared Euclidean lengths of relativistic �xations (52A) and (56A) for the rod, due to
(43A) and (45A), are hyperbolic quasi invariants under one-step hyperbolic deformation.
They are space-like hyperbolic quadratic one-step cross invariants as if Euclidean ones:

[l(j)]2 = ||∆x(i,j)||2 +∆2ct(j,i) = [l(i,j)]2 +∆2ct(j,i) = l20 = const, (57A)

[l(j)]2rel = ||∆x(i,j)||2rel +∆2ct(j,i) = [l(i,j)]2rel +∆2ct(j,i) = l20 cos
2 ε = const. (58A)

The trigonometric secant-tangent form of invariant (58A) is

(sech2γ′′1 + sech2γ′′2 + sech2γ′′3 ) + tanh2 γ = ||sech2γ||+ tanh2 γ = 1, (59A)

where γ′′k is the hyperbolic angle between vector −vji in the subbase Ẽ
(3)
j and the axis xk

in the subbase Ẽ
(3)
i and sech γ′′k = cosαk · sech γ. This is an invariant for a unit space-like

linear element. The proper length of a rod (in the rest state) is a quasi-Euclidean metric
invariant in all other cross bases Ẽkj , in particular, in Ẽij :

l0 =
l(i,j)√

1− cos2 ε · tanh2 γij
= max⟨l(i,j)⟩. (60A)

This follows from (54A). The Lorentzian seeming contraction as the relativistic e�ect has
coordinate nature, i. e., it does not lead to any mechanical stretch. Formally, contraction of
moving objects of type (53A) was �rst established by G. FitzGerald in 1889 [89] in frame
of interpretation of the Michelson-Morley experiment � see above, and later by H. Lorentz
in 1895 [58] in frame of interpretation of the Maxwell electromagnetic wave equation.

The set of all world �xations of a moving rod is semiopen, as it does not contain extremal
cuts of its world trajectory by the hypersurface of the light cone, see Figure 1A. These
extremal cuts for a rod have zero Euclidean length of the relativistic space cross projection,
ones for objects of rank greater than 1 have zero Euclidean norms of order 1 and 2 for their
relativistic space cross projection and order 3 for their space volume �xation. These cuts
correspond to objects as if moving at the velocity c.

Furthermore, this rod, in addition, has the time-like projection in the same cross base Ẽij ,

this follows from (56A). Projecting is performed into the time-arrow
−→
ct (j), thus it is expressed

in the base Ẽj . This e�ect has the following relativistic explanation. Observer Nj can see

the analogous rod as immovable on the axis x
(i)
1 and moving at the same velocity vji in Ẽj ,

with seeming Euclidean length (54A). In the general case, when the two identical rods meet,
their two left ends and two right ends considered separately meet, according to (56A), with
the following time lag:

∆ct(i,j) = ∆ct(j) = cos ε · l0 · tanh γij ̸= 0. (61A)

It is the relativistic e�ect of non-synchronous meeting of two identical immovable and moving
coaxial rods paired points. Contact of the points pairs of meeting rods (if ε = 0) is spreading

at the left to the right along the axis x
(j)
1 at supervelocity w greater than c:

s = l0/∆t
(j) = c/ tanh γij = c · coth γij = c · cosh υij = c2/v > c. (62A)

(See connections of these complementary hyperbolic angles γ and υ in (360), sect. 6.4.)
During this accelerated movement the coordinate supervelocity decreases from ∞ to c (for
the angle γ) and increases from c to ∞ (for the complementary angle υ). However, in the
classic mechanics, the pairs of points meet simultaneously.
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Note, that the full set ⟨w · eα⟩ forms the hyperbolic cotangent vector space that is the
cotangent models outside the trigonometric circle or ball of radius 1 (the unity Cayley's oval)
or c for supervelocity, where the motion angles γ is on a hyperboloid I (see Ch. 12, 6A, 7A).

In products (46A)�(48A) the hyperbolic deformational matrix is formally truncated,
only three �rst rows are used (compare with rotational matrices in products (32A), (37A)
in Ch. 3A, because the original objects (lineors) in forms (41A) are parallel to their proper
Euclidean space ⟨E3⟩(j).

In the common pseudoplane of the hyperbolic rotation roth Γij in the base Ẽi and the

hyperbolic deformation defh Γij in the cross base Ẽij at Figure 1A, the problem is reduced to
solving the exterior right triangles: either pseudo-Euclidean one ABC (sect. 6.4), where l(i)

is similar to hypotenuse AB = g and l0, ∆ct
(j) are similar to legs a, b; or quasi-Euclidean one

A′B′D′ (Figure 1A(2)), where a = A′D′ is similar to hypotenuse as l0, g = A′B′ is similar
to leg l(i) as contracted rod length, b = B′D′ = ∆ct(j); i = 1, j = 2). Then Lorentzian
contraction is expressed formally in the quasiplane by the spherical rotation rot Φ(Γij) in

(45A) in the universal base Ẽi, and hyperbolic cross projections are determined due to the
Pythagorean theorem.

In a cross base Ẽij , for two vectors (rods) applied in one world point M , there holds

cosβ
(i,j)
12 = [a

(i,j)
1 ]′ · a(i,j)2 /||a(i,j)1 || · ||a(i,j)2 || = [e

(i,j)
1 ]′ · e(i,j)2 , (β12 ∈ [0;π]).

Here the algebraic formula for the cosine of the angle between two vectorial �xations in
⟨E3⟩(i) is given. Apply (54A) to this expression. The result is the trigonometric formula for
the cosine of the angle between two moving vectors (rods) applied in one point M :

−1 ≤ cosβ
(i)
12 =

cosβ
(j)
12 − cos ε1 · cos ε2 · tanh2 γ√

1− cos2 ε1 · tanh2 γ ·
√

1− cos2 ε2 · tanh2 γ
≤ +1, (63A)

where β
(j)
12 and β

(i)
12 are the scalar angle between the vectors measured by Observers Nj

and Ni. Two the initial vectors with the antivelocity vector form a triple in ⟨E3⟩(j).
According to the Hadamard Inequality (see in Ch. 3), for their unity vectors Gram

determinant, there holds

0 ≤ det{[e1e2e3]′ · [e1e2e3]} = s2123 ≤ 1.

And from here the triple trigonometric inequality follows:

2 cosα12 · cosα13 · cosα23 ≤ cos2 α12 + cos2 α13 + cos2 α23 ≤ 1 + 2 cosα12 · cosα13 · cosα23.

In our case, we have α13 = ε1, α23 = ε2, α12 = β12. These inequalities and condition
tanh2 γ < 1 infer (63A) as inequality too.

If the initial angle between the vectors is β
(j)
12 = π/2 → cosβ

(j)
12 = 0, then the new

angle β
(i,j)
12 is either acute (cos ε1 · cos ε2 < 0), or obtuse (cos ε1 · cos ε2 > 0), or zero

(cos ε1 · cos ε2 = 0).

If β
(j)
12 = 0, then ε1 = ε2 and β

(i,j)
12 = 0.

If both the vectors (and the angle between them) are orthogonal to the antivelocity
vector, then the relativistic e�ect of the angle changing does not take place; namely we

have: cos ε1 = cos ε2 = 0 → β
(i,j)
12 = β

(j)
12 .

If one of these two vectors is collinear to the antivelocity vector, then | cosβ12| decreases,
and the acute angle increases, the obtuse angle decreases (ε1 = 0→ β

(j)
12 = ε2):

0 < cosβ
(i)
12 = cosβ

(j)
12 ·

√
1− tan2 γ

1− cos2 ε2 · tanh2 γ
< cosβ

(j)
12 . (64A)
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Relativistic area of the parallelogram on two the vectors is

S
(i,j)
12 = l

(i,j)
1 · l(i,j)2 · sinβ(i,j)

12 =

=
S

(j)
12

sinβ
(j)
12

·
√

sin2 β
(j)
12 − (cos2 ε1 + cos2 ε2 − 2 cosβ

(j)
12 · cos ε1 · cos ε2) · tanh2 γ. (65A)

The diagonals of the moving parallelogram are subjected to Lorentzian contraction unless
they are orthogonal to the velocity. In general, for the length of the diagonals, there holds:

[L(i,j)]21,2 = [L(j)]21,2 − [l
(j)
1 · cos ε1 ± l

(j)
2 · cos ε2]2 · tanh

2 γ. (66A)

The volume of a parallelepiped (as well as of other body) decreases proportionally to the
secant of the hyperbolic angle γ of motion - see in (40A). With the use of (54A), (40A) and
the Hadamard Inequality the sine norm of a moving 3-dimensional lineor angle is evaluated:

s
(i,j)
123 =

s
(j)
123 · sech γ√

1− cos2 ε1 · tanh2 γ ·
√

1− cos2 ε2 · tanh2 γ ·
√

1− cos2 ε3 · tanh2 γ·
,

s
(i,j)
123 ∈ (0; 1). (67A)

Inequalities 0 < s
(i,j)
123 < 1 may be inferred by another way, with the use of formulae (63A)

and the Hadamard Inequality, because we have:

[s
(i,j)
123 ]2 = 1 + 2 · cosβ(i,j)

12 · cosβ(i,j)
13 · cosβ(i,j)

23 − cos2 β
(i,j)
12 − cos2 β

(i,j)
13 − cos2 β

(i,j)
23 .

The essential distinction in STR between the Lorentzian contraction of extent and the
Minkowskian dilation of time consists in the following. For polysteps motions, the latter may
be always expressed through multiplication of rotational matrices of all particular motions
with evaluating its summarized motive tensor angle after polar decomposition (see in Chs. 5A
and 7A). However, Lorentzian contraction, for polysteps motions, is not expressed similarly
through multiplication of all particular deformational matrices, because their hyperbolic
tensor angles are not summable. But it may be expressed through deformational matrix-
function of the �nal motive tensor angle in the rotational matrix-function obtained after
multiplication of particular rotational matrices and following polar decomposition of a result.

Moreover, due to (45A), the geometric result of one-step Lorentzian contraction is vi-
sually similar to massive object's spherical rotation at the angle Φ(Γ) with the following
spherical cosine projecting. Also, from the point of view of our tensor trigonometry, the
equivalent spherical matrices defh Γij ≡ rot Φ(Γij) mathematically clear interpret rela-
tivistic e�ect as the "Terrell-Penrose visual rotation of moving objects" under Lorentzian
contraction (in the base Ẽ1 of an immovable Observer). For general 4D analogy, we obtain:

{defh (±Γ)}(n+1)×(n+1) {rot(±Φ)}(n+1)×(n+1). (68A)

In×n + (sech γ − 1) · eαe′α ∓ tanh γ · eα
± tanh γ · e′α sech γ

≡ In×n + (cosφ− 1) · eαe′α ∓ sinφ · eα
± sinφ · e′α cosφ

.

(eαe
′
α =
←−−−
eαe

′
α)

We have an important peculiarity: the Lorentzian seeming contraction is a typical artefact,
i. e., it is a really observational but seeming to N1 space-like phenomenon evaluated in a
certain universal base Ẽ1 (in contrast to the mutual dilation of the space coordinate together
with the time coordinate as a result of the Lorentz transformations � see in sect. 12.3). When
the object returns to the rest state, its geometric sizes and angles are preserved. Any internal
mechanical stretches in an object, according only to inertial movements, are impossible!



Chapter 5A

Trigonometric models of two-steps, polysteps, and integral
collinear motions in STR and two hyperbolic geometries

Consider in details trigonometric modeling of the various rectilinear relativistic physical
movements. They are described mathematically by hyperbolic rotational matrix functions
of tensor angles in their elementary form (Ch. 2A). In process of the rectilinear movement its
changing tensor angle must preserve trigonometric compatibility. Due to Rule 2 (sect. 5.7),
compatible rotational matrices commute, in their multiplications the tensor argument angles
of motive type form an algebraic sum. Hence, in this Chapter, we use mainly the scalar form
for these motion angles and connected with them trigonometric functions and velocities.
The latters may be subjected also to operations of integration (into some distances) and
di�erentiation (into some accelerations), and what's more, these operations are realized
inside of a certain pseudoplane of these compatible hyperbolic type motions! Some examples
of similar relativistic physical movements for the following analysis are exposed at Figure 2A.

By this reason, the relativistic Poincar�e�Einstein Law of two velocities summation [63],
[67] as well as hyperbolic tangents summation for collinear summands has the following
trigonometric interpretation as compatible rotations in the hyperbolic angles Γjk:

roth Γ13 = roth Γ12 · roth Γ23 = roth (Γ12 + Γ23)⇒

⇒ cosα(13) · γ13 = cosα(12) · γ12 + cosα(23) · γ23,

 (cosα = ±1, γ > 0) (69A)

cosα(13) · tanh γ13 = tanh [cosα(12) · γ12 + cosα(23) · γ23] =

=
cosα(12) · tanh γ12 + cosα(23) · tanh γ23

1 + cos ε · tanh γ12 · tanh γ23 ⇒

⇒ v13 =
cosα(12) · v12 + cosα(23) · v23

1 + cos ε · v12v23/c2
,


(70A)

where cos ε = cosα(12) · cosα(23).
Hyperbolic Sommerfeld's form of this Law was �rst derived by eminent physicist and

mathematician Arnold Sommerfeld with geometric inferring as if on a sphere of imaginary
radius ic [86, 76, p. 111], i. e., in fact on the Minkowskian hyperboloid II (see in sect. 12.1).
This is based on the rule for summation through the tangents-functions of trigonometrically
compatible hyperbolic angles. The relativistic law of summing several collinear velocities is
expressed also in the simplest hyperbolic form:

cosα · γ =

m∑
t=1

cosα(t) · γ(t), (cosα = ±1, γ > 0) (71A)

v = c · cosα · tanh γ = c · tanh
m∑
t=1

cosα(t) · artanh vt/c. (72A)

The term "collinear" has here and further rather conventional character, it means merely
that all these summarized particular velocities vt are directed in their common 3-dimensional
Euclidean vectorial space coaxially with the non-directed vector eα = ⟨cosαi⟩ = const,
(i = 1, 2, 3). Hence, the particular velocity vt can have only one of two values of directed
vector of directional cosines ±eα, i. e., in contrary directions. In (69A)�(72A), this condition
corresponds to values cosα = ±1.
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An integral collinear motion as a curve world line in ⟨P3+1⟩ is projected hyperbolically
into some Euclidean sub-space ⟨E3⟩(m) as a rectilinear physical movement. More in details,
such motion is realized in some only one pseudoplane ⟨P1+1⟩ with its speci�c directional
vector eα, but physically the motion is projected hyperbolically as a straight line into any its
space axis, for example, x(1) = χ in parallel to

−→
ct (1). Hence, speaking strictly, "rectilinear

movement" is a physical term, which has rather conventional character too in ⟨P3+1⟩. (In
the Lagrangian space-time, a collinear motion is projected always into its Euclidean subspace
as single one for all the bases in parallel to any

−→
ct .)

Continuous summation of collinear motion angle di�erentials dγ = dγ(m) is accomp-
lished with integrating either along instantaneous axis x(m) as di�erentials dγ = dv(m)/c
of its inclination to the Euclidean sub-space ⟨E3⟩(1) or along instantaneous tangent to a

world line as di�erentials dγ of its inclination to the time-arrow
−→
ct (1). Note, that these

1-st di�erentials dγ and dv(m), as always, only are linear parts of curve increments ∆γ and
∆v(m) (and in the current point M there holds: v(m) = 0).

The space axis x(1) collinear with ±eα and the time arrow
−→
ct (1) determine the constant

pseudoplane ⟨P1+1⟩ with this two-dimensional universal base. Such base Ẽ1 corresponds to
the rest state of inertial Observer N1 of STR. In the base Ẽ1, we have the speci�c spherical-
hyperbolic analogy (26A) between hyperbolic and spherical motion angles for very important
applications. Further, we shall describe two-steps, polystep and integral collinear motions
mainly in the universal base Ẽ1 � see at Figure 2A.

In the tensor trigonometric version of STR, the principal hyperbolic angle of motion γ
has also relative nature as well as the time-arrow and the space. Here this angle is counted
in the base Ẽ1 o�

−→
ct (1) unless another condition is accepted. So, for a straight world line,

the relative velocity between Observers N1 and N2 determines the hyperbolic tangent of the
angle of motion γij from two opposite points of view � Figure 2A(1):

tanh γ12 =
v12
c

=
∆x(1)

∆(ct(1))
=

∆x(1)/ cosh γ12
∆(ct(1))/ cosh γ12

=
−∆x(2)

∆(ct(2))
= − tanh γ21. (73A)

The same takes place on the level of di�erentials if a material object M is moving
physically rectilinearly with acceleration or deceleration along Euclidean directions ±eα
with its instantaneous pseudo-Cartesian base Ẽm (from the point of view of Observer N1

in the initial universal base Ẽ1). For each point M of its world line, the origin of Ẽm is
associated with the barycenter of the moving object M . We have

Ẽm = roth Γ · Ẽ1 = F1(γ, eα) · Ẽ1. (74A)

The slope of a world line tanh γ is determined by the coordinate velocity of movement, and
this velocity may be expressed by two ways: from points of view of Observers N1 and Nm:

tanh γ =
v

c
=

dχ

d(ct(1))
=

dx(1)/ cosh γ

d(ct(1))/ cosh γ
=
−dx(m)

d(cτ)
= − tanh (−γ). (75A)

This formula corresponds to the Minkowski dilations of the space and time intervals in the
moving system of reference Ẽm (Ch. 3A) with the equal "relativistic factor" as cosh−1 γ.
(This can be explained by the fact that both these dilations are caused by the hyperbolic
projection from the coordinate system at rest Ẽ1 into the moving coordinate system Ẽm �
see in sect. 12.3.) Indeed, Observer N1 is in the relative ⟨E3⟩(1, Observer Nm is in relative
⟨E3⟩(m, and both have own coordinate parameters of the space and the time for velocity (with
its equal module). (Further similar Greek notations χ = x(1), cτ = ct(2) stand for proper
coordinates.) The proper time di�erential dcτ is also the di�erential of pseudo-Euclidean
length of a world line arc, i. e., along any continuous world line (see in details in Ch. 3A).
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Figure 2A. The world lines of a material point M for simplest kinds of rectilinear
relativistic physical movements, represented in universal proper and compressed bases:

(1), (2) � uniform rectilinear relativistic movement,

(3), (4) � uniformly accelerated rectilinear relativistic movement (hyperbolic motion).

Note (!), that at our Picture 2A(4), we combined and displayed [15, p. 223] the Triade I
from three bonded geometric objects � the catenoid I with its generating time-like catenary,
the tractricoid I (as Beltrami pseudosphere) with its generating Minding tractrix with the
same radius-parameter R and revolving axis −→cτR (or −→y ), and the adjacent torus with its
generating circle also of radius R. This Triade was produced by us from the Minkowski
pro-hyperboloid I with generating time-like hyperbola at Picture 2A(3). Its three objects
are bonded by the same hyperbolic and spherical angles in result of using evolute-involute
metric's transfer (Ch. 6A). The tractricoid I is one-step isometric to the hyperboloid I in the
universal base Ẽ1 of their enveloping binary spaces. With our tensor trigonometric approach,
one may also produce and display the Triade II from the Minkowski pro-hyperboloid II.
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For the moving object, its curvilinear world line is identical to its proper-time-arrow−−−−−−→
t∫
0

d(ct(m)) ≡ −→cτ (γ), see Figure 2A(3). A pseudo-normal and a tangent to a curvilinear world

line at point M form instantaneous directed axes x(m) and
−→
ct (m) of the base Ẽm.

In (73A), (75A), the relative velocity v12 in Ẽ1 of Observer N2 with respect to N1 is evaluated
with the use of its coordinate time t(1) and its proper distance x(1) = χ. Similarly, the relative
velocity v21 in Ẽ2 of ObserversN1 with respect toN2 is evaluated with the use of its decreased proper
time t(2) (dt(2) = sech γ21 dt(1)) and its moving coordinate distance x(1) (dx(1) = sech γ21 dx(2)) �
the latter is formally analogous to Einstein's dilation of time. Hence, the notion v is, in fact, the
coordinate velocity.

The proper velocity of physical movement (39A) is de�ned with the use of also proper coordinates,
i. e., proper time d(cτ) in a moving Euclidean subspace in Ẽm and immovable proper distance
dχ = dx(1) in Ẽ1. It is expressed by the hyperbolic sine:

v∗ =
dx(1)

d(t(m))
=

dχ

dτ
= c · cosh γ · tanh γ = c · sinh γ > v. (76A)

In the following, we use an asterisk in notation of proper characteristics! The proper velocity of a
light ray is in�nite, because d(cτ) = 0. Hence, the relativistic law of proper velocities summation
for collinear summands has the following hyperbolic sine interpretation, though hyperbolic angles
are summed as before, see in (70A):

v∗13 = c · sinh[cosα(13) · γ13] = c · sinh[cosα(12) · γ12 + cosα(23) · γ23] =
= c · [cosα(12) · sinh γ12 · cosh γ23 + cosα(23) · sinh γ23 · cosh γ12],⇒
⇒ v∗13 = v∗12 ·

√
1 + (v∗23/c)

2 + v∗23 ·
√

1 + (v∗12/c)
2,

v12v23 > 0 ↔ |v∗13| > |v∗12 + v∗23|.

 (77A)

Thus, there holds: v∗ = v/
√

1− (v/c)2 → 1/c2 = 1/v2 − 1/(v∗)2. The latter is equivalent to
the trigonometric identity: 1 = coth2γ − csch2γ. It is an invariant of cotangent-cosecant rotational
matrix, for example, of (361) from Γ, in particular, in the the right triangle of supervelocities (so,
see in Chs. 6, 6A)! The directed cosines of vectors v∗ and sin γ are equal to those of v and tan γ,
as they are obtained from the same di�erential dx in the numerator of their derivatives.

Let the frame of reference with Observer Nm moves also rectilinearly, but non-uniformly. Then
Nm has the instantaneous coordinate velocity with respect to N1 as

v
(m)
21 =

dx(m)

dτ
=
−dx(1)/ cosh γ

dt/ cosh γ
=
−dx(1)

dt
= −v(1)12 .

However, the instantaneous coordinate velocity of Nm in Ẽm, as its increment from zero value

in a certain previous current origin M of a world line, is expressed as d2x(m)

dτ
= dv(m) and exactly

in M it is zero: v
(m)
M = 0. The inner velocity v(m) → 0 has another sense in contrast to above one.

For the world trajectory passing through the point M , consider a neighborhood of M and introduce
in it two hyperbolic angles: γ(1) = γ is a general motion angle in Ẽ1, and γ(m) is a additional
in�nitesimal motion angle in the base Ẽm determined by the inner acceleration or deceleration of
movement in the neighborhood of M . For di�erentials of the two coordinate velocities with respect
to Ẽ1 and Ẽm in the neighborhood of M , their trigonometric forms are expressed as:

d

(
dx(1)

d(ct(1))

)
= d

(
dχ

d(ct(1))

)
= d tanh γ = sech2γ dγ = dγ/ cosh2 γ,

d

(
dx(m)

d(ct(m))

)
= d

(
dx(m)

d(cτ)

)
= d tanh γ(m) = dγ(m) = dγ,

 (78A

where γ(m) → 0 is counted in the base Ẽm from the current point M , but the angle γ is counted

in the base Ẽ1 from the origin O along the same world line. The angle γ is counted also from the

axes x(1) and
−→
ct (1) of Ẽ1 up to x(m) and −→cτ of Ẽm applied to the point M .
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For a curve world line segment, the in�nitesimal angle γ(m) is counted in the current
point M from the time-arrow −→cτ (as a tangent) or from the axis x(m) (as a pseudo-normal)
in these two opposite directions to the light cone between them. In a neighborhood of the

point M , there holds γ(m) → 0 as v
(m)
M = 0. (For a straight world line segment, angles dγ

and γ(m) are zero.) For a collinear motion in its pseudoplane, dγ is expressed in the same
instantaneous base Ẽm as dγ(m) = dγ. At M the inner 3-acceleration in Ẽm is

d2x(m)

dτ2
=
dv(m)

dτ
= c · d(tanh γ

(m))

dτ
= c · d(tanh dγ)

dτ
= c · dγ

dτ
= c · η∗γ = g(m)(τ). (79A)

From here, for collinear motions, we obtain the fundamental trigonometric formulae:

d2x(m) = dγ · d(cτ) = dv(m) · dτ = g(m)dτ2, dv(m) = c dγ = g(m)dτ, dx(m) = 0. (80A)

in ⟨P3+1⟩ : d2x(m) = d2x(m) · eα = dγ · d(cτ) · eα, dx(m) = 0, eα = ± const, d(cτ) ̸= 0.

d(cτ) = dλ is 1-st di�erential of the pseudo-Euclidean length of a world line segment; dγ is
space-like or time like. It is counted from M along the current x(m) or tangent. Formulae
(80A) connect three di�erential parameters of curvilinear collinear motion. So, we obtain
the inner velocity and acceleration as v(m) = c · γ(m) → 0 and g(m) = dv(m)/dτ = c dγ/dτ .

We use the trigonometric opportunities in the Minkowskian space-time ⟨P3+1⟩ for clear
descriptions of relativistic motions, in particular here collinear ones, with their kinematics
and dynamics in inertial and uninertial (accelerated or decelerated) frames of reference, but
from the point of view of inertial (Galilean) universal frame of reference Ẽ1. Thus in STR
the base Ẽm may be considered in Ẽ1 as instantaneously inertial [76]. At a moment of the
time τ , an inner 3-force F acted on M, with caused by it the inner 3-acceleration g(m) and
the inner 3-velocity dv(m) (i. e., as collinear 3-vectors in ⟨E3⟩(m)), are directed in Ẽm along
the x(m)-axis. Hence in Ẽm these three instantaneous characteristics are always collinear
with common directive vector e. According to the 2-nd Newton's Law of mechanics and
relation (79A) with the relativistic dilated time τ and, in addition, with the instantaneous

radius of the pseudo-curvature R = 1/K (pure hyperbolic here) along a world line, we get:

g(τ) =
F (τ) · eα
m0

=
d2x(m) · eα

dτ2
= c2

dγ

d(cτ)
·eα = c·η∗γ , dγ = K d(cτ) ⇒ g = c2/R. (81A)

|F| = m0 · |g| is the same for Observers in all inertial bases. (If F is an active force, then |F|
is the number showed at the scale of a dynamometer in Ẽ

(3)
m .) The rest own mass m0 ̸= 0 of

a material point (object) M does not depend on the given frame of reference. The absolute
value of inner acceleration determined by (79A) and (81A) is an invariant (strongly at
constant temperaturem0 = const). In Ẽm, it does not depend on γ (or velocity of movement)
contrary to corresponding relative characteristics. Due to this, exactly g(τ) is considered

in STR as the inner 3-acceleration in own Cartesian sub-base Ẽ
(3)
m (here as collinear one,

but generally as non-collinear � see in (145A), Ch. 7A). If g is collinear to velocity v, then
the world line stays in the same own pseudoplane (the motion is coplanar). The constant
collinear to v inner acceleration g determines rectilinear uniformly accelerated or decelerated
physical movement. Such absolute motion is described in a certain pseudoplane along a time-

like hyperbola with the constant radius of pseudo-curvature R = dλ/dγ = 1/K, where dγ ̸=
0, d(cτ) = dλ = R dγ is the hyperbolic arc with its radius-vector of pseudo-normal radiated
out of the hyperbola center O along vector g. For colllinear motion with instantaneous
parameters, including hyperbolic velocity η, (79A) gives the inner acceleration as follows

g =
d2x(m)

dτ2
=
dv(m)

dτ
= c· dγ

dτ
= c·η∗γ = c2

dγ

dλ
= c2K = c2/R = const ⇒ d2x(m) = R (dγ)2.
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In general, there are else two types of parallel inner accelerations for collinear motions.
The proper 3-acceleration in Ẽ = (χ,−→cτ ), with taking into account (76A) and (80A), is

g∗(τ) =
d2χ

dτ2
=
dv∗

dτ
= c · d sinh γ

dτ
= c · cosh γ · dγ

dτ
= cosh γ · g(τ) > g(τ). (82A)

It is greater than inner 3-acceleration in (79A), as the di�erentials d2x(m) is decreased
proper di�erential d2χ due to relativistic dilation as result of rotation of the axis x(m).
Contrary, the coordinate acceleration in Ẽ1 due to (78A) is very less than inner one:

g(1)(t(1)) =
dv

dt(1)
=

d2χ

(dt(1))2
= c·d tanh γ

dt(1)
= c·sech2γ· dγ

dt(1)
= c·sech3γ·dγ

dτ
= c·dγ

dτ
/ cosh3 γ ⇒

⇒ g(1)(t(1)) = g[τ(t)(1)]/ cosh3 γ ⇒ {g[τ(t)(1)]≪ g[τ(t)(1)] < g∗[τ(t)(1)]}. (83A)

The formula for tangential 3-acceleration g
(1)

(t) is known in STR in physical form, but
not in this simplest clear trigonometric form (!). The parameters ct(1) and cτ are used as

arguments of various functions. Both are synchronous in the universal base Ẽ1 if they are
�xed with clocks of N1 and Nm simultaneously. Simultaneity is de�ned in di�erential and
integral forms derived from projecting in parallel to proper time into ⟨E3⟩(1) (see in Ch. 4A):

d(cτ) = d(ct(1))/ cosh γ < d(ct(1)), cτ =

ct(1)∫
0

d(ct(1))/ cosh γ < ct(1); (84A)

d(ct(1)) = cosh γ d(cτ) > d(cτ), ct(1) =

cτ∫
0

cosh γ d(cτ) > cτ. (85A)

They are obtained with cut parallel to the axis x(1) = χ. Here cτ is, according to (84A),
the pseudo-Euclidean length of a world line counted from the base Ẽ1 origin.

If motion is integral and, as before, v and g in the Euclidean 3D-subspace are collinear,
then the angle γ, v and v∗ vary continuously wth eα = ⟨cosαi⟩ = const. In particular, for
hyperbolic motion, uniformly accelerated or decelerated (as the 1-st type of such motion)
there holds g = const. This �rst simplest kind of relativistic accelerated movement was �rst
analyzed by H. Minkowski [76, p. 111], M. Born [83] and A. Sommerfeld [86]. Second kind see
in Ch. 10A. We give here and in Ch. 10A our author's variants with the tensor trigonometric
approach. Thus, according to (79A) and (85A), we have for it a lot of important relations.

dγ = g dτ/c ⇒ d(cτ) = R dγ, τ0 = 0,

γ = gτ/c ⇒ cτ = R · γ (gτ = c · γ),

}
(g = c2/R = const). (86A)

d sinh γ = g dt/c ⇒ R d sinh γ = d(ct), t0 = 0,

sinh γ = gt/c ⇒ ct = R · sinh γ (gt = c · sinh γ),

}
(g = c2/R = const). (87A)

From (86A) and (87A), we get the analogous relations with synchronized time parameters.

d(cτ) = R dγ =
d(ct(1))
cosh γ

=
d(ct(1))√

1 +
[
gt(1)/c

]2 =
d(ct(1))√

1 +
[
ct(1)/R

]2 ,
cτ = R · γ = (c2/g) · γ = (c2/g) · arsinh [g · t(1)/c] = R · arsinh

[
ct(1)/R

]
.

 (88A)

d(ct(1) = R · cosh γ dγ = cosh γ d(cτ) = cosh(g · τ/c) d(cτ),

ct(1) = R · sinh γ = (c2/g) · sinh γ = (c2/g) · sinh(g · τ/c).

 (89A)
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With these relations for the hyperbolic motion and for the equivalent physical movement,
the coordinate and proper velocities are functions in coordinate and proper time expressed
also synchronically:

v = v(t(1)) = c · tanh γ = g·t(1)√
1+[g·t(1)/c]

2
< g · τ < g · t(1),

v∗ = v∗(τ) = c · sinh γ = c · sinh(g · τ/c) ≡ v∗t (t(1)) = g · t(1) > g · τ.

 (90A)

These inequalities may be interpreted trigonometrically as: tanh γ < γ < sinh γ < cosh γ.
Let's �nd out how also two types of distances x⋆ in Ẽm and χ in Ẽ1 are integrated up in

hyperbolic motion? According to (75A), coordinate velocities in them are equal v12 = v21,
but, with respect to the inertial base Ẽ1, their times ct in (86A) and cτ in (87A) are di�erent.

The 2-nd distance as a function in time τ is counted with the clock of Nm as follows:

x⋆ =

τ∫
0

v(cτ) dτ = R

γ∫
0

tanh γ(τ) dγ(τ) = LR(γ) = LR(τ) = R · ln cosh γ(τ). (91A)

We established, that such a way is expressed by the Huygens tractrix. It is generating
curve for construction of the tractricoid II by its revolving around time axis in the uninertial
Special quasi-Euclidean space � see in Ch. 6A with the Minding tractrix � generating line
for the tractricoid I. Both tractrices have equal length from angular argument γ or φ(γ), but
their uninertial Special quasi-Euclidean spaces, Euclidean sub-spaces and slopes are di�erent!
They have not invariants of motion in their spaces, but only one-step quasi-invariants.

The proper distance as functions in time t(1) = t or τ by the clocks of N1 or Nm are:

χ =

t∫
0

v(t) dt = R ·

[√
1 +

(
ct/R

)2
− 1

]
≡

τ∫
0

v∗(τ) dτ = R · [cosh(cτ/R− 1)]. (92A)

with (86A) and (87A). We established, that, in the 1-st case, it is direct equation of the kine-
matic time-like hyperbola. In the 2-nd case, it is direct equation of the catenary, i. e., such
a way is expressed by the time-like catenary. It is generating curve for construction of the
catenoid I by its revolving around time axis in the uninertial Special quasi-Euclidean space �
see below. Both catenaries also have not invariants, but only one-step quasi-invariants. Note
in (91A) and (92A) the common approximation at the beginning of these ways if γ → 0:
{x⋆(τ) & χ(τ)} → Rγ2/2 = gτ2/2, where g = F/m0 = c2/R is inner acceleration (81A).
This time-like hyperbola has the cosine-sine poly-steps invariant in the constant inertial
pseudoplane ⟨P1+1⟩, it follows clarity from its parametric equations in γ as below:

χ+R = R · cosh γ,
ct(1) = R · sinh γ,

}
⇒ (χ+R)2 − (ct(1))2 = R

2
· (cosh2 γ − sinh2 γ) = R

2
. (93A)

It relates also to the hyperbolic motion as the uniform relativistic motion on a pseudoplane
with its sine-cosine time-like invariant sinh2 γ−|coshγ|2 = i2 = −1 in any base Ẽ = {x,−→ct}.
It has constant pseudo-curvature KR = 1/R and hyperbolic angular proper velocity as:

η∗γ = dγ/dτ = c/R = cKR = g/c (rad/sec).

It expresses the velocity of hyperbolic rotation of tangent i with pseudonormal p radiated
from the center O (Figure 2A(3)) for hyperbolic type of collinear motions. The second kind
of the simplest uniformly accelerated relativistic motion as the pseudoscrewed motion will
be considered in last Ch. 10A, because it is executed with rotated principal angle of motion.



198 APPENDIX

In relation (86A), we have the parametric hyperbola with the angle-argument γ as a
parameter of geometric and relativistic motions. So, it is the angular argument in tensor
trigonometric representations of the two hyperbolic geometries (Ch. 12) and STR (Ch. 1A).
Such time-like ans space-like hyperbolae are generatrices of the hyperboloids I and II of

Minkowxki. With (86A), (87A), we obtain various forms for the coe�cient of similarity R:

R =
χ

cosh γ − 1
=
χ+R

cosh γ
=

ct(1)

sinh γ
=
cτ

γ
=
c2

g
= const. (94A)

The kinematic hyperbola is intermediate between the Newtonian kinematic parabola in t(1)

and an isotropic straight line of the light ray going out of the point O, see Figure 2A(3):

ct(1) −R < χ = χt(t
(1)) < g · (t(1))2/2 (sinh γ − 1 < cosh γ − 1 < (sinh2 γ)/2).

* * *

Contrary to pseudo-Euclidean approach, function χ(cτ) in (93A), (94A), measured by a
clock of Nm, produces Euclideanly the time-like catenary with the same radius-parameter R

χ(τ) =

τ∫
0

v∗(τ)dτ = c

τ∫
0

sinh γ(τ)dτ = R

γ∫
0

sinh γ dγ =

= R · [cosh(cτ/R)− 1] = R · (cosh γ − 1) ≡ R · [secφ(γ)− 1]⇒ (95A− I)

with very important Consequence from hyperbolic motion cosh γ = 1 + χ/R = 1 + gχ/c2 !

For instance, if in it we exchange inertial acceleration ga into gravitational intensity gf of
astronomical mass M, then this produces equivalent gravitational cosine cosh γ(f) ≡ cosh γ(a)
with identical in�uences on time from inertia and gravitation � see more in Ch. 9A, where
only with these cosines we'll explain the Mercury perihelion relativistic shift in frame of STR.

In Ch. 6 we established, that in the quasi-Cartesian and pseudo-Cartesian so-called
universal bases of their binary spaces, between rotations and deformations there are angular
and metric connections with general tensor correspondences (334), (335) in the quart circle
(341) due to the covariant and countervariant speci�c spherical�hyperbolic analogies (331).

We extend this concept onto one-step isomorphic transformation ⟨P1+1⟩ ⇒ ⟨Q1+1⟩ in
relation (95A-I) � see visually on Figure 2A(3→4) by recti�cation with orthogonalization of

initial regular curves, for example, line −→cτ into straight axis −→cτ (or −→y2) instead of previous
−→
ct

(or −→y1). From the physical point of view, in ⟨P1+1⟩ we have velocity v = dχ/dt = tanh γ · c
and, with respect to proper time, it is v∗ = dχ/dτ = sinh γ · c ≡ tanφ(γ) · c with tangent
slope in the Euclidean quasiplane ⟨Q1+1⟩ ⊂ ⟨Q3+1⟩. In ⟨P1+1⟩ and ⟨Q1+1⟩, these universal
original and new bases are: Ẽ1 = {χ, ct} and ẼC = {χ, cτ} = Ẽ(1,2). From the mathematical
point of view, we did transformation of initial polystep invariant of motion in ⟨P3+1⟩ in the
one-step quasi-invariant in ⟨Q3+1⟩↕ (see earlier the same in Chs. 5, 6 and 4A):

[d(cτ)]2 = [d(ct(γ))]2 − [dχ(γ)]2 → [d(ct)]2 = {d(cτ [φ(γ)])}2 + {dχ[φ(γ)]}2.

In particular, this gives one-to-one correspondence between tangent-secant hyperbolic di�er-
entials of the time-like pro-hyperbola and sine-cosine spherical di�erentials of the time-like
catenary, con�rmed again relations (87A), now on a tensor level and with angles γ and φ(γ):

dχ = R sinh γ dγ,
dcτ = Rdγ,
χ = R(cosh γ − 1),
cτ = Rγ.

⇒


(dχ)2 + (dcτ)2 = (dct)2 = R2 cosh2 γ dγ2 =
= dC2R(γ) ≡ dC2R[φ(γ)] = R2 sec4 φ(γ) d[φ(γ)]2 →
→ CR(γ) = ct = R sinh γ ≡ CR[φ(γ)] = R tan[φ(γ)].
Under γ0 = 0, φ0 = 0− from OI at Figure 2A(4).

(95A− II)
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All this is interpreted as passage into Special quasi-Euclidean binary space or uninertial
space-time with time-like catenaries and catenoid I. Such binary space is direct spherically
orthogonal sum of the Euclidean subspace ⟨E3⟩(1) and the new recti�ed time-arrow −→cτ :

⟨Q3+1
C ⟩↕ ≡ ⟨E3⟩(1) ⊞−→cτ , where ⟨E3⟩(1) ≡ CONST, −→cτ ≡ Const. (95A− III)

Space-times ⟨Q3+1
C ⟩↕ and ⟨P3+1⟩ have the same re�ector tensor {I±} and orthospherical

rotations rot Θ. As if Euclidean length of world line −→cτ , as the new time axis −→cτ in ẼC ,
corresponds to proper time; Euclidean length of world line

−→
ct corresponds to coordinate time.

With analogous to (95A-II) procedure, from these space-like pro-hyperbola and Minkowski
pro-hyperboloid II, we obtain these space-like catenaries and Catenoid II in space ⟨Q2+1

C ⟩↔.
With (95A-II), by analogy (331-I), in addition to the hyperbolic invariant of kinematic

pro-hyperbola (93A), we obtain in ⟨Q2+1
C ⟩↕ the one-step hyperbolic secant-tangent quasi-

invariant of the kinematic catenary for its points o� initial O1 with the same parameter R
(due to its true hyperbolic nature on the pro-hyperbola), and its one-step cosine-sine quasi-
invariant as the spherical analogue, transferred to a circle tangent to it at O1 (Figure 2A(4)):[

R2

χ+R

]2

+
[
tanh γ

γ · cτ
]2

= R2 = R2 · (sech2γ + tanh2 γ) =

= R2 · (tanh2 υ + sech2υ) ≡ R2 · [cos2 φ(γ) + sin2 φ(γ)].

 (cτ = Rγ, φ ̸= ±π/2) (96A)

The equation is an invariant to orthospherical rotations in ⟨E2⟩ ⊂ ⟨Q2+1
C ⟩↕ with the same

re�ector tensor. Along the time-like catenary, it is one-step tangent-secant quasi-invariant
of the time-like pro-hyperbola in ⟨P1+1⟩. In ⟨Q1+1

C ⟩↕ ⊂ ⟨Q2+1
C ⟩↕ it is one-step sine-cosine

quasi-invariant with φ(γ), expressed by equation of the circle tangent to the catenary in
point OI , as situated on a torus around and tangent to the catenoid I � Figure 2A(4). [At it
angle γ is expressed by φ with (360-II).] Along the circle spherical angle φ(γ) is summarized!
Analogy (331) breaks at φ = ±π/2 in CII . Acute angles γ and υ are bonded by (360-IY).

By rotation of time-like catenary around y1 = −→cτ = Rγ we get one sheet "horn shaped"
catenoid I (of Euler); and by rotation of the space-like catenary around y2 = R cosh γ we get
two sheets "symmetric cups shaped" catenoid II as the minimal suprfaces formed also by the
line of sag. Below we give hyperbolic and spherical equations of spatial time-like and space-
like catenaries by seemming rotation at the right angle Π/2 with exchange of their space and
time coordinates as Ẽ(C1) = {χ, cτ} = {x1, y1} ↔ Ẽ(C2) = {Rγ,R cosh γ} = {x2, y2} with
construction of catenoids I and II. Hence, the values of both catenaries radius and length
are the same for both catenoids. After curve's rotation at Π/2, the Meusnier angle changes
in complementary, but in both quasi-Euclidean enveloping spaces ⟨Q2+1

C ⟩↕ and ⟨Q2+1
C ⟩↔,

Euclidean metric and orthogonal di�erentiation are preserved with φ and ξ. Now we can
obtain for catenoids I and II their equations even in (n + 1)-dimensional quasi-Cartesian
bases ẼC and calculate 1-st metric forms with two variant of parameterization in γ and φ.

For the catenoid I in ⟨Q2+1
C ⟩↕ (at Meusnier angle φ between normal to catenary and r1),

we get subsequently its metric form in its vector-scalar (vs) form from zero on the Equator:

x(I) = χ · eα = R · cosh γ · eα ≡ R · secφ · eα,
y(I) = cτ = ±R · γ ≡ ±R · γ(φ).

}
⇒ (97A− I)

dx(I) = d(χ · eα) = Rd(cosh γ · eα) = R(sinh γ dγ · eα + cosh γ dα · eµ),
dy(I) = dcτ = R dγ.

}
⇒

dx(I) = d(χ · eα) = Rd(secφ · eα) = R(secφ · tanφ dφ · eα + secφ dα · eµ),
dy(I) = dcτ = R dγ(φ) = R secφ dφ.

}
⇒

dl21(γ) = [−RC(dγ)]2dγ2+[Rn(γ)]2dα2 = R2(cosh2 γ dγ2+cosh2 γ dα2) = R2{[dC(I)(γ)]2+cosh2 γ dα2} ≡

≡ dl21(φ) = [−RC(dφ)]2dφ2+[Rn(φ)]2dα2 = R2(sec4 φ dφ2+sec2 φ dα2) = R2{[dC(I)(φ)]2+sec2 φ dα2}.

Then R1 = −RC(dφ) = −R sec2 φ, R2 = Rn(φ)/ cosφ = +R sec2 φ, 1/KG = R1R2 = −R2 sec4 φ.



200 APPENDIX

For the catenoid II in ⟨Q2+1
C ⟩↔ (at Meusnier angle ξ between normal to catenary and r2),

we get subsequently its metric form in its vector-scalar (vs) form from zero on the Pole:

x(II) = R · γ · eα ≡ R · γ(φ) · eα = R · ln cot[(π/2− φ)/2] · eα,
y(II) = R · cosh γ ≡ R · secφ.

}
⇒ (97A− II)

dx(II) = R d(γ · eα) = R(dγ · eα + γ dα · eν),
dy(II) = R · sinh γ dγ.

}
⇒

dx(II) = R d[γ(φ) · eα] = R d{ln cot[(π/2− φ)/2] · eα} = R[secφ dφ · eα + ln cot[(π/2− φ)/2] dα · eν ],
dy(II) = R d secφ = R · secφ · tanφ dφ.

}
⇒

dl22(γ) = R2(cosh2 γ dγ2 + γ2 dα2) = R2{[dC(II)(γ)]2 + γ2 dα2} ≡
≡ dl22(φ) = R2{sec4 φ dφ2 + ln2 cot[(π/2− φ)/2] dα2} = R2{[dC(II)(φ)]2 + ln2 cot[(π/2− φ)/2] dα2}.

Then R1 = RC(dφ) = R sec2 φ, R2 = Rn(φ)/ cos ξ = R ·γ(φ)/ sinφ, 1/KG = R1R2 = R2 secφ tanφ ·γ(φ).
In next Ch. 6A we'll obtain naturally, with our tensor trigonometric approach and the

same angles-analogues γ and φ (with countervariant speci�c spherical-hyperbolic analogy),
two kinds of tractrices with tractricoids I and II as the following derivative objects from
both two hyperbolae and hyperboloids I and II with the common coe�cient of similarity R.

At the focal point χF of the time-like catenary, the focal hyperbolic angle of inclination for
these catenary and hyperbola (see at Figure 2A (3) and (4)) are γF = ω = arsinh 1 ≈ 0.881
and φF (γF ) = π/4. They are de�ned by the same covariant sine-tangent analogy, where ω =
arsinh 1 is the Especial hyperbolic angle introduced in sect. 6.4, as the hyperbolic analog of
the Especial spherical number π/4. The proper distance for the catenary χ = R ·(cosh γ−1)
tends to parabola f(cτ) = gτ2/2 = Rγ2/2 (at τ → ∞) due to (cosh γ − 1) ≈ γ2/2. The
time-like catenary lies under the kinematic parabola in τ and the focal tangent to catenary
(with inclination π/4), but it lies above the tangent circle (up to χ = R) in ⟨Q1+1

C ⟩↕:

gτ2/2 < χ, cτ − kR ≤ χ, χ = χτ (τ) < R−
√

(R)2 − (cτ)2 if cτ ≤ |R|.

These inequalities are interpreted as follows: γ2/2 < cosh γ − 1 < 1−
√

1− γ2 (γ ≤ 1).

In pseudo- and quasi-Cartesian bases Ẽ1, both world lines of hyperbolic motion lie at
di�erent sides of two kinematic parabolae, see at Figure 2A(3), (4). If the angle of motion γ
is equal to γF = ω (and φ(γF ) = π/4), then the coordinate velocity v achieves value
vF = c · tanh ω = c/

√
2 (for the hyperbola), and the proper velocity v∗ achieves value

v∗F = c · sinh ω = c (for the catenary). Furthermore, v∗ > c if γ > ω and φ(γ) > π/4. But
proper velocity of light is in�nite. The maximum proper velocity of matter is v∗ →∞! (It is
a velocity of astronauts by their clocks � see to the end of this Chapter.) The coordinates
of time-like catenary point at its focus χF in these bases are expressed in terms of the
hyperbolic characteristic radius R = c2/g:

χF = (
√
2− 1)R ≈ 0.41R; ct

(1)
F = R, cτF = ωR ≈ 0.881R, (but cτ = R at γ = 1);

kR = cτF − χF ⇒ k = ω + 1−
√
2 ≈ 0.467, as γ = ω and φ(ω) = π/4 at F.

Let us pay attention to the fact that in our Triad I all the objects discussed above have
common spherical and hyperbolic angles. To visually display them, we use an adjacent torus,
on whose generating small circles these angles are displayed with speci�c analogy (331) and
quasi-invariants (96A), (105A) in Ẽ1 o� the radius-perpendicular directed to the tangent
(and normal) MM' at Picture 2A(4). The Principle of Correspondence by Niels Bohr in
our STR-tensor trigonometric interpretation (and further GTR!) means that the kinematic
hyperbola, catenary, and two classic parabolae (of t and of τ) have the same tangent circle of
radius R at their zero point O1, see at Figure 2A(3), (4). This is equivalent to the fact that
these curves have at point O1 the same derivatives of the 1-st (zero) and 2-nd orders, these
time-like hyperbola and catenary with two approximating them parabolae have the common
radius of curvature R in the own coordinates of Ẽ1 with the approximating relations:

| (g · τ2)/2 < χ = (c2/g) · {cosh [g · τ(t)/c]− 1} < (g · t2)/2 | ⇒ (g · t2)/2, if v/c→ 0.
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* * *
Trigonometric approach can be used for clear and simplest introducing of main dynamical

relativistic characteristics too. So, for rectilinear progressive physical movement of mass M ,
we de�ne scalar, vector and tensor trigonometric expressions of these characteristics as
Newtonian ones both in the original base Ẽ1 and in the current base Ẽm with the proper
time (36A). The moving material body is reduced to its barycenter as a material point M .
Then, with the use of the 2-nd Newtonian Law, we obtain in the relativistic space-time:

F = Fτ (τ) = m0g(τ) = m0 ·
dv(m)

dτ
=

d[m0v
(m)]

dτ
=

dp(m)

dτ
= m0c ·

g(τ)

c
= m0c ·

dγ

dτ
≡

≡ m0c ·
cosh γ dγ

dt(1)
=

d(m0c · sinh γ)
dt(1)

=
d[(cosh γ ·m0) · (tanh γ · c)]

dt(1)
=

=
d(m0v

∗)

dt(1)
=

d(mv)

dt(1)
=

dp(m)

dτ
=

dp(1)

dt(1)
= Ft(t

(1)). (A)

Formulae of the �rst row hold only in an instantaneous pseudo-Cartesian base where
m0 = const is the own mass. Hence, this form of the 2-nd Newtonian Law is covariant!

(An active inner force |F| is the number showed as if at the scale of a dynamometer in Ẽ(3)
m .)

Capacity of this inner force, due to the Newtonian mechanics, is presented in the base Ẽ1 as

N = F · v = m0c
2 · cosh γ dγ

dt(1)
· tanh γ =

d(cosh γ ·m0c
2)

dt(1)
=

d(mc2)

dt(1)
=

dE

dt(1)
. (B)

First both these STR equations were obtained in physical forms by Henri Poincar�e [63, 64].
These expressions allow to introduce instantaneous dynamical characteristics in Ẽm and Ẽ1:
the own 4-momentum P0 = P0i = m0c, the total scalar momentum P = mc = cosh γ ·P0 and
the real 3-momentum p = mv = m0v

∗ = sinh γ ·m0cp = sinh γ ·P0p. Here c is 4-velocity by
Poincar�e, i and p are the principal tangent and pseudonormal to a world line. The time-like
proportional total parameters (P = mc,m,E = mc2) are cosine orthoprojections onto the

time-arrow
−−→
ct(1), the space-like real momentum is a sine orthoprojection into the Euclidean

subspace ⟨E3⟩(1) from a world line. Contrary to non-invariant total momentum, P0 = m0c is
invariant given by the 4D pseudo-Euclidean Pythagorean Theorem of three momenta in the
internal right triangle for the dynamics of M with hypotenuse P0, legs P and p in ⟨P3+1⟩:

P0 = P0 · i = P · i1 + p · j ⇒ (iP0)
2 = (iP )2 + p2 ⇒ {P 2

0 = P 2 − p2} (98A− I)

� here under metric tensor {I∓} with invariant 1 = cosh2 γ − sinh2 γ (see in Chs.7A, 10A).
The own energy on a world line is E0 = P0c = m0c

2. An increment of the non-invariant
total energy E = Pc = mc2 is expressed by exact trigonometric formula with approximation:

kE = (cosh γ − 1) = ∆P/P0 = ∆E/E0 = (E − E0)/E0 = A/E0 ≈ tanh2 γ/2. (99A)

These cosine formulae are very important for energetics interpretations in Chs. 7A, 9A, 10A.
From here the Poincar�e�Einstein formula for non-invariant mass-energy follows [62], [68]:

E = Pc = mc2 =
√
E2

0 + (pc)2 ≈ E0 +m0(v
∗)2/2 ≈ E0 +m0v

2/2. (C)

With such mechanical way, it was inferred by G. Lewis in 1908 [88]. The former approximate
values in this formula for m, P and E are upper bounds for the characteristics, second ones
are lower bounds. This follows from inequalities: 1+ sinh2(γ/2) > cosh γ > 1+ tanh2(γ/2).

Note essentially, that the use of homogeneous dynamic characteristics given above
(P0, P,p) in the Theory of Relativity instead of heterogeneous ones with (m0, E0,m,E)
has the obvious advantage that they are all reduced to a common physical dimension as the
original invariant characteristic with its cosine and sine projections here along a world line.
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Last expression is the cosine energetic Hamilton function of γ as E =
√
E2

0 + (pc)2 =√
E2

0 + (E0 · ||sinh γ||)2 = cosh γ · E0 = E0 + A. But both pseudo-Euclidean proportional

invariants in ⟨P3+1⟩ are P0 = m0c = +
√
P 2 − (p)2 ∼ E0 = m0c

2 = +
√
E2 − (pc)2.

Besides, we express trigonometrically the phase velocity of the de Broglie wave as the
supervelocity s = E/p = coth γ · c = c2/v and its real velocity as v = dE/dp = tanh γ · c.

And total momentum (98A-I) as the principal dynamical characteristic in STR can be
represented on an invariant world line in the space-time ⟨P3+1⟩ as also invariant along it
4× 1-momentum P0 (parallel to 4-velocity by Poincar�e c = c · iα) of a particle or a body M
with its scalar cosine and 3-vector sine orthoprojections:

P0 = P0 · iα = m0 · c = P0 ·
[

sinh γ · eα
cosh γ

]
=

[
p
P

]
=

[
p
E/c

]
. (98A− II)

It is preserved under F = 0↔ P0 = Const. The scalar value P0 = m0c = E0/c is pseudo-
Euclidean invariant for the particle or body M . As vectorial di�erential characteristic, it
has the 1-st order of di�erentiation along a world line and tangent to it. In Ch. 10A we'll
consider tensor trigonometrically all characteristics of absolute motion of M along its world
line in ⟨P3+1⟩, with respect to the base Ẽ1, up to the superior 4-th order.

These hyperbolic forms of the dynamical characteristics are obtained from Laws of the
Newtonian mechanics, but with introduction of the relativistic time in Ẽm for moving objects
parallel to direction of motion in Ẽ1 (as above). The hyperbolic angles of motion are bivalent
4×4-tensors Γ and dΓ in Ẽ1. The former is a main argument of themeasureless trigonometric
tensor of motion acting in space-time ⟨P3+1⟩ and hyperbolic geometry � see about it also
in Chs. 6. It is a pseudobiorthogonal tensor. In the original base Ẽ1, its de�nition and
canonical forms due to (324), (348) and (362), (363) are following:

{roth (±Γ)}(3+1)×(3+1) = coshΓ± sinhΓ = F (γ, eα)

cosh γ ·
←−−−−
eα · eα′ +

−−−−→
eα · eα′ ± sinh γ · eα

± sinh γ · e′α cosh γ
=

⟨roth Γ⟩ : rothΓ · I± · rothΓ = I± (eαe
′
α =
←−−−
eαe

′
α) (100A)

=
I3×3 + (cosh γ − 1) · eαe′α ± sinh γ · eα

± sinh γ · e′α cosh γ
= I3×3 + (cosh γ − 1) ·

←−−−
eαe

′
α ± sinh γ · eα

± sinh γ · e′α cosh γ
.

It is splitted projectively in 3 × 3-tensor orthoprojection into ⟨E3⟩(1), scalar cosine ortho-
projection onto

−−→
ct(1) and two mutually transposed sine vector oblique projections. Logically,

that in the limit case γ → 0, we have roth Γ→ I4×4.
Suppose that a material object M is moving progressively with respect to Ẽ1 in ⟨P3+1⟩

at instantaneous velocity v = v · eα = c · tanh γ = c · tanh γ · eα or proper velocity
v∗ = v∗ · eα = c · sinh γ = c · sinh γ · eα in the subspace ⟨E3⟩(1). On an arbitrary world line
in the base Ẽ1, we obtain the most general kinematical parameter as a tensor of an absolute
4 × 4-velocity TC = c · roth Γ. As its right column, we get the vector of 4-velocity c = ci
by Poincar�e with the pseudo-Euclidean module c. Recall (sect. 6.4), that at γ = ω we have
v∗ = c, v = c/

√
2. In its turn, also on the basis of physical-mathematical isomorphism

(sect. 12.3), the physical dynamical tensors of momentum and energy are proportional to
our tensor of motion (100A) as their measureless trigonometric prototype, namely with using
constant coe�cients c and m0. Mainly, these following instantaneous dynamical tensors of
momentum�energy TP and of energy�momentum TE are de�ned in the original base Ẽ1 as

TP = P0 ·roth Γ = m0c ·roth Γ = m0 · TC , TE = P0c ·roth Γ = E0 ·roth Γ = m0c
2 ·roth Γ.
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If we let, that c = const, then TE ∼ TP ). Of course, all three tensors are compatible
with the metric re�ector tensor of the Minkowskian space-time ⟨P3+1⟩. Moreover, they are
pseudo-Euclidean orthogonal and preserve their symmetric form under orthospherical trans-
formation of Ẽ1, i. e., in ⟨Ẽ1u⟩. Asymmetrical tensors, obtained after two-step or multistep
non-collinear motions may be represented in their polar form (19A) � see in sect. 11.3
and further in Ch. 7A. For example, consider the tensor of momenta TP easily and clarity
obtained from dimensionless tensor (100A). Its canonical tensor form is preserved under
F = 0↔ TP = CONST. Then in the base Ẽ1, it has this physical form:

TP = P ·
←−−−−
eα · eα′ + P0 ·

−−−−→
eα · eα′ p

p′ E/c
= mc ·

←−−−−
eα · eα′ +m0c ·

−−−−→
eα · eα′ mv

mv′ mc
. (101A)

The (3 + 1) × (3 + 1)-tensor is splitted projectively in the 3 × 3-tensor orthoprojection

{[cosh γ ·
←−−−−
eα · eα′ +

−−−−→
eα · eα′] · P0} into ⟨E3⟩(1), the scalar cosine projection P = P0 · cosh γ

onto the time-arrow
−−→
ct(1) (accordinly E = E0 · cosh γ = m0c

2 · cosh γ), and two mutually
transposed 3×1- and 1×3-vector sine projections p = P0 · sinh γ ·eα = m0v

∗ = mv and p′.
In all admissible pseudo-Cartesian bases, the values P0 = m0c and E0 = m0c

2 for a massive
material point are the pseudo-Euclidean scalar invariants, but P0 = m0c (98A-II) as a right
column P0 in (101A) is a geometric invariants in space-time ⟨P3+1⟩ similar to a world line.

In its turn, the Lorentzian contraction of moving objects extent in the direction of this
movement, �xed by Observer in the universal base Ẽ1, has coordinate nature. It is described
in 3-dimensional variant by the measureless (3+1)×(3+1)-tensor of hyperbolic deformation
(Ch. 4A). Due to Lorentzian seeming decreasing of moving body volume, its coordinate
density seems to increase. But there is no pressing force acting on the body in the direction
of movement. Inner physical force is absolute characteristic in (81A), its value is determined
only in own instantaneous inertial base Ẽm with the proportional inner acceleration F/m0.

In our tensor trigonometric interpretation of STR, all the relativistic transformations of
physical values may be determined more clarity and brie�y with the use of these measureless
trigonometric tensors and further operations of mathematical analysis over them. We used
the signature of the Minkowski space-time ⟨P3+1⟩ with {I±} in (93A), (100A), (101A), etc.
This is explained historically by the fact, that Henri Poincar�e, discovering in 1905 the new
relativistic space-time, introduced the imaginary hyperbolic angle as its angle of motion, and
later Minkowski in 1908 [66, 65] reali�cated it by using his unity metric tensor {I±}. It is in
the case, a signature of this metric tensor corresponds to the original imaginary time-arrow
with 4-velocity by Poincar�e c and to the real-valued Euclidean subspace. Unfortunately,
Einstein later presented this to the exact opposite, for example, in [69]. The same signature
with {I±} will be used by us in the hypothetical so-called Looking Glass of the Theory of
Relativity � beyond the horizon of events as if in another adjacent othersided world in the
entire geometric and physical space-time ⟨P3+1⟩ by Minkowski. See this in detail in Ch. 10A.

* * *

Let use (79A), (81A), (86A) for deducing the relativistic Ziolkovsky formula, in particular,
for the photon rocket of Eugen S�anger [112] moving due to reactive force of the light.

F = m0(τ) · g(τ) = u · dm0(τ)

dτ
⇒ u · dm0(τ)

m0(τ)
= g(τ)dτ = c dγ(τ)⇒

⇒ m0(τ) = m0 exp[−(c/u) · γ(τ)] = m0 exp{−(c/u) · arsinh [v∗(τ)/c]},
where m0 and m are the initial and current mass of the rocket in the base Ẽm, and u is the
fuel out�ow velocity, γ(τ) = arsinh [v∗(τ)/c]. We deal with the hyperbolic motion! For a
hypothetical photon rocket (as theoretically ideal variant), there holds u = c, and

m0(τ) = m0 exp[−γ(τ)] = m0 exp{−arsinh [v∗(τ)/c]} = m0 exp{−artanh [v(t)/c]}.



204 APPENDIX

Compare the values of the own mass in terms of the coordinate and proper velocities of the
photon rocket obtained by the Ziolkovsky formula and its relativistic variant above:

m0 exp(−v∗/c) < m0 exp[−arsinh (v∗/c)] = m0 exp[−artanh (v/c)] < m0 exp(−v/c),

and this is equivalent to the trigonometric inequalities sinh γ > γ > tanh γ.

Let that the hypothetical photon rocket �ies to the star Proxima (i. e.,nearest) Centauri
and returns to the Earth. Then the ideal parameters (by taken time) of the �ight are:
• the fuel out�ow velocity u = c for a photon rocket (as the theoretical maximum),

• constant acceleration g = 10 m/sec
2
as on the Earth � along hyperbola and catenary,

• the one-way distance L = 2χ ≈ 40.3 · 1015m ≈ 4.25 light years.
Consider trigonometric computations for the reverse hyperbolic motion of the rocket �

see at Figure 3A. This example illustrates clearly the twins paradox. For this �ight, of course,
as a hypothetical travel, with (86A), (87A), (94A) and a consequence from (95A-I), we have:

χ = L/2 = R·(cosh γmax−1), cosh γ = 1+gx/c2 = 1+x/R→ (cosh γ−1) ∼ x, (R = c2/g);

τ = 4(c/g)γmax, t(1) = 4(c/g) sinh γmax, t(1)/τ = sinh γmax/γmax;

vmax = c · tanh γmax, v∗max = c · sinh γmax;

m0(τ)/m0 = exp[4(−c/u)γmax], at u = c : m0(τ)/m0 = exp[−4γ(τ)], (γ = cτ/R).

Computations give the following results mapping below at Figure 3A:

χ ≈ 20.15 · 1015 m, (L = 2χ ≈ 40.3 · 1015m), R ≈ 9 · 1015 m, tF ≈ 305 days;

cosh γmax ≈ 3.239, sinh γmax ≈ 3.081, tanh γmax ≈ 0.951, γmax ≈ 1.844

under acting the hyperbolic trigonometric inequality cosh γ > sinh γ > γ > tanh γ;

vmax ≈ 0.951c and v∗max ≈ 3.061c with the corresponding di�erence in both times

t(1) ≈ 3.70 · 108 sec ≈ 11.7years, τ ≈ 2.21 · 108sec ≈ 7, 01 years < 2L ≈ 8, 50light years!

Various cosmic STR-evaluations were �rst analyzed by P. Langevin in [85]. Our STR-
evaluation is the very clear trigonometric interpretation of the twins paradox in ideal regime
of the cosmic �ight with the Earth acceleration: we obtain for the 1-st twin-astronaut
proper time τ ≈ 7 years and for the 2-nd twin on the Earth t(1) ≈ 11.7 years at time
relation t(1)/τ ≈ 1.67. Coordinate time t(1) on the Earth of light spreading there and back
with velocity c (2L ≈ 8.50 light years) is greater than proper time of the twin-astronaut!
Relative decreasing own mass due to only expenditure of fuel, due to our relativistic formula,
is m0(τ)/m0 = exp(−4γmax) ≈ 1/1600 !!! (In Ch. 9A, by (209A), we'll show the equivalency
of this kinematic time decrease with the time decrease from in�uence of only accelerations!)

A photon rocket with terrestrial acceleration reaches the proper velocity c for period less
than one year, and further the velocity increases up to 3c, but at the end of the trip the own
mass of the rocket becomes insigni�cantly small (m0/1600). Hence such cosmic �ights even
to nearest stars with return of astronauts onto the Earth by STR Laws are impossible for
contemporary people (no for robots) as well as the empty project of voyages based on GTR
through "wormholes-tunnels" in the Universe as a pseudo-scienti�c PR-populism, etc.!

However, the paradoxical inequality τ ≈ 7, 01 years < 2L ≈ 8, 50 light years (gotten due
to the speci�c initial parameters of the �ight) shows, that astronauts during such reverse
cosmic �ight as if outstrip the light!!! Indeed, a radio-signal sent by the astronauts at the
moment of their departure from the Earth to the Star Proxima Centauri theoretically after
its re�ection of the Star must return to the Earth in 2L = 4χ ≈ 8, 50 light years. But the
astronauts return onto the Earth in τ ≈ 7 years < 2L by their same clock! This unusual
paradox of STR, may be interpreted as follows.
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Figure 3A. Reverse hyperbolic motion of a body (as the photon rocket) in coordinates:
pseudo-Cartesian (at the left on hyperbola) and quasi-Cartesian (at the right on catenary)

under acting reactive force causing constant inner acceleration.

In the instantaneous space ⟨E3⟩(m) connected with the rocket and in the space ⟨E3⟩(1),
light spreads at usual coordinate velocity c = dx(m)/dτ = dχ/d(ct(1)). However, from the
point of view of the astronauts by their clock in the rocket, relative of them velocity of
light in ⟨E3⟩(1) is dχ/dτ = dx(1)/d(ct(m)) = cosh γ · c > v∗ = sinh γ · c, i. e., the astronauts
do not outstrip the light in ⟨E3⟩(1)! (It is caused by the reason, that the space ⟨E3⟩(m)

and time
−−−→
ct(m) with respect to ones in the base Ẽ1 are rotated at the hyperbolic angle

γ = arsinh (v∗/c) = artanh (v/c) with dilation of time and space in the rocket (Ch. 3A).
Consequently, the radio-signal returns to people of the Earth in t(1) = 2L ≈ 8.50 years, they
will meet the astronauts on the Earth in t(1) ≈ 11.7 years. This paradox is interpreted also
by tensor trigonometry. In general, similar kinematic e�ects of STR, with real di�erence of
time in di�erent frames of reference, are possible only under action of two great Principles
of Nature. They are the Postulate of Relativity by Poincar�e [63] and the Mach Principle [55]
(sect. 12.3 and Ch. 9A). See presentation from a point of view of acceleration in (209A).



Chapter 6A

Isomorphic mapping of pseudo-Euclidean space of index 1
into Special quasi-Euclidean space with Beltrami pseudosphere

Space itself, without matter moving or �eld, has no any physical sense. It with its geometry
are abstract math models, used for maximal adequate and convenient description, according
to H. Poincar�e [61], of laws of matter motions in coordinate forms. So, in Ch. 5A, with this
approach and in the universal base Ẽ1 of ⟨P2+1⟩ for the hyperboloid I, we introduced the
uninertial Special quasi-Euclidean space ⟨Q2+1

C ⟩↕ (96A) with own Especial quasi-Cartesian

cross base ẼC = {χ,−→cτ} for presentations of hyperbolic motions by the time-like catenary −→ct .
Its Euclidean subspace ⟨E2⟩(1) is the same and constant. In the latter, orthospherical ro-
tations rot Θ are preserved, but around −→cτ . The hyperbolic world line as the proper time-
arrow −→cτ is transformed with Lambertian γ(φ) in Ẽ1 into new recti�ed time axis −→cτ , as it is
permanently orthogonalized, with respect to ⟨E2⟩(1) ≡ CONST � see at Figure 2A(1)�(4).
Coordinates of points on catenary world line in cross base Ẽ1,2 = {χ,−→cτ} �x proper time cτ
and proper distance χ in Ẽ1. Synchronism of events for N1 and Nm is parallelism to ⟨E3⟩(1).

Time-like space ⟨Q2+1
C ⟩↕ is synthesized from the internal (light) conic cavities with only

a time-like hyperbolic part of hyperboloid I, without a space-like ellipsoidal part in the
external cavity) by an exchange

−→
ct and −→cτ at ⟨E2⟩(1) ≡ CONST. Space-like space ⟨Q2+1

C ⟩↔
is synthesized from the external conic cavity with the entire hyperboloid II in ⟨P2+1⟩ for it
by an exchange ⟨E2⟩(1) and ⟨E2⟩(2) at −→ct = const. So, one may implement mentally such
operations at Figures 4 and 2A(4)! Both spaces have own groups of rot Θ in ⟨E2⟩(1) and
⟨E2⟩(2), but only one-step own admissible rot Φ(Γ) with own Euclidean quasi-invariants.

In 1-st variant, one-sheet hyperboloid I as a locus of parallel time-like hyperbolae ±−→cτ (γ)
in Ẽ1 = {χ,−→ct} is transformed in a centered cylinder expressed in cross base ẼC = {χ,−→cτ};
its generatrix lines are recti�ed hyperbolae as the new time axes −→cτ . A circular set of
axes

−→
ct expressed in Ẽ1 is transformed with the direction outside the central axis

−→
ct in

a catenoid I as a locus in ⟨Q2+1
C ⟩↕ of time-like catenaries ±−→ct(φ) (see in Ch. 5A) expressed

in ẼC = {χ,−→cτ} (at ct↔ cτ). The external cavities of the light cone with space-like content
are concentrated inside the new centralized proper time axis −→cτ with annihilation. A catenoid
I is a minimal hypersurface in the space ⟨Q2+1

C ⟩↕. It has cylindrical topology (as a one sheet
hyperboloid I) and it is obtained with revolving a time-like catenary ±−→ct(φ) around the

new time axis −→cτ at O, see Figures 2A(4). The Euclidean length of the world line
−→
ct(φ)

is a coordinate time ct due to (95A-II). The proper time cτ is measured by Euclidean way
along axis −→cτ . Transformation ⟨P2+1⟩ → ⟨Q2+1

C ⟩↕, with transformation of hyperbolae in
catenaries, go with replacing pseudo-Euclidean measure for time by Euclidean one in the
real-valued Special uninertial time-like quasi-Euclidean space-time ⟨Q2+1

C ⟩↕ of the kinematic
curves as a locus of time-like arrows ±−→ct(φ) with any slopes. The catenoid I is a result of
dilating the hyperboloid I time axes with local k = dτ/dt = sech γ.

In 2-nd variant, a two-sheet hyperboloid II as a twain locus of space-like hyperbolae
±λ(γ) in Ẽ1 = {χ,−→ct} is transformed in a twain circular set of recti�ed hyperbolae λ

expressed in the cross base ẼC = {x2,
−→
ct} and radiated from their two centers CII (Figure 4)

as the new space axes λ in the new Euclidean subspace ⟨E3⟩(2). A twain circular set of axes χ

expressed in Ẽ1 is transformed with the direction to the time axis
−→
ct in a two-sheet catenoid II

as a twain locus in ⟨Q2+1
C ⟩↔ of space-like catenaries ±χ(φ) in ẼC = {λ,−→ct} (at χ ↔ λ).

The internal cavity of the light cone with the hyperboloid I are concentrated inside the new
Euclidean subspace ⟨E2⟩(2) with annihilation. A catenoid II is a two-sheet sag hypersurface
in the Special quasi-Euclidean space ⟨Q2+1

C ⟩↔, in addition to previous one. Its two sheets
have also a�ne topology (as two sheets of a hyperboloid II) and it is obtained with revolving

two space-like catenaries χ(φ) around the preserved time axis
−→
ct . The catenoid II is a result

of dilating the hyperboloid II space axes with local k = dλ/dχ = sech γ.
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Further catenoids I and II can be transformed also isomorphically into tractricoids I and II
by compressed transformation of their spaces with bases in new Special quasi-Euclidean
spaces with their new Especial universal quasi-Cartesian bases. We'll do it by our very
simple and descriptive geometric manner � on the example Catenoid I → Tractricoid I (as
the Beltrami pseudosphere) � see at Figure 2A(4).

Namely, the involute of a catenary CR = ct(cτ) (at cτ = Rγ in Ch. 5A) is the Minding
tractrix LR [43]. As we saw in Ch. 5A, the Euclidean length of a catenary till M is equal to
ct = R sinh γ ≡ tanφ(γ), see (95A-II); this length is the same for the tangent to catenary

at M (it is recti�ed
−→
ct). The tangent MM ′ is normal to the tractrix and it is its radius

of curvature RT = R tanφ. It is a vector-distance
−→
ct between both curves, translating

its current length onto the tractrix as dLR = R tanφ dφ (both curves are perpendicular
each other at points M and M ′). At evolute-involute Euclidean metric's transfer, its space
and time slopes are exchanged ! Revolving double catenary around the new time axis −→cτR
produces the catenoid I. Revolving it with double Minding tractrix produces the tractricoid I
as the Beltrami pseudosphere, compressed inside the catenoid I. In result we obtain, that
⟨Q2+1

T ⟩↕ ⊂ ⟨Q2+1
C ⟩↕. Its generating double tractrix is a continuous curve, but with a middle

cusp point. It is expressed correctly only in compressed ⟨Q1+1
T ⟩↕ and in own Especial quasi-

Cartesian base ẼT = {χR,
−→cτR} with Euclidean axis x = χR in interval −R÷+R and the

reper axis y = −→cτR}. Such Minding tractrix (in addition to Huygens one) and pseudosphere
were discovered by Ferdinand Minding in 1838 [43], the latter as a real-valued surface of the
constant negative Gaussian curvature.

This pseudosphere was applied by Eugenio Beltrami for �rst, though very partial inter-
pretation of the Lobachevsky plane [44] � in the region of only hyperbolic geodesics motions
as dγ and dφ(γ), due to our tensor trigonometry. However the tensor-vector-scalar (tvs)-
forms of their 1-st metric forms are di�erent (at n > 1, q = 1) without possibility of their
even local isomorphism, as for space and time like spatial curves too. These tvs-forms are
identical for the Minkowski hyperboloid I and the tractricoid I, but as one step, in their
enveloping binary spaces (i. e. at n > 1) � see below. Both in ⟨Pn+1⟩ and ⟨Qn+1

T ⟩↕, with
single geodesic hyperbola and Minding tractrix plus n purely circular extremals, with equal
and constant negative Gaussian curvature and identical cylindrical topology at any point
on them, they are isomorphic, but due to the Minding Theorem for real-valued 2D surfaces
[15, p. 240]. In this Chapter we'll prove strictly their global isometry, but only as one-step!

The central circular zone � an equator of the hyperboloid I and of the double pseudosphere
(where γ = 0 ↔ φ(γ) = 0 at the points CI at Figure 4) corresponds to the in�nitely far
conventional border of the whole projective hyperplane with upper and lower parts in the �at
cotangent model of the hyperboloid I (Ch. 12). Figures cannot pass through this equator of
the pseudosphere under regular motions, but they pass it as bended under 180◦, then metric
and topology are preserved. Figures on the hyperboloid I pass freely through this equator
without the broken (as also through the border in its cylindrical tangent projective model).

Let's explain how the Minding tractrix two coordinates are expressed in sequential bases
under its generation from time-like pro-hyperbola and next catenary. In result, the tractrix
is interpreted in its Especial base ẼT = {χR,

−→cτR} and with respect to initial Ẽ1 = {χ,−→ct} of
pro-hyperbola and ẼC = {χ,−→cτ} of next time-like catenary. The time axis −→cτR, asymptotic
for the generatrix tractrix of the Beltrami pseudosphere, is the axis of its proper revolution.
The space axes for these tractrix, catenary and hyperbola have the common vector of the
directional cosines eα, the bases ẼC and ẼT have the common center O1 as zero point

of these connected catenary
−→
CR(cτ) =

−→
ct and tractrix

−→
LR(cτR). The point O1 is a cusp

for the double tractrix, therefore it belongs to the curve. It is the mapping of a zero
point CI of the pro-hyperbola −→cτ in Ẽ1 of space-time ⟨P3+1⟩. See all at Figures 4 and
2A(4). Under STR cτ > 0 and, in upper and lower parts of the tractrix, we have velocities
v > 0 and v < 0, dγ > 0→ g = const > 0; and at the point O1: γ = 0, χR = 0, cτ = cτR = 0.
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Taking into account (86A), (87A), (94A), in ⟨Q1+1
T ⟩↕, the tractrix radius of curvature is

ct = R · sinh γ (cτ = Rγ) and its compressed two coordinates are bonded with such ones of
the time-like pro-hyperbola and the next time-like catenary in Ẽ1 and ẼC as follows:

χR = sinφ(γ)ct− χ ≡ tanh γ · ct− χ = sech γ · χ = k1 · χ < χ,
cτR = cτ − cosφ(γ)ct ≡ cτ − sech γ · ct = (1− tanh γ/γ)cτ = k2 · cτ < cτ.

}
(102A)

Thus, γ = 0→ χR = 0, cτR = 0, and further the coe�cients of compression monotonically
change from 1 to 0 (k1) and from 0 to 1 (k2) as the point M is here moving from O1 to O.
They in�uence on coordinates mapping χ→ χR, cτ → cτR and transform the previous two

curves into the reversed continuous tractrix
−→
LR(cτR) perpendicular in the current points

M and M ′ (Figure 2A(4)) to the time-like catenary χR(cτR)! Due to (86A) and (87A) for
hyperbolic motion, equations (102A) may be also represented in the pure trigonometric form
(with coe�cient of similarity R) as the de�ning function from only the angle γ (0 ≤ |γ| ≤ ∞).

Let's reduce of the tractrx relations (102A) into its hyperbolic type equations in the base
ẼT = {χR,

−→cτR} of Special quasi-Euclidean plane ⟨Q1+1
T ⟩↕ in parametric form from γ or cτ

χR = R · x = R(1− sech γ) = R(1− sech cτ
R ),

cτR = R · y = R(γ − tanh γ) = R( cτR − tanh cτ
R ) > 0.

}
⇒ dLR = R tanh γ dγ (103A)

Corollary 1. Condition R = 1 come to the unity tractrix as unique trigonometric object.
All such tractrices χR(cτR) from (103A) are homothetic to each other with the coe�cient R
o� unity one as well as homothetic curves: circles, equilateral hyperbolae, catenaries etc..

• parametric equations of the unity double tractrix in parameters γ, φ, ξ with (360-II) are

±z = 1− x = sechγ ≡ cosφ = sin(π/2− φ) = sin ξ, (0 < |z| ≤ 1),
±y = γ − tanh γ ≡ γ(φ)− sinφ = γ(ξ)− cos ξ = ln cot(ξ/2)− cos ξ;
(with inequality γ > tanh γ; 0 ≤ |φ(γ)| ≤ π/2, π/2 ≥ |ξ(γ)| ≥ 0).

 (103A− I)

• direct equation of the unity double tractrix in the spatial coordinate z is

±y = ±y(|z|) = arsech(z)−
√

1− z2. (103A− II)

In addition, zR = R · z = r � the local radius of revolution for the Beltrami pseudosphere.
Compare parametric equations of the Minding tractrix with ones of spherical cycloid:

zR = R · z = r = R cosφ,
±yR = ±R · y = R(φ− sinφ),

}
dLR = 2R · sin(φ/2) dφ, LR = R · L(φ) = 4R[1− cos(φ/2)].

Corollary 2. A tractrix is hyperbolic analog of a spherical cycloid with one cycle. All cycloids
yR(zR) are homothetic with coe�cient R, if R = 1 the cycloid is unique trigonometric object.

From space-like catenary by evolute-involute transpher we get the Huygens tractrix in ⟨Q2+1
T ⟩↔.

By rotation of the Minding tractrix around its yR we get the one sheet "horn shaped" tractricoid I.
By rotation of the Huygens tractrix around its yR we get the "�ying saucer shaped" tractricoid II.
They are connected also by rotation at Π/2 (see Ch. 5A)! We express them by angles γ(φ) and υ(ξ),
bonded by (360-IY), Ch. 6. With speci�c analogy (331), (334), we translate them to spherical forms.
Now we can give more generally and together the parametric hyperbolic equations of the Minding
tractrix and the historically �rst Huygens tractrix with exchange of their space and time coordinates
in ⟨Q2+1

T ⟩↕ and ⟨Q2+1
T ⟩↔ for the simplest construction of tractricoids I and II with parameter R:

xR = R · d = R · [1− sech γ(υ)] · eα = R · [1− tanh υ(ξ)] · eα,
yR = R · h = R · [γ(υ)− tanh γ(υ)] = R · [ln coth υ(ξ)/2− sech υ(ξ)].

}
(103A− III)

xR = R · d = R · [γ(υ)− tanh γ(υ)] · eα = R · [ln coth υ(ξ)/2− sech υ(ξ)] · eα,
yR = R · h = R · [1− sech γ(υ)] = R · [1− tanh υ(ξ)].

}
(103A− IY )
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All tractricoids I and tractricoids II with mutually inverse generating tractrices (as both
catenoids with generating catenaries) are homothetic with the coe�cient of similarity R (to
unity ones) in own enveloping Special quasi-Euclidean spaces ⟨Q2+1

T ⟩↕ and ⟨Q2+1
T ⟩↔. Both

branches of complete Minding and Huygens tractrices are meeting at their cusp points, but
daring researchers may use s- and u-shape tractrices as regular curves without such points.

Feature: In process of orthogonal transfer of the parametric evolute into its parametric
involute, the principal angle-argument for the �rst curve is interchanged in complementary
one for the second curve (velocities along evolute into supervelocities along involute).

The exchange χR ↔ LR gives logically dLR/dcτR = c · tanh γ = sinφ(γ) = v/c due to (103A),
but now along the Huygens tractrix. This is similar to the exchange ct ↔ cτ at producing time-
like catenary in Ch. 5A. Then the Huygens tractrix is involute of a space-like catenary! It is a
generatrix for the tractricoid II with topology of the hyperboloid II. It is mapping in the last 4-th
Special enveloping quasi-Euclidean space ⟨Q2+1

T ⟩↔ ⊂ ⟨Q2+1
C ⟩↔. The tractricoid II is gotten by

revolving the Huygens tractrix around own shortened ordinate time-axis ±−→y R in interval −R÷+R.
The axis has a pointed cusp top and is directed to center O under asymptotic Euclidean plane.

Further we must take into account, that initial angle γ with complementary υ and their spherical
analogs changed above own nature into contrary, by a reason of the evolute-involute metric's transfer!
So, now υ is the motion angle with respect to the time-arrow, and γ is complementary to it. Both
spherical�hyperbolic analogies in (331) are conserved between γ and φ, γ and ξ in ẼT = {χR,

−→cτR}
beginning from zero point O1 (i. e., at χR = 0, cτR = 0 : γ = 0, φ(γ) = 0, υ(γ) =∞, ξ(γ) = π/2).
ẼT is universal again for the same 8 speci�c functions γ(φ), φ(γ), γ(ξ), ξ(γ), υ(ξ), ξ(υ), υ(φ), φ(υ)
with formulae of simplest di�erential relations of types (332-III): dφ = sech γ dγ, dγ = secφ dφ.

We have for kinematic Minding tractrix real and speci�c connections in tensor forms (Ch. 6):

roth [Γ,Υ] = roth [Υ,Γ] (103A− Y )∣∣∣∣∣ coth[γ, υ] ·
←−−−
eαeα′ +

−−−→
eαeα′ csch [γ, υ] · eα · · · cosh[υ, γ] ·

←−−−
eαeα′ +

−−−→
eαeα′ sinh[υ, γ] · eα

csch [γ, υ] · e′α coth[γ, υ] · · · sinh[υ, γ] · e′α cosh[υ, γ]

∣∣∣∣∣ ≡
def [Φ,Ξ] = def [Ξ,Φ] (103A− Y I)

≡

∣∣∣∣∣ csc[φ, ξ] ·
←−−−
eαeα′ +

−−−→
eαeα′ cot [φ, ξ] · eα · · · sec[ξ, φ] ·

←−−−
eαeα′ +

−−−→
eαeα′ tan[ξ, φ] · eα

cot [φ, ξ] · e′α csc[φ, ξ] · · · tan[ξ, φ] · e′α sec[ξ, φ]

∣∣∣∣∣ .
That is why, the Minding tractrix gives kinematics of hyperbolic motion, but with the angle υ and
distance with the angle γ, bonded as one-to-one by relations (360) and with spherical ones in ẼT

of ⟨Q2+1
T ⟩↕. Evaluate the kinematics along Minding tractrix (103A), in comparison with one for

pro-hyperbola and catenary in Ch. 5A, under new hyperbolic invariant here in ⟨Q2+1
T ⟩↕:

(dcτR)
2 = (dLR)

2 − (dχR)
2 ⇔ 1 =

[
dLR

dcτR

]2

−
[
dχR

dcτR

]2

= coth2 γ − csch2γ ⇒ (103A− Y II)

s∗ =
dχR

dτR
= c · csch γ ≡ c · cotφ(γ) = c2

v∗ = c · sinh υ ≡ c · tan ξ(υ),

s = dLR
dτR

= c · coth γ ≡ c · cscφ(γ) = c2
v = c · cosh υ ≡ c · sec ξ(υ).

→ s2 − (s∗)
2
= c2

As seen from the �rst expression, here we use as if analogy with STR time invariant. However,
in the point of bifurcation at γ = υ = ω(π/4) (see in sect. 6.4), the space and time slopes of the
kinematic tractrix are exchanged. We have the right triangle of supervelocities s∗ and s (in term of
the angle γ) in other vector space � on the Minkowski hyperboloid I of radius c. In addition, this
gives there the Identity for usual velocities: 1/c2 = 1/v2−1/(v∗)2 (see it preliminary in Ch. 5A). So,
s∗ = c · csch γ decreases from ∞ up to 0. If it is expressed through the angle υ, then s∗ = c · sinh υ
increases from 0 up to ∞ as proper velocity in STR.

The Minding tractrix, in process of uniformly accelerated motion along it due to its description
in ẼT = {χR,

−→cτR}, asymptotically tends to axis −→cτR. At Figure 2A(4) χF is the focus of catenary
and tractrix, then cτR(F ) +χR(F ) = kR = cτF −χF , as here catenary and tractrix have φ(ω) = π/4
� see at Figure 2A(4). At the tractrix focus χF , related to γF = ω = arsinh 1 ≈ 0.881, we have:

zF =
√
2/2 ≈ 0.707, hF = ω −

√
2/2 ≈ 0.174, LF = ln 2/2; (ds/dh)F = 1, w∗

F = c.
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In addition, at Figure 2(4) we have the values: k = dF−hF = 1−sech γF +γF−tanh γF ≈ 0.467.
And from (106A), (105A) and (87A), the useful limit formulae may be easily inferred:
limγ→∞ χR = limγ→∞(cτ − cτR) = R, limγ→∞(LR − cτR) = R(1− ln 2), where cτ > LR > cτR.

Using connections of hyperbolic motion parameters in (86A), (87A), (91A), (103A) we get for
Minding and Huyhens tractrices the 1-st di�erential arc and the length o� zero point O1, expressed
in own Especial quasi-Cartesian bases ẼT with orthogonal presentation on tractices own quasiplanes:

(dLR)
2 = (dcτR)

2 + (dχR)
2 = (R tanh γ dγ)2 → RT (dγ) = R tanh γ → RT (dφ) = R tanφ(γ)⇒

dLR = R tanh γ dγ ≡ R tanφ dφ ≡ dx⋆
R = v dτ = tanh γ dcτ ≡ sinφ dcτ,

LR = R · L = R · ln cosh γ ≡ R · ln secφ ≡ x⋆ < cτ = Rγ < ct = R · sinh γ.

}
(104A)

Here RT is radius of the tractrix curvature, −RT = R1 is radius of �rst principal curvature of the
tractricoid I. At γ → 0, it is LR → Rγ2/2 = gτ2/2; g = F/m0 = c2/R is inner acceleration (81A).

From (103A), with two speci�c analogies (331), in addition to invariant of time-like pro-

hyperbola (93A) and quasi-invariant of catenary (96A), we obtain in ⟨Q1+1
T ⟩↕ the quasi-invariant of

the Minding tractrix with its curvature KT = −1/ct = −(R sinh γ)−1 = −csch γ/R ≡ − cotφ/R in

the Especial quasi-Cartesian base ẼT = {χR,
−→cτR} along the curve also from zero points CI and O1

in hyperbolic and true spherical variants, accordingly with respect to χR as φ(γ) and −→cτR as ξ(υ):

(R− χR)2 + (Rγ − cτR)2 = R2 = R2 · (sech2γ + tanh2γ) = R2 · (tanh2υ + sech2υ) ≡

≡ R2 · [cos2 φ(γ) + sin2 φ(γ)] = R2 · [sin2 ξ(υ) + cos2 ξ(υ)], (|χR| ≤ R,φ = ±π/2). (105A)

The equation is an invariant to orthospherical rotations in ⟨E2⟩ ⊂ ⟨Q2+1
T ⟩↕ with the same re�ector

tensor. Along the tractrix, it is one-step tangent-secant quasi-invariant of the time-like pro-hyperbola
in ⟨P1+1⟩. In ⟨Q1+1

T ⟩↕ ⊂ ⟨Q2+1
T ⟩↕ it is one-step sine-cosine quasi-invariant with φ(γ), expressed by

equation of the same tangent circle as to catenary (96A) in point OI , as situated on a torus around
and tangent to the catenoid I and normal to the Tractricoid I � Figure 2A(4). Along this circle
the same spherical angle φ(γ) by analogy (331), but of this tractrix, is summarized! Analogy (331)
breaks at φ = ±π/2 in CII . Both hyperbolic angles are bonded along this tractrix, due to (360-IY).

By rotations of Minding and Huygens tractrices around axes y we get the tractricoid I and II.
In their enveloping binary spaces ⟨Q2+1

T ⟩↕ and ⟨Q2+1
T ⟩↔, we have also the Euclidean metric and

orthogonal di�erentiation in universal bases ẼT with angles φ(γ) and ξ(υ) = π/2−φ(γ). Therefore,
we can give the hyperbolic and spherical equations of the Minding tractrices and the historically
�rst Huygens tractrices with exchange of their space-time coordinates visually by seemming rotation
at the right angle Π/2, with common direction of y1 = −→cτR and y2 = −→zR (as in Ch. 5A for catenaries
and catenoids), for our simplest presentations of tractricoids with their 1-st metric forms in two

variants of parameterization in γ and φ, under bonds of angles in (360), with 3D base ẼT of ⟨Q2+1
T ⟩↕.

(Due to these equations, the values of both geodesic tractrices radius and length are the same on
the tractricoids I and II.) Thus, for the tractricoid I we get 1-st metric form in vs presentations:

R · z(I) = R · z(I) · eα = R · sech γ · eα ≡ R · cosφ · eα,
R · y(I) = cτR = R · (γ − tanh γ) ≡ R · [ln cot(π/2− φ)/2]− sinφ].

}
(106A)

−R dx(I) = R dz(I) = R d[z(I) · eα] = R d(sech γ · eα) = R · (−sech γ · tanh γ dγ · eα + sech γ dα · eµ),
R dy(I) = d(cτR) = R d(γ − tanh γ) = R · tanh2 γ dγ.

}
⇒

−R dx(I) = R dz(I) = R d[z(I) · eα) = R d(cosφ · eα] = R · (− sinφ dφ · eα + cosφ dα · eµ),
R dy(I) = d(cτR) = R d[(γ(φ)− sinφ] = R · (secφ dφ− cosφ dφ) = R · sin2 φ · secφ dφ.

}
⇒

dl21(γ) = [−RT (dγ)]2dγ2 +[Rn(γ)]2dα2 = R2(tanh2 γ dγ2 + sech2γ dα2) = R2{[dL(I)(γ)]2 + sech2γ dα2} ≡

≡ dl21(φ) = [−RT (dφ)]2dφ2+[Rn(φ)]2dα2 = R2(tan2 φ dφ2+cos2 φ dα2) = R2{[dL(I)(φ)]2+cos2 φ dα2} .

We got above real spherical radius of the tractrix in ⟨Q2+1
T ⟩↕ as also radius of the tractricoid I �rst

principal curvatute R1 = −RT (dφ) = −R tanφ ≡ −R sinh γ, with respect to a parallel part of dφ.
Radius of the second principal curvature of the surface is calculted with the Meusnier Theorem

from radiusRn(φ) = R cosφ of rotation dα1 under cosine slope ξ to r1 at Meusnier angle ξ = π/2−φ.
Then R2(φ) = Rn(φ)/ cos ξ = R cotφ ≡ R csch γ = R sinh υ, with respect to a normal part of dφ.
With (106A), we reveal two principal rotations at point M on the tractricoid I in ⟨Q2+1

T ⟩↕ as follows

R1(φ) dφ = −R tanφ dφ ≡ R1(γ) dγ = −R tanh γ dγ ≡ −R sinh γ dφ, (106A− I)

R2(φ)
⊥
dφ= +R cotφ

⊥
dφ ≡ +R csch γ

⊥
dφ= +R sinh υ

⊥
dφ = R cosφ dα. (106A− II)
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Then the Gaussian and middle curvatures of the tractricoid I as the Beltrami pseudosphere are
KG = −1/R2, K = ∓1/2R−1(− cotφ+tanφ) ≡ ∓1/2R−1(− sinh υ+sinh γ) [K(π/4) = K(ω) = 0].

For the nD Beltrami pseudosphere in the cylindrical coordinates with {cτR, z1R, ..., znR}, in
vector spatial equation (103A-III), the secant part splits into orthoprojections onto n Euclidean
axes of nD Cartesian subbase of ẼT in ⟨Qn+1

T ⟩↕ proportionally to directional cosines. We use,
beginning from Ch. 5A, here and further such simplest presentations of the metric forms with eα.

The best trigonometric descriptivity of the spherical presentation with the angle φ is seen at
calculation of unusual �nite volume and area for the tractricoid I:

V = 2
∫ π

2
0 [πr2(φ)] [sinφ ·RdL(φ)] = 2πR3

∫ π
2

0 [cos2 φ] [sinφ · tanφ dφ] =

= 2πR3
∫ π

2
0 sin2 φ cosφ dφ = 2πR3

∫ π
2

0 sin2 φ] d(sinφ) = 2πR3
∫ π

2
0 d[(sin3 φ/3)] = 2

3
πR3,

S = 2
∫ π

2
0 [2πr(φ)] [RdL(φ)] = 4πR2

∫ π
2

0 cosφ · tanφ dφ = −4πR2
∫ 0
1 d(cosφ) = 4πR2.


(107A)

Although the results from (106A) for the tractricoid I were known else from the classic works
by Ferdinand Minding [43], however our tensor trigonometric approach gives as well seen the most
simplest and descriptive manner of their validation, useful, for example, in the education process.

Single geodesic Minding tractrix with n purely circular extremals exist at each point of the
nD Beltrami pseudosphere, as it has no Poles, similar single time-like hyperbola at each point
on the Minkowski nD hyperboloid I without Poles. Both objects have identical and constant
Gaussian curvature KG = −1/R2, cylindrical topology and the common tvs-structure of their 1-st
metric forms. Between these objects, there is isomorphic relation in direction of their ordinate
axes −→y using equal values of γ and α at the Figure 2A(3, 4). Then, according to the Minding
Theorem [43], they must be isometric, but only as one-step and only in the universal base for their
enveloping spaces, namely, from the side of the tractricoid I. Indeed, all its same metric properties
were established above on the basis of only one-step speci�c spherical�hyperbolic analogy (331).
On the hyperboloid I, parallel and normal parts of dγ have constant radii of principal curvatures
R1 = −R and R2 = +R with R1R2 = −R2 = const. On the tractricoid I, they are not constant,
but they change so, that their product is rested also constant R1R2 = −R2 = const at each point
of hypersurface. At principal motions on the tractricoid I and the hyperboloid I along the geodesic
Minding tractrix and the geodesic hyperbola from equivalent zero points, the angle γ changes from
zero till in�nity. Generally, at principal motions on both objects from arbitrary, but equivalent
points M , we have identical values of their Gaussian curvature. In ⟨Q2+1

T ⟩↕, a parallel part of
rotation as dφ has the parallel principal curvature K1 = −(R tanφ)−1, a simultaneous normal part
of rotation as dφ gives the normal principal curvature K2 = +(R cotφ)−1. In ⟨P2+1⟩, a parallel part
of rotation as dγ has the parallel curvature K1 = −R−1, a simultaneous normal part of rotation as
dγ gives the normal curvature K2 = +R−1. All they are united in the constant Gaussian curvature
KG = −R−2 for the tractricoid I in ⟨Q2+1

T ⟩↕ and for the hyperboloid I in ⟨P2+1⟩ with constant
parallel and normal principal curvatures K1 = −R−1 and K2 = +R−1. In their universal base, the
Gaussian curvature is identical in Euclidean and pseudo-Euclidean metrics, even in tvs presentations
(Ch. 10A). In the beginning of principal motions on these two objects, we chose arbitrary equivalent
zero points on these objects, which are bonded one-to-one at equal γ and α. Therefore, we proved:
these geometric objects are entirely one-step isometric in their common universal base!

In Chs. 5A, 6A we revealed geometric meaning of tangent-secant quasi-invariant of progenitor
time-like hyperbola translated during transformation from ⟨Pn+1⟩ in Special ⟨Qn+1⟩ into catenary
and tractrix at Figure 2A(3, 4). In two Special spaces, the quasi-invariant generates a circle tangent
at zero point O1 to catenary (96A) and normal at zero and cusp point O1 to tractrix (105A).
We added the Enveloping Torus bonded at equator the Triad of Hyperboloid I, Catenoid I and
Tractricoid I after revolving three generating curves around axis −→cτR with the similarity coe�cient R
for additive summation of the principal spherical angle φ(γ) at contrary speci�c analogies in (331A).

* * *
From the Pole O of a top part of two-sheets tractricoid II, as its zero, but singular cusp point, in

general, n geodesic Huygens tractrices issue. This Pole cannot change own place due to also one-step
admissible motions along Huygens tractrices on it similar Minding ones. This di�ers limited motions
on tractricoid II from non-limited ones on hyperboloid II. At evolute-involute transpher of space-like
catenary into time-like Huygens tractrix in its quasi-Euclidean space, we get that on tractricoid II,
φ(γ) is the motion angle and also the Meusnier angle between normal to this tractrix and radius r.
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For the tractricoid II we get its 1-st metric form with also more informative vs presentation:

R · z(II) = R · (γ − tanh γ) · eα ≡ R · [ln cot(π/2− φ)/2− sinφ] · eα,
R · y(II) = R · sech γ ≡ R · cosφ.

}
⇒ (108A)

R dz(II) = R d(γ − tanh γ) · eα = R · [tanh2 γ dγ · eα + (γ − tanh γ) dα · eν ],
R dy(II) = R d sech γ = −R · sech γ · tanh γ dγ.

}
⇒

Rdz(II) = Rd[γ(φ) · eα] = Rd[ln cot(π/2− φ)/2 · eα] = R[secφ dφ · eα + [ln cot(π/2− φ)/2] dα · eν ],
Rdy(II) = Rd cosφ = −R · sinφ dφ.

}
⇒

dl22(γ) = R2[tanh2 γ dγ2 + (γ − tanh γ)2 dα2] = R2 {[dL(II)(γ)]2 + (γ − tanh γ)2 dα2} ≡
≡ dl22(φ) = R2{tan2 φ dφ2+[ln cot(π/2−φ)/2−sinφ]2 dα2} = R2{[dL(II)(φ)]2+[ln cot(π/2−φ)/2−sinφ]2 dα2}.

* * *
Return to discussing above perfect surfaces (from the set of such with constant Gaussian curvature).
Indeed, in its turn, Minkowski hyperboloids I and II have own progenitor as the hyperspheroid of
radius R in ⟨Q3+1⟩ (see in Figure 4 and Ch. 8A) with scalar or vector presentations in two forms,
bonded through complementary angles of motions φ and ξ = π/2− φ (as the Meusnier angle too):

xR = R · d = R · sinφi · eα = R · cos ξi · eα,
yR = R · h = R · cosφi = R · sin ξi.

}
(under I± at φ = +iγ ⇒ hyperboloid II)⇒ (109A− II)

xR = R · d = R · cosφi · eα = R · sin ξi · eα,
yR = R · h = −R · sinφi = −R · cos ξi.

}
(under I∓ at φ = −iγ ⇒ hyperboloid I)⇒ (109A− I)

d(lR/R)]2(II) = dφ2
p = cos2 φp dφ2

p+sin2 φp dφ2
p = dφ2

i+sin2 φi dα
2
1 =

(
dφ
)2
Q
+

( ⊥
dφ

)2

E

= dξ2p = dξ2i +cos2 ξi dα
2
1.

d(lR/R)]2(I) = dφ2
q = sin2 φq dφ2

q+cos2 φq dφ2
q = dφ2

i+cos2 φi dα
2
2 =

(
dφ
)2
Q
+

( ⊥
dφ

)2

E

= dξ2q = dξ2i +sin2 ξi dα
2
2.

Geometrically, we can choose any variant (109A �I) or (109A-II) as separate one in own ⟨Q2+1⟩!
These two purely angular metric forms, with own summary motions dφp and dφq, are compatible in
⟨Q3+1⟩ and given in normal presentations as the two Absolute Euclidean Pythagorean Theorems �
see strictly to the end of Ch. 10A. And its spherical geometry is similar up to the scale coe�cient R
to the tensor trigonometry of ⟨Q3+1⟩, as all these must be namely for any perfect hypersurfaces!
In the base Ẽ1, the angle of motion φ is counted from the frame axis −→y (1) as angular change along
some meridian between two Poles. In the left options, we apply the common principal angle of
motion φi, counted o� the hyperspheroid North Pole, as ones do usually for hyperboloids II and I �
see such in (132A) and (133A) in Ch. 7A. Any orthospherical di�erential angles dα are counted along
some parallels from the certain choosing zero meridian. However in independent option (109A-I),
one may, as is more customary, accept as the principal angle of motion the complementary angle ξ,
which is counted from the Euclidean hyperplane, beginning o� the Equator at zero value, as contrary
angular change along some meridian. See more in tensor-vector-scalar (tvs) forms in Ch. 10A.

Binary spaces ⟨P2+1⟩, ⟨Q2+1⟩, ⟨Q2+1
C ⟩↕, ⟨Q2+1

C ⟩↔ ⟨Q2+1
T ⟩↕, ⟨Q2+1

T ⟩↔ with re�ector tensor I±

have the common subgroup of orthospherical rotations ⟨rot Θ⟩. In contrast to ⟨Q2+1⟩ with its
hyperspheroid and complete rotations group, in ⟨Q2+1

T ⟩↕ with its Beltrami pseudosphere, the united
set of ⟨rot Φ(Γ)⟩ and ⟨rot Θ⟩ is not a group, because only its normal orthospherical part is angular
component. Along tractrices we have only non-angular di�erential dLR(φ), not relating to rotations!
And it is on this group idea, we divided in [16] a full set of hypersurfaces of the constant Gaussian
curvature into subsets of perfect and imperfect surfaces with their enveloping spaces, namely,
with angular complete 1-st metric forms or not angular ones. The perfect hypersurfaces have own
complete groups of motions on integral and di�erential levels, caused by the fact that such geometric
objects have one determined them radius R besides constant Gaussian curvature. Then, with our
simplest tensor-di�erential trigonometric approach, we gave in [16] three 1-st purely angular metric
forms for well-known three surfaces of constant curvature as perfect ones and only for them their
Absolute Pythagorean theorems, where their orthogonal or pseudo�orthogonal angular di�erentials
are summarized in the complete angular di�erential! So, the tractricoid I is not a perfect surface and
has only one-step integral and di�erential quasi-invariants under its constant Gaussian curvature.
The Einsteinian curved GTR space-time is imperfect, without motion group and even without some
sugroups. Poincar�e complex space-time ⟨Q3+1⟩c and Minkowski space-time ⟨P3+1⟩c are perfect with
the Lorentzian homogeneous group. Lobachevsky�Bolyai hyperplane and Minkowski hyperboloids
are perfect hypersurfaces and, with the hyperboloids II, they are polysteps isometric. For perfect
surfaces, complete angular di�erentials are polysteps invariants of their motions groups.
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Trigonometric models of two-steps, polysteps, and integral
non-collinear motions in STR and two hyperbolic geometries

We continue studying two-steps and polysteps principal motions (rotations) ⟨roth Γ⟩ � see
in Chs. 11 and 5A. They are analyzed with wide using tensor trigonometry in two directions:
1) The rotations in ⟨P3+1⟩ ≡ ⟨E2⟩⊠−→y ≡ CONST (motions in hyperbolic subspaces), which
correspond to the physical �at and spatial movements in STR with their vectors of the
directional cosines; and on the embedding into it Minkowskian hyperboloid II (top sheet) at
n = 3 or in the equivalent to II the Lobachevsky�Bolyai hyperbolic space � see in Ch. 12.
2) The rotations in ⟨Pn+1⟩ ≡ ⟨En⟩ ⊠ −→y ≡ CONST, and motions in the embedding into it
nD Minkowskian hyperboloid II as equivalent to nD Lobachevsky�Bolyai hyperbolic space.
We'll pay attention more in detail to Minkowskian hyperboloid I in �nal part of last Ch. 10A!

Such operations are admitted in ⟨Pn+1⟩ ≡ ⟨En⟩⊠−→y ≡ CONST with right bases here:
1) rotations of the two types, as principal hyperbolic roth Γ and orthospherical rot Θ;
2) parallel translations preserving the space structure with the re�ector-tensor I±.

Hyperbolic and orthospherical rotations have their real canonical forms in Ẽ1 = {I}.
That is why, in polar and summing formulae they are given initially in Ẽ1, but really they
may be translated from Ẽ1 into the bases of action Ẽk, due to the Rule of multisteps
transformations (Ch. 11). Hyperbolic tensor of motion roth Γ (100A), on the basis of its
pro-tensors (324) and (362), is de�ned due to conditions (348): rothΓ ·I± ·rothΓ = I±. The
orthospherical tensor has in ⟨P3+1⟩ and ⟨Q3+1⟩ canonical form (497). Their structures in

⟨Pn+1⟩ or space-time ⟨P3+1⟩ ≡ ⟨E3 ⊠−→ct⟩ correspond to the metric re�ector tensor (100A):

{rothΓ}4×4 = F (γ, eα) = coshΓ+sinhΓ {rotΘ}4×4 I±

cosh γi ·
←−−−−
eα · eα

′ +
−−−−→
eα · eα

′ sinh γi · eα

sinh γi · e′
α cosh γi

.....
{rot Θ}3×3 0

0′ 1
.....

I3×3 0

0′ −1 , (110A)

(
←−−−
eαe

′
α = eαe

′
α).

In STR, {rot Θ}4×4 may cause induced orthospherical rotations in result summing two or
more of the principal rotation roth Γ as a "Lorentzian boost" (in non-Euclidean geometries,
this causes angular shifting in �gures). In di�erential form this causes the induced Thomas
precession in time [93]. {rot Θ} may be independent also inside the Euclidean subspace
(named sometimes by Wigner rotation [94]). See all these in detail in this Chapter.

The motion tensor roth Γ with eα in Ẽ1 and in another universal base Ẽ1u = rot Θ · Ẽ1

with e = rot Θ3×3 · eα has canonical form (362) � see in Ch. 6. The time-arrows
−→
ct (k) are

used usually as the frame axes for counting the hyperbolic angle γ. At �rst, we consider
two-steps hyperbolic rotations realized as if in ⟨P2+1⟩ ≡ CONST � see above, in order to
infer the general law of summing two-steps motions (rotations) or velocities in tensor, vector
and scalar forms. The new pseudo-Cartesian base can be represented in Ẽ1 = {I} by two
ways: with ordering (485) of matrices and in the polar forms (491):

Ẽ3 = roth Γ12 · roth Γ23 · Ẽ1 = (roth Γ12 · roth Γ23 · roth−1Γ12)Ẽ2
· roth Γ12 · Ẽ1 =

= roth Γ13 · rot Θ13 · Ẽ1 = (roth Γ13 · rot Θ13 · roth−1Γ13)Ẽ1h
· roth Γ13 · Ẽ1 = (111A)

= rot Θ13 · roth
∠
Γ13 ·Ẽ1 = (rot Θ13 · roth

∠
Γ13 ·rot′Θ13)Ẽ1u

· rot Θ13 · Ẽ1 = T13 · Ẽ1 = {T13}.

For subsequent correct derivations, we attach especial importance to a sequence of operations
in any multisteps transformations. This issue has already been covered in detail in Ch. 11.
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First pairs of matrices in each three rows of (111A) are given initially in the base Ẽ1 = {I}
in their canonical forms. The second matrix from these pairs is being translated in each rows
in the given base of its real action Ẽk. This relates to the two-steps rotation in the �rst row
and to both polar decompositions of the summary matrix T13 in the second and third rows
with right and contrary ordering of hyperbolic and orthospherical rotations, due to general
formulae (485)�(488) and (491) from Ch. 11. So, in the �rst variant of polar decomposition,
rot Θ13 has the center of its application in the �nal point of the rotation roth Γ13.

Corollary. Generally, two-steps non-collinear hyperbolic rotations roth Γ in ⟨Pn+1⟩ or on
the hyperboloid II can be represented as hyperbolic and induced orthospherical rotations.
Hyperbolic rotations roth Γ1j are executed in ⟨Pn+1⟩ relatively of the frame axis

−→
ct (1).

Orthospherical rotations are executed in ⟨E3⟩(1h) for an object or a base around the axis −→eN .
In accordance with (352), the bases ⟨Ẽ1u⟩ = ⟨rot Θ · Ẽ1⟩ are universal too (in STR, they

are called the rest bases). Due to (111A), there holds

roth
∠
Γ13= rot (−Θ13) · roth Γ13 · rot Θ13 = rot′Θ13 · roth Γ13 · rot Θ13. (112A)

For
∠
Γ13, the vector of directional cosines in (363) is shifted with respect to that of Γ13 to

backwards at Θ13. Moreover, in ⟨P3+1⟩, for hyperbolic non-collinear two-steps rotations,
the arising angle of secondary orthospherical shift is realized in its sign contrary to the sign
of angle ε between the rotations, i. e., θ13 < 0 at ε > 0 due to the Signs Rule from sect 12.2:

e∠
σ
= {rot (−Θ13)}3×3 · eσ (under rule ε > 0→ θ13 < 0 !) ⇒ cos θ13 = e′∠

σ
· eσ. (113A)

In accordance with (474), (475) and by (111A) and (325), there holds

roth Γ13 =
√
TT ′ =

√
roth Γ12 · roth (2Γ23) · roth Γ12 =

√
roth (2Γ13). (114A)

rot Θ13 = roth Γ12 · roth Γ23 · roth
∠
Γ31= roth Γ31 · roth Γ12 · roth Γ23 = roth−1Γ13 · T13. (115A)

Formula (115A) represents rot Θ13 as the angular defect Θ13 of the closed cycle of rotations
roth Γij in the hyperbolic triangle 123 with addition of (114A). It is executed from the �rst
point 1 to the �nal point 3 in the bases of particular rotations along of the triangle legs!
If rotations roth Γij are collinear, then the triangle degenerates into the segment γ13.

Further, we shall often use the operation of permutation of particular motions with
change of their order into contrary one (for some more simple calculations). In the original
universal base Ẽ1 = {I}, permutation in (111A) of two motions (velocities) leads to a new
pseudo-Cartesian base Ẽ′

3 = {T ′
13} = {T13}′:

Ẽ′
3 = roth Γ23 · roth Γ12 · Ẽ1 = T ′

13 · Ẽ1 =

= roth
∠
Γ13 ·rot (−Θ13) · Ẽ1 = rot (−Θ13) · roth Γ13 · Ẽ1. (116A)

Thus there are two points of view at matrix (112A): as in (111A) and as in (116A)!
In addition to (114A) and (115A), if matrices in Ẽ1 are ordered inversely, then

roth
∠
Γ13=

√
T ′T =

√
roth Γ23 · roth (2Γ12) · roth Γ23 =

√
roth (2

∠
Γ13). (117A)

rot (−Θ13) = roth
∠
Γ13 ·roth Γ32· roth Γ21 = roth Γ32·roth Γ21· roth Γ13 = T ′

13·roth−1Γ13. (118A)

It represents rot (−Θ) for inverse closed cycle (115A) of roth Γij with addition of (117A).
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In STR, in general, in binary basis spaces ⟨P3+1⟩, ⟨Q2+1⟩, and even on their perfect
hyperspaces, the orthospherical angles and motions are used very videly as independent
and secondary. They act always within some Euclidean subspaces. Therefore they have
Euclidean nature. Their notations can be di�erent, but usually they are Θ, θ, dθ or dα, dβ,
and so one! So, the orthospherical rotation may be both the usual independent Euclidean
rotational of vectors, for example, of the unity ones eα in ⟨E3⟩ and the induced rotational
angular shift � spherical or hyperbolic of the non-Euclidean or relativistic nature as in the
Thomas precession [93].

First the induced shift θ in STR was discussed by �E. Borel in 1913 [90] and L. Silberstein
in 1914 [92], as a consequence of principal Lorentzian transformations non-commutativity.
In 1913, L. F�oppl and P. Daniell � theorists from G�ottingen have inferred physical formula
for it as a possible induced precession dθ/dt [91]. In 1926 L. Thomas gave relativistic STR-
interpretation [93] of the experimental coe�cient 1/2 to the additional electron spin due to
such an induced precession. This event was �rst convincing and obvious con�rmations of
STR with its group type transformations, because the experimental coe�cient 1/2 had no
other interpretation! In 1928 the Thomas precession have got general interpretation in the
STR-invariant Quantum wave equation of Paul Dirac [101] in the Minkowski space-time.

The angles Γ13 and
∠
Γ13 di�er only by their vectors of directional cosines. Due to (491)

or (112A), the scalar summary hyperbolic angle does not depend on ordering of summands
(direct or inverse). The case when the directional cosines of motions are either equal or
additively opposite to each other, corresponds to collinear motions.

Let eα = {cosαk, k = 1, 2, 3} be the vector of directional cosines for Γ12, sinh γ12,

tanh γ12, and v12 in the Cartesian subbase Ẽ
(3)
1 ; eβ = {cosβk, k = 1, 2, 3} be the vector

of directional cosines for Γ23, sinh γ23, tanh γ23, and v23 in the Cartesian subbase Ẽ
(3)
2 .

De�ne as the conditional characteristic, the orthospherical angle ε between directions eα
and eβ as if they are in the same subspace ⟨E3⟩ by the following formal value of its cosine:

cos ε =

 cosβ1
cosβ2
cosβ3

′

·

 cosα1

cosα2

cosα3

 = e′βeα = e′αeβ , 0 ≤ |ε| ≤ π (119A).

Here cos2 α1 + cos2 α2 + cos2 α3 = cos2 β1 + cos2 β2 + cos2 β3 = 1. If the partial cosines
are pairly equal, then cos ε = 1. If they are pairly additively opposite, then cos ε = −1.
Thus, in these cases, v12 and v23 are conventionally collinear, with the same or opposite
directions. If cos ε = 0, then v12 and v23 are conventionally orthogonal. In general, they
form the conventional angle ε (as v12 and v23 is in di�erent Euclidean spaces).

We suppose the invariant R = 1 in tensor trigonometric approach to STR and geometries.

Further, evaluate the �nal hyperbolic matrix roth Γ13 with the use of (114A), in that
number, the eigen angle γ13 in the original base Ẽ1 and directional cosines cosσk, k = 1, 2, 3,

of roth Γ13 in the Cartesian subbase Ẽ
(3)
1 . For rotations (motions) in the inverse order, the

scalar angle of summary rotation (motion) roth
∠
Γ13 is the same γ13 according to (112A).

The directional cosines of roth
∠
Γ13 are cos

∠
σk, k = 1, 2, 3. By (113A), we obtain

cos θ13 =

 cos
∠
σ1

cos
∠
σ2

cos
∠
σ3


′

·

 cosσ1
cosσ2
cosσ3

 = e′∠
σ
· eσ = cos θ13 = e′σ · e∠

σ
, (120A),

where sin θ13 < 0, if ε > 0. See Rule for the sign of θ13 in sect 12.2 of Part I.
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For transformations in the direct and inverse variants of two-steps motions in angular
Lambert measure (γ = λ/R), both they are connected by substitutions of partial angles as:

γ12 ↔ γ23, αk ↔ βk, (but γ13 = const). (121A)

Note right away, that the very wonderful in STR and non-Euclidean geoetries is next:
at summing motions (rotations) we can combine formally their directional unity vectors eα
in ⟨E3⟩(1) and e

(m)
β in ⟨E3⟩(m), as if in ⟨E2⟩(1) ≡ ⟨eα, eβ⟩(1) or as if in ⟨E2⟩(m) ≡ ⟨eα, eβ⟩(m)!

In (111A), block-to-block multiplication of matrices with structure (363) is unwieldy.
Though in last Ch. 10A, we'll realize it by simplest universal manner! Below we use for two-
steps motions quite simple way. At �rst, let us evaluate the matrix product in (114A) as:

B = {roth Γ12 · roth (2Γ23)} = {bij}.
For tensor trigonometric analysis of two-steps hyperbolic motions or two-steps relativistic

velocities in STR, it is enough to use 3×3 modal matrices from (111A). But for generality we
use 4×4 (or (n+1)× (n+1)) matrices! Only fourth row of B is used in next computations.
The matrices roth Γ must be used in any of canonical forms (362), (363). Then we obtain:

b41 = [sinh γ12 · cosh(2γ23) · cos ε+ cosh γ12 · sinh(2γ23)] · cosβ1+

+sinh γ12 · (cosα1 − cos ε · cosβ1),

b42 = [sinh γ12 · cosh(2γ23) · cos ε+ cosh γ12 · sinh(2γ23)] · cosβ2+

+sinh γ12 · (cosα2 − cos ε · cosβ2),

b43 = [sinh γ12 · cosh(2γ23) · cos ε+ cosh γ12 · sinh(2γ23)] · cosβ3+

+sinh γ12 · (cosα3 − cos ε · cosβ3),

b44 = sinh γ12 · sinh(2γ23) · cos ε+ cosh γ12 · cosh(2γ23).

At the beginning, we evaluate the diagonal corner element s44 of the symmetric matrix
S = roth2 Γ13 = roth (2Γ13) multiplying the 4-th row of B and the 4-th column of roth Γ12:

s44 = cosh(2γ13) = cos(2iγ13) = cos2 iγ13−sin2 iγ13 = cosh2 γ13+sinh2 γ13 = 2 cosh2 γ13−1 =

= cosh(2γ12) · cosh(2γ23) + cos ε · sinh(2γ12) · sinh(2γ23)− 2 sin2 ε · sinh2 γ12 · sinh2 γ23 =

= 2(cosh γ12 · cosh γ23 + cos ε · sinh γ12 · sinh γ23)2 − 1.

We get 1-st commutative scalar cosine formula for summing two rotations in ⟨Pn+1⟩ or two
hyperbolic motions on hyperboloid-II and in Lobachevsky�Bolyai non-Euclidean geometry:

cosh γ13 = cosh γ12 · cosh γ23 + cos ε · sinh γ12 · sinh γ23 = (122A− I)

= cos iγ12 · cos iγ23 − cos ε · sin iγ12 · sin iγ23 = (122A− II)

cosh γ13 = cosh γ12 · cosh γ23 − cos A123 · sinh γ12 · sinh γ23 = (122A− III)

We use in (122A-I) and in the subsequent formulae for summation of two-steps hyperbolic
and spherical (Ch. 8A) motions or identical rotations the so-called external orthospherical
angle ε between segments 12 and 23, similar as was adopted for relativistic summing two
velocities by Einstein in 1905 [67]. Although in non-Euclidean geometries for the triangle 123,
the geometers use the internal angle A123 between segments 12 and 23, beginning from the
Euler spherical geometry. They are complementary and bonded as ε = π −A→ dε = −dA
with di�erences of signs in (122-I), (122-II) and (122-III). However in the Euler �at scalar
trigonometry, for rotational summation of two angles, in fact the external angle between
them is used. Therefore, such an external angle is universal one! We illustrate at Figure 4A
the internal angle as 123 at top 2 and the external angle as 2′23 at top 2 without distortions.
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The acute or obtuse or right or zero angle ε between hyperbolic segments 12 and 23,
due to (119A) and to property of their directive unity vectors, has a pure orthospherical
nature as well as the angle θ in (120A) and all angles at the tops of geometric �gures on the
non-Euclidean "perfect surfaces" (i. e., with constant radius-parameter R), for example, on
the hyperspheroid and Minkowskian hyperboloids II and I. As the geometric property, ε is
the external angle for two Euclidean orthoprojections of the hyperbolic curvilinear segments
12 and 23 in the base Ẽ1 = {I}. How the sum of the external angles of a hyperbolic triangle
is distorted � see below in analysis of the Lambert angular defect. For relativistic motions
in ⟨P3+1⟩, there holds γij > 0, as in STR the same angle between velocities corresponds to
the inequality ∆ct > 0 (motions to future). It relates to upper parts of both hyperboloids.

For the motions angles as segments γ = λ/R on hyperboloid-II and Lobachevsky�Bolyai
non-Euclidean plane, their lengths by Lambert measure follow to the Rule of a parallelogram

|γ12 − γ23| ≤ γ13 ≤ γ12 + γ23, (ε ∈ [0;π]), (123A)

similar to one in Euclidean geometry. For angles of motion or their trigonometric projections
in Euclidean subspaces, their directional cosines range is [−1;+1]. Due to unequalities γ > 0
and (123A), distance in hyperbolic geometry by the measure γ is a norm too.

Due to (122A) and following scalar formulae, only scalar values of summary γ13 or
v13 does not depend on summands ordering. Besides, due to (111A), the complete law of
summation for two or more modal transformations of bases (as here geometric motions) or
immediately for segments or velocities summation must include the induced orthospherical
rotation rot Θ13. And namely the tensor trigonometric approach give us such complete law.
We'll consider the mentioned immediate summation of segments to the end of Ch. 10A.

The scalar value of sine is evaluated from (122A-II and I) exactly and simply, including
two commutative variants, as the mirror Pythagorean sums provide that γ12 ↔ γ23:

cos2 iγ13 = cos2 iγ12 ·cos2 iγ23−2 cos ε·cos iγ12 ·cos iγ23 ·sin iγ12 ·sin iγ23+cos2 ε·sin2 iγ12 ·sin2 iγ23 ⇒

cosh2 γ13 = cosh2 γ12·cosh2 γ23+2 cos ε·cosh γ12·cosh γ23·sinh γ12·sinh γ23+cos2 ε·sinh2 γ12·sinh2 γ23 ⇒

sin2 iγ13 = 1− cos2 iγ13 ⇒ sinh2 γ13 = cosh2 γ13 − 1 ⇒ sinh2 γ13 = (v∗13/c)
2 =

= sinh2 γ12+sinh2 γ23+(1+cos2 ε)·sinh2 γ12 ·sinh2 γ23+2 cos ε·cosh γ12 ·sinh γ12 ·cosh γ23 ·sinh γ23 =

= (cosh γ23 · sinh γ12 + cos ε · cosh γ12 · sinh γ23)2 + (sin ε · sinh γ23)2 =

= (cosh γ12 · sinh γ23 + cos ε · cosh γ23 · sinh γ12)2 + (sin ε · sinh γ12)2 = sinh2 γ13. (124A)

The scalar value of tangent is evaluated trigonometrically with the combine use of (122A)
and (124A) also commutatively, as the mirror Pythagorean sums provide that γ12 ↔ γ23:

tanh2 γ13 = (v13/c)
2 = (125A)

=

[
tanh γ12 + cos ε · tanh γ23

1 + cos ε · tanh γ12 · tanh γ23

]2

+

[
sin ε · sech γ12 · tanh γ23

1 + cos ε · tanh γ12 · tanh γ23

]2

=

=

[
tanh γ23 + cos ε · tanh γ12

1 + cos ε · tanh γ12 · tanh γ23

]2

+

[
sin ε · sech γ23 · tanh γ12

1 + cos ε · tanh γ12 · tanh γ23

]2

.

Middle in (124A) and �rst in (125A) variants are most preferred in following applications.
From (125A), with tanh γ = v/c and after it reducing, the Poincar�e�Einstein relativistic

Law of two non-collinear velocities summation follows [63, 67; 76, p. 34]. Below it is given in
the clear tangent form, but without matrix with angle of orthospherical shift (see further):

tanh γ13 =

√
tanh2 γ12 + tanh2 γ23 + 2 cos ε · tanh γ12 · tanh γ23 − sin2 ε · tanh2 γ12 · tanh2 γ23

1 + cos ε · tanh γ12 · tanh γ23
. (126A)
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Scalar reverse secant commutative variant of two non-collinear segments summation is expressed from
(122A) in terms of relativistic factors [76, p. 35], which we give here and below in pure trigonometric form:

sechγ13 =

√
1− tanh2 γ13 =

sechγ12 · sechγ23
1 + cos ε · tanh γ12 · tanh γ23

. (127A)

Let's pay attention to the fact that all expressions above for two-steps summing motions or velocities
with paired trigonometric functions were gotten by us through multiplication of tensors of 1-st and 2-nd
motions in (111A), and the hyperbolic part with these functions was revealed by polar decomposition of this
product. Its residue is the induced here especial spherical shift, which we'll represented later.

If cos ε = ±1, formulae (122A), (124A), (125A) give the additive rules (69A)-(72A). Generally, in (124A)
and (125A), we see two (sine and tangent) Big Pythagorean Theorems, they will be interpreted later on the
space-like hyperboloid II with the Lobachevsky�Bolyai geometry. But if cos ε = 0, then for two conventionally
orthogonal hyperbolic segments we get two (sine and cosine) Small Pythagorean Theorems:

cosh γ13 = cosh γ12 · cosh γ23 ⇔ sech γ13 = sech γ12 · sech γ23. (128A− I)

sinh2 γ13 = (cosh γ23 · sinh γ12)
2 + sinh2 γ23 = (cosh γ12 · sinh γ23)

2 + sinh2 γ12. (129A− I)

tanh2 γ13 = (sech γ23 · tanh γ12)
2 + tanh2 γ23 = (sech γ12 · tanh γ23)

2 + tanh2 γ12. (130A− I)

In 3D Euclidean space, not more than three vectors can be orthogonal. Perform sequentially two operations
of three conventionally orthogonal segments summing, we obtain three-steps scalar commutative formulae:

cosh γ14 = cosh γ12 · cosh γ23 · cosh γ34 ⇔ sechγ14 = sech γ12 · sech γ23 · sech γ34. (128A− II)

sinh2 γ14 = sinh2 γ12 + sinh2 γ23 + sinh2 γ34+

+sinh2 γ12 · sinh2 γ23 + sinh2 γ12 · sinh2 γ34 + sinh2 γ23 · sinh2 γ34 + sinh2 γ12 · sinh2 γ23 · sinh2 γ34 =

= (cosh γ34 · cosh γ23 · sinh γ12)
2 + (cosh γ34 · sinh γ23)

2 + sinh2 γ34 =

= (cosh γ12 · cosh γ23 · sinh γ34)
2 + (cosh γ12 · sinh γ23)

2 + sinh2 γ12. (129A− II)

tanh2 γ14 = tanh2 γ12 + tanh2 γ23 + tanh2 γ34−
−(tanh2 γ12 · tanh2 γ23 + tanh2 γ12 · tanh2 γ34 + tanh2 γ23 · tanh2 γ34) + tanh2 γ12 · tanh2 γ23 · tanh2 γ34 =

= (sech γ34 · sech γ23 · tanh γ12)
2 + (sech γ34 · tanh γ23)

2 + tanh2 γ34 (130A− II)

These formulae for functions of the summary angle in ⟨Pn+1⟩ may be always presented in the quadric form
as a sum of n quadrates by n! identical variants. (We give only one last example in (129A) and in (130A)
in the direct order of the motions from six variants.) If in these summation formulae at least one of the
particular angles is in�nite (γij =∞, tanh γij = 1 or vij = c), then the �nal angle is in�nite too. This result
corresponds to the Einstein's Velocity Postulate (15A), but only as the consequence of STR in ⟨P3+1⟩.

As generalization of multiplicative cosine variants (128A) for a lot of the conventionally orthogonal
hyperbolic segments γ(k) in the n-dimensional Lobachevsky�Bolyai space or on the n-dimensional Minkowski

hyperboloid II in ⟨Pn+1⟩, this simplest multiplicatively commutative scalar cosine formula is realized in the
base Ẽ1 = {I} as follows:

cosh γ =
t∏

k=1

cosh γ(k), γ = λ/R = arcosh

(
t∏

k=1

cosh γ(k)

)
; ε(k) = ±π/2 . (131A− I)

Scalar summary γ does not depend on ordering of conventionally orthogonal partial angles, with the
relativistic law of t ≤ n orthogonal velocities summation. If all these t segments are in�nitesimal, then
the In�nitesimal polysteps Pythagorean Theorem holds, even for non-conventionally orthogonal in�nitesimal
hyperbolic segments on the hyperboloid II:

γ2 = γ2
(k)

(γ(k) = λ(k)/R→ 0), (εij = ±π/2 for n space axes −→x (k)), k = 1, 2, ..., n. (131A− II)

Let in (131A-I) di�erential angles dγ and dγ(k) instead each angle itself. Take into account decomposition

cosh γ → 1 + γ2/2 + · · · . Realize it as substitution in (131A). Now, let us use the unusual representation
cosh dγ = 1 + (dγ)2/2 for di�erentials of the 1-st order. Then, we get the following commutative formulae
for independent orthogonal hyperbolic di�erential (k ≤ n) and proportional inner accelerations (k ≤ 3)

dγ =
√

dγ2
1 + ...+ dγ2

k ⇒ g = c(dγ/dτ) =
√

g21 + ...+ g2k; (εij = ±π/2), k = 1, 2, ..., n. (131A− III)

with the non-relativistic law of inner accelerations g(k) summation on the hyperboloid II of accelerations

(see it also in the beginning of Ch. 9A). These two Pythagorean theorems in STR for such proportional

angular 1-st di�erentials and inner accelerations (all applied in ẼM at its zero point M) are valid also from

sine quadrics (129A-I and II), transforming them into quadrics for dγk and inner accelerations g(k).
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Let us turn to the Minkowski hyperboloids II and I � see initially about them in Ch. 12 with
their projections for visualization onto common pseudoplane at Figure 4. They are main geometric
objects with radius-parameter R (but of radii iR and ±R) in the pseudo-Euclidean space ⟨P3+1⟩ by
Minkowski or as his space-time (Ch. 12). For them, radius-parameter R is also their coe�cient of
similarity to the trigonometric hyperboloids II and I at R = 1, because both hyperboloids are perfect
curvilinear 3D hypersurfaces in ⟨P3+1⟩ (or 2D in ⟨P2+1⟩) with the admissible polysteps motions on
them from the continuous Lorentz group, equivalent to the group of rotations in enveloping ⟨P3+1⟩.

Now we discuss their geometric peculiarities and metric forms gotten in vector presentations
by descriptive method used us for catenoids and tractricoids in previous two Chapters, as both
hyperboloids are connected also by visual rotation at angle Π/2 in projections onto the pseudoplane.
In the STR with trigonometric hyperboloids, due to the Poincar�e brilliant idea [63], we may use his
complex space-time ⟨Q3+1⟩c with Euclidean metric tensor {I}, imaginary time-arrow and angles iγ
in tensor roth iΓ(m) = F (iγ, eα) (100A). In metric forms' signs, we trust to ones in ⟨Q3+1⟩c!

The hyperboloid II of two coupled sheets having with the metric tensor {+I} of ⟨Q3+1⟩c two
antipodal Lobachevsky�Bolyai geometries with radius ∓R (Ch. 12) is seeming as symmetric cups �
see else in (149A). Its time-like principal pseudonormal, space-like tangent and sine binormal are:

p(II) = r(II) =

[
sin iγj · eα
cos iγj

]
= −[p(I)]

′
α = i(I) = i, i(II) = +[i(I)]

′
α = p(I) = p, b(II) =

[
eν
0

]
.

From Pole point CII on II in ⟨Qn+1⟩c at Figure 4, we have space-like geodesic meridians HR = Rγj
with dHR = Rdγj (under dα = 0), radii of curvature iR and of revolution Rn2 = r = iR sin iγj .
The 1-st angular metric form of II with the Euclidean Absolute Pythagorean theorem reduces mixed
motion with dα1 on II as a perfect surface to hyperboloidal angular arc along hypotenuse Rdγp:

x(II) = x(II) · eα = iR · sin iγj · eα,
y(II) = ct = iR · cos iγ.

}
[here from its top Pole � see in detail in (225A�228A), Ch. 10A]

dx(II) = d(x(II) · eα) = iR d(sin iγj · eα) = iR · (cos iγj diγj · eα + sin iγj dα1 · eν),
dy(II) = d(ct) = iR d cos iγj = R · sin iγj dγj .

}
⇒

[dλ(II)]
2 = (iR)2diγ2

j+[Rn2(iγj)]
2dα2

1 = (iR2) diγ2
j+(iR2) sin2 iγj dα2

1 = R2dγ2
p ≡ ||dx(II)||2+||dy(II)||2;⇒

[dλ(II)/R]2 = dγ2
p = (sin iγj dγj)

2
Y +[(cos iγj dγj)

2+(i sin iγj dα1)
2]X = cos2 iγj dγ2

j+sin2 iγj (dγ2
j−dα2

1)⇒

dγ2
p = [i diγp]

2 = cosh2 γp dγp
2 − sinh2 γp dγp

2 = dγ2
j + sinh2 γj dα2

1 =
(
dγp
)2
P

+

( ⊥
dγp

)2

E

> 0. (132A)

Hyperbolic space-like meridian arc Rdγj along tangent i(II) with mutual γj is accompanied by
orthogonal arc R sinh γj dα · eν at binormal bν , caused by our motion tensor rot iΓj = F (iγj , eα).
At arbitrary point M of II, instead in�nitesimal angles γ(k) as in (131A-II), we can by (131A-I) with
exactness up to 2-nd order introduce n independent space-like di�erentials dγ(k) as Euclidean ortho-

projections of the total di�erential dγ applied in ẼM at its zero point M . All they are situated on
the tangent n-dimensional Euclidean hyperspace EnM with slope in external cavity of isotropic cone.

In STR, II is the hyperboloid of velocities at R = c and their accelerations g at KR = g/c2.
Its pseudonormal ic · p(II) is 4-velocity by Poincar�e [63, 64] of absolute matter motion in the 4D

space-time ⟨Q3+1⟩c. Its tangent and sine projections into ⟨E3⟩(1) are velocities v and v∗ (Ch. 5A).
The hyperboloid I of one sheet with the nD hyperbolic�elliptical non-Euclidean geometry of

radius ∓R (Ch. 12) is seeming as hourglass � see else in (146A). It is gotten by di�erentiating II
under eα = const or by rotating II at Π/2 in their projections on a pseudoplane as in Chs 5A, 6A
for progenitors. Its time-like tangent, space-like principal pseudonormal and cosine binormal are:

p(I) = r(I) =

[
cos iγj · eα
− sin iγj

]
= +[p(II)]

′
α = i(II) = p, i(I) = −[i(II)]′α = p(II) = i, b(I) =

[
eµ
0

]
.

On its upper half in the base ẼM at M , in result of its cutting by the rotated around OM centered
pseudoplane in the angular interval of visual inclination from |π/2| along −→ct till zero parallel to ⟨E3⟩.
We have in these cuts of I: time-like hyperbola and hyperboloidal geodesics in |π/2| ≥ φr > |π/4|,
horolines at φr = |π/4|, space-like circular and ellipsoidal extremals in |π/4| > φr ≥ 0. This
hyperboloid I is also a hyperboloid of supervelocities at RK = c and their accelerations j at R = c2/j
in the so-called Looking Glass of Theory of Relativity � see in Ch. 10A. It is caused by the fact, that
the mathematical roles of 4-velocities and 4-accelerations on II and I are contrary, because their
pseudonormals and tangents are connected by one act of di�erentiation in diγj , as we see above.
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From Equator point CI on I in ⟨Qn+1⟩c at Figure 4 (at γ0 = 0, α0 = α), under φr = |π/2|, we
have one time-like pure hyperbolic geodesic meridian HR = −Riγj with dHR = −Rdiγj , radii of
curvature −R and of revolution Rn1 = r = +R cosh iγ. The 1-st angular metric form of I with the
pseudo-Euclidean Absolute Pythagorean theorem reduces mixed motion with dα2 on I as a perfect
surface to angular ones (hyperboloidal or horoline or ellipsoidal arc) along hypotenuse Rdiγq:

x(I) = x(I) · eα = +R · cos iγj · eα,
y(I) = ct = −R · sin iγj .

}
[here from its Equator � see in detail in (235A�238A), Ch. 10A]

dx(I) = d(x(I) · eα) = +R d(cos iγj · eα) = +R · (− sin iγj diγj · eα + cos iγj dα2 · eµ),
dy(I) = d(ct) = −R d sin iγj = −R · cos iγj diγj .

}
⇒

[dλ(I)]
2 = (−R)2diγ2

j + [Rn1(iγj)]
2dα2 = R2diγ2

j +R2 cos2 iγj dα2
2 = R2diγ2

q ≡ ||dx(I)||2 + ||dy(I)||2 ⇒
[dλ(I)/R]2 = −dγ2

q = (cos iγj diγj)
2
Y +[(sin iγj diγj)

2+(cos iγj dα2)
2]X = sin2 iγj (−dγ2

j )+cos2 iγj (−dγ2
j+dα2

2)⇒

−dγ2
q = − cosh2 γq dγq

2 + sinh2 γq dγq
2 = −dγ2

j + cosh2 γj dα2
2 = −

(
dγq
)2
P

+

( ⊥
dγq

)2

E

< 0, (133A−H)

+dγ2
q = − sinh2 γq dγq

2 + cosh2 γq dγq
2 = −dγ2

j + cosh2 γj dα2
2 = −

(
dγq
)2
P

+

( ⊥
dγq

)2

E

> 0. (133A− S)

The hyperbolic time-like meridian arc R diγj along tangent i(I) with primary γj is accompanied by
the Euclidean arc R cosh γj dα · eµ at binormal bµ, caused by motion tensor rot iΓj = F (iγj , eα).

Thus, (133A-H) is integrated in hyperboloidal curves, (133A-S) is integrated in ellipsoidal curves.
That is, if [dλ(I)/R]2 < 0, summary dλ(I)/R is the hyperboloidal geodesic time-like motion on I;
if [dλ(I)/R]2 > 0, summary dλ(I)/R is the ellipsoidal extremal space-like motion on I. But at
dλ(I)/R = 0, we have the straight geodesic gorolines in the isotropic cone dividing from two sides
its internal and external cavities. All hyperbolic and hyperboloidal geodesics �ll the internal cone, all
circular and ellipsoidal extremals �ll the external cone. In any pointM of I, these two types of curves
are intersected. All these three curves on I are relating to its hyperbolic-elliptical non-Euclidean
geometry of radii ∓R as on such a perfect hypersurface. What is more, in any point of I, there are
only one pure hyperbolic geodesic and (n-1) pure circular extremals, similar to the geodesic Minding
tractrix and circular extremals on the tractricoid I from Ch. 6A. It is the last leads to cylindrical
topology of the hyperboloid I, limiting the freedom of �gures motions on it by its space-like circular
extremals of the length 2πR. Thus, combination of these straight gorolines and circular extremals
was realized by the great engineer Vladimir Shukhov in 1919 in the Moscow's Shukhov radio tower
and further in other his objects with new elegant and economical one sheet hyperboloid architecture.

We can choose any variant from two (109A �I) and (109A-II) as separate one in own ⟨Q2+1⟩c!
From �nal real-valued hyperbolic presentations of metric forms (132A) and (133A) on Minkowski

hyperboloids II and I by their translation into real-valued ⟨P3+1⟩, we can see that it was possible to
use immediately the enveloping Minkowski pseudo-Euclidean binary space ⟨P3+1⟩ with its metric
re�ector tensor {±I} (17A-I), i. e., conserving the classical real-valued Euclidean 3D subspace ⟨E3⟩.
Hence, such ⟨P3+1⟩ is also a common enveloping binary space for both Minkowski hyperboloids.

We revealed this result on the basis of Poincar�e ideas that the time-arrow
−→
ct as a frame axis −→y

and all hyperbolic angles are imaginary by nature. Einstein later presented ⟨P3+1⟩ to the exact
opposite � with contrary metric tensor {∓I} (17A-II) and anti-Euclidean subspace ⟨iE3⟩. We'll see
similar consistence and non-consistence in choosing metric tensor in our tensor trigonometric theory
of arbitrary world lines together in ⟨Q3+1⟩c and ⟨P3+1⟩ in last Ch. 10A with its concomitant
hyperboloids II and I in the same space-time.

Let evaluate with tensor trigonometry the directional cosines of �nal rotation rothΓ13 =
√
S in

(114A), and those of the vectors sinhγ13, tanhγ13, and v13 in the Cartesian subbase Ẽ
(3)
1 , taking

advantage of their equality for matrices roth Γ13 and roth (2Γ13). (We use the arithmetic, as also
trigonometric here, square root

√
S, because in it the angle Γ13 is bisected, see this in sect. 6.3!)

Compute the 3 remained non-diagonal (4, k)-th elements of the 4-th row of the matrix S = {sij}.
Thus we need to multiply the 4-th row of B = {bij} and the k-th column of roth Γ12, k = 1, 2, 3:

s4k = sk4 = sinh(2γ13) · cosσk = 2 cosh γ13 · sinh γ13 · cosσk =

= 2 cosh γ13 · [(sinh γ12 · cosh γ23 + cos ε · sinh γ23 · cosh γ12) · cosαk + sinh γ23 · (cosβk − cos ε · cosαk)].

This allows us to infer all vectorial trigonometric formulae for two-steps motions in the hyperbolic
non-Euclidean geometry or two-steps hyperbolic rotations (100A) in ⟨P3+1⟩. The vectorial formulae
with directional cosines also propagate into hyperbolic motions summation on the hyperboloid II.
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They depend, but only as vectors and not as scalars (!), on ordering of two summands γ12 and γ23.
So, vector sines in contrary variants of ordering two motions, expressed in Cartesian subbase, are:

(1) sinhγ13 = sinh γ13 · eσ = v∗
13/c = (v∗13/c) · eσ =

= (cosh γ23 · sinh γ12 + cos ε · cosh γ12 · sinh γ23) · eα + sin ε · sinh γ23 · eν =
= [cosh γ23 · sinh γ12 + cos ε · (cosh γ12 − 1) · sinh γ23] · eα + sinh γ23 · eβ ;

(2) sinh
∠
γ13 = sinh γ13 · e∠

σ
=

∠
v∗
13/c = (

∠
v∗13/c) · e∠

σ
=

= (cosh γ12 · sinh γ23 + cos ε · cosh γ23 · sinh γ12) · eβ + sin ε · sinh γ12 · e∠
ν
=

= [cosh γ12 · sinh γ23 + cos ε · (cosh γ23 − 1) · sinh γ12] · eβ + sinh γ12 · eα;
(3) sinh γ13 · cosσk = (cosh γ23 · sinh γ12 + cos ε · cosh γ12 · sinh γ23) · cosαk+
+sinh γ23 · (cosβk − cos ε · cosαk), k = 1, 2, 3; eσ = {cosσk} (for direct order).


(135A)

From here, under conditions γ12 = γ and γ23 = dγ, we obtain the same metric form (132A)
of the Minkowski hyperbolid II, but in its vector form � see more in (235A-238A), Ch. 10A.

For the next, it is useful to express the vector eν of orthogonal increment of motion:

eν =

{
cosβk − cos ε · cosαk

sin ε

}
k=1,2,3

=
eβ − cos ε · eα

sin ε
=

−−−→
eαe′α · eβ
||
−−−→
eαe′α · eβ ||

(136A)

The vector eν (and e∠
ν
for inversely ordered summary motions at eα ↔ eβ � see further)

is used in biorthogonal decompositions of principal motion increment into tangential and
normal parts, for physical velocities (see at Figure 4A), inner accelerations, curvatures, etc..

They are executed through biorthogonal representation of the 2-nd vector in the sum:

eβ = cos ε · eα + sin ε · eν , e′ν · eα = 0, e′ν · eβ = sin ε (ε ∈ [0;π]). (137A).

Our approach is seen descriptively in the tangent presentations at Figure 4A, var. 1 and 2.
Thus, from vectorial formulae (135A) and scalar formula (122A) similar vector relations for
tangents in ordering γ12, γ23 (and vice versa for γ23, γ12 � see in (135A)) are inferred as:

tanhγ13 = tanh γ13 · eσ = v13/c = (v13/c) · eσ =
sinh γ13

cosh γ13
= (138A)

=
tanh γ12 + cos ε · tanh γ23

1 + cos ε tanh γ12 · tanh γ23
· eα +

sin ε · sech γ12 · tanh γ23

1 + cos ε tanh γ12 · tanh γ23
· eν =

=
tanh γ12 + cos ε · (1− sech γ12) · tanh γ23

1 + cos ε tanh γ12 · tanh γ23
· eα +

sech γ12 · tanh γ23

1 + cos ε tanh γ12 · tanh γ23
· eβ .

Sine and tangent formulae, in squared and vectorial variants (124A), (135A) and (125A), (138A),

have in Ẽ
(3)
1 such interpretation. The second segment γ23 on a hyperboloid II is decomposed into

a pair of segments such that their projections into ⟨E3⟩(1) are directed along eα and eν . We get

these big and small hyperbolic right triangles on a hyperboloid II: γ13 = (γ12+
=
γ23) ⊞

⊥
γ23 and

γ23 =
=
γ23 ⊞

⊥
γ23, � with such spherically orthogonal sums and corresponding to them sine or tangent

right triangles in ⟨E3⟩(1). (Segments γ are 4-dimensional, their space projections are 3-dimensional !)
Let us perform hyperbolic sine projecting γ13 and γ23 (in its spherically orthogonal decomposition)

into ⟨E3⟩(1) parallel to −→ct (1). The result is two orthogonalized projections of γ23 and γ13 into ⟨E3⟩(1):

sinh γ23 =
=

sinh γ23+
⊥

sinh γ23 → sinhγ13 = (sinh γ12+
=

sinh γ23) +
⊥

sinh γ23.

We have in Ẽ
(3)
1 in squared variant the Big Pythagorean Theorem corresponding to (124A), and

the Small Pythagorean Theorem for second segment corresponding to orthogonal case (129A):

sinh2 γ13 = sinh2(γ12+
=
γ23) + sinh2 ⊥

γ23 , sinh2 γ23 = sinh2 =
γ23 +sinh2 ⊥

γ23 .

In these formulae, sinh
=
γ13 = cos ε·sinh γ13 , sinh

⊥
γ23 = sinh

⊥
γ13 = sin ε·sinh γ13. Their cosines, are,

due to (122A), the scalar projections into
−→
ct parallel to ⟨E3⟩. The analogical proportional relations

act in tangent variant, according to (125A) and (138A) � see it below and further at Figure 4A.
Therefore, we can strictly formulate both Pythagorean theorems.
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* * *
The Big Pythagorean Theorem. Sum of two segments or motions is presented in biorthogonal
form, commutative in Euclidean geometry and non-commutative in all non-Euclidean geometries.
It acts in the quasi- and pseudo-Euclidean spaces with index q = 1 how in sine vectorial decompo-
sitions (135A) as result of summing two rotations, and also on the perfect hypersurfaces in them,
including hyperspheroid and hyperboloid II, as a result of summing two motions from the start
point in Ẽ

(n)
1 with correction of the 2-nd segment in Ẽ

(n)
2 , i. e., in their non-Euclidean geometries.

Tangent formulae (125A) and (138A) are interpreted by analogous way, but with the use of
tangent cross projecting. The angle γ23 is decomposed as before and then all these parallel and
normal components are subjected to cross projecting (see in Ch. 4A) into ⟨E3⟩(1) parallel to −→ct (2).
It should be taken into account by correction with additional coe�cient sechγ12 (only by formal
analogy with Lorentzian contraction). Their tangent summation, with these analogous Big and
Small Pythagorean Theorems (125A) and (138A), are identical to tangent model at Figure 4A as in

the Klein homogeneous coordinates. Big and Small theorems are relative and act in Ẽ
(n)
1 and Ẽ

(n)
2 .

Furthermore, this important property of the summations into sinh γ13, tanh γ13 unites to

a certain extent the Euclidean geometry with non-Euclidean hyperbolic and spherical geometries!

Distinction is the following. In Euclidean geometry the vectors a12 = a12 · eα and a23 = a23 · eβ are

summarized commutatively, i. e., in their direct and inverse orders with the same result a13 = a13·eσ.

Two variants of the biorthogonal non-Euclidean summation (direct and inverse) are noncommutative

from the di�erent sign of the angle of orthospherical rotation (∓θ13) after the summing process.

The Big Pythagorean Theorem is valid for two variants of orthoprojections. In both the
cases, modules of hypotenuses are equal, but the summary vectors a13 are distinct by the
orthospherical rotation as in (120A). Thus, formulae (124A), (135A) and (125A), (138A),
can be presented in two biorthogonal forms with decompositions either of γ12 with respect
to eα or of γ23 with respect to eβ .

Next summand non-collinear to previous is in other Euclidean subspace. Namely this
theorem, in particular, allowed Poincar�e as in three projections and Einstein as entirely
to infer the relativistic Law of summing two non-collinear velocities in vector and scalar
forms under conditions {cosα1 = 1, cosα2 = cosα3 = 0} → cos ε = cosβ1. Thanks to this
geometric theorem, orthoprojections of velocities v1 and v2 along the axes x1, x2, x3 were
summarized as if Euclidean orthogonal each others in the �nal physical formula [63], [67].

Further in vector formula (138A), put tanh γ12 · cosα1 = ±v/c ≈ 10−4, cosα1 = ±1.
Then cos ε = ± cosβ1, see (119A), and tanh γ23 = c/c = 1, that is why tanh γ13 = 1 too.
Here v ≈ 30 km/sec is the orbital velocity of the Earth moving around the Sun. Hence,

tanh γ13 = eσ =
[tanh γ12 ± cosβ1 · (1− sech γ12)] · eα + sech γ12 · eβ

1± cosβ1 · tanh γ12
=

=
1

1± cosβ1 · tanh γ12
·

 ± tanh γ12 + cosβ1
sech γ12 · cosβ2
sech γ12 · cosβ3

 =

 cosσ1
cosσ2
cosσ3

 , (tanh γ13 = 1),

where β1, β2, β3 and σ1, σ2, σ3 are the true and seemed angles, under which the Star is
observed. From this, the complete list of relativistic formulae for aberration follows:

tanβ′
12 =

cosσ2
cosσ1

=
sech γ12 · cosβ2
± tanh γ12 + cosβ1

, tanβ′
13 =

cosσ3
cosσ1

=
sech γ12 · cosβ3
± tanh γ12 + cosβ1

,

cos δ± = (e+σ )
′ · e−σ =

sech2γ12 − sin2 β1 · tanh2 γ12
1− cos2 β1 · tanh2 γ12

, Ra =
δ±

2
(as how γ12 ± γ23).

If the Star is observed in the simplest variant under β1 = π/2, then for maximal δm:

cos δm = sech2γ12 − tanh2 γ12 ≡ cos 2φ(γ12), sin δ
m = 2 tanh γ12 · sechγ12 ≡ sin 2φ(γ12).
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If β3 = π/2, then cosβ2 = sinβ1. In this special case, we obtain trigonometric variant of
Einstein's formula for the orthogonally observed aberration [53, p. 36�39]:

tanβ′
12 =

sinβ1 · sech γ12
cosβ1 ± tanh γ12(

sinβ′
12 =

sinβ1 · sech γ12
1± cosβ1 · tanh γ12

, cosβ′
12 =

cosβ1 ± tanh γ12
1± cosβ1 · tanh γ12

)
.

For the orthogonally observed aberration, we have the simplest Einsteinian variant at:

σ1 = β′
12 = β′

1 = π/2− σ2, cosσ2 = sinσ1 = sinβ′
1 σ3 = β3 = π/2.

Then either β′
1 < β1 (if the sign + is chosen), or β′

1 > β1 (if the sign − is chosen); and the angles

β1 and β′
1 are permuted i� the signs ± and ∓ are permuted. All these formulae immediately follow

from indicated above general formula for tanhγ13 = eσ.

For J. Bradley formula (1727), A. Einstein introduced relativistic time-correcting factor
sech γ12 (here it is in secant form (127A)) and used Lorentzian transformation instead of
Galilean ones [67]. This small correction makes the formula of aberration identical in two
inertial frames of reference associated either with the Earth, or with the Star: eα and eσ
are permuted i� signs ± and ∓ are permuted. The maximal angular radius of aberration is
achieved if β1 = π/2, and it is Ra = δm/2 ≈ 10−4 rad. Note, that the angle of orthospherical
rotation θ13 will be calculated below. Some Soviet academic authors did not distinguish in
aberration the angles δ± for γ12 ± γ23 and θ13 for γ12 + γ23, γ23 + γ12 ?! See for θ13 further.

* * *
According to (135A) and (136A), the vectors eσ and eη are linear combinations of eα

and eβ . Hence all the four unit vectors are in the same Euclidean plane ⟨E2⟩ ≡ ⟨eα, eβ⟩.
Similar arguments for inverse ordering of motions give similar results, but the �rst directed
vector is eβ and the second one is eα. The new vector of orthogonal increment (for the
inverse order of the full motion) is expressed similar (136A), (137A) by permutation:

e∠
ν
=

{
cosαk − cos ε · cosβk

sin ε

}
=

eα − cos ε · eβ
sin ε

, (139A)

eα = cos ε · eβ + sin ε · e∠
ν
, e′β · e∠

ν
= 0, e′α · e∠

ν
= sin ε, e′ν · e∠

ν
= − cos ε. (140A)

The vectors tanh
∠
γ13, sinh

∠
γ13, and

∠
v13 are directed in the subbase Ẽ

(3)
1 along e∠

σ
, and

their modules do not change. The vectors eσ, e∠
σ
, eν and e∠

ν
are linear combinations of eα

and eβ , hence they lie in the same plane ⟨E2⟩ ≡ ⟨eα, eβ⟩. The rotations (113A) and (112A)
act in the common trigonometric plane of the matrix rot Θ13, hence this plane is identical
to ⟨E2⟩ too. The Euclidean plane includes formally all these six introduced and considered
unity vectors of diagonal cosines: eα, eβ , eσ, e∠

σ
, eν , e∠

ν
.

(In general cases, for internal and external multiplications of unity vectors there holds:

e′1 · e2 = cos θ12, e1 · e′2 = cos θ12 ·
←−−−−
e1 · e′2 = sec θ12 ·

←−−−−
e1 · e′1 ·

←−−−−
e2 · e′2.

They may be also useful. The last formulae are the special cases of (196) in Ch. 5.
The matrix rot Θ13 can be calculated not only from multiplicative formula (115A). In

⟨P3+1⟩, it may be directly calculated in canonical form (497) due to (499). Indeed, the
normal unity axis −→eN of this orthospherical rotation is found in terms of vector product for
unity vectors of �rst γ12 (eα) and second γ23 (eβ) motions in (135A), with (137A) as:

−→rN (θ) = e∠
σ
⊗ eσ = − sin θ · −→eN ,where −→eN = eα ⊗ eν

−→rN (ε) = eα ⊗ eβ = +sin ε · eα ⊗ eν = +sin ε · −→eN

}
⇒ −→rN(θ) = −

[
sin θ

sin ε
· −→rN(ε).

]
(141A)
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The orthospherical rotation or shift ∓θ is realized in the base Ẽ1h = roth Γ · Ẽ1 (see
(111A). In general, in ⟨P3+1⟩, it has a current normal axis −→eN (3) in ⟨E3⟩(1h) and acts in the
plane ⟨E2⟩(1h) under hyperbolic inclination γ13 to ⟨E2⟩(1) ≡ ⟨eα, eβ⟩(1) and with signs due
to (113A), (119A). These values of −→rN (θ) and cos θ13 give us the matrix rot Θ13 in canonical
form (497) if n = 3. Due to (499), (113A), (120A), we get additional variants for shifting θ13:

cos θ13 = e′σ · e∠
σ
= tr rot Θ/2− 1 = (tr[rot Θ]3×3 − 1)/2, | sin θ13| = |−→rN (θ13)|. (142A)

Speaking strictly, angular shift θ must supplement the hyperbolic laws of summing motions
(velocities) (135A)-(138A). So, this shift is the cause of non-commutativity of these laws.

Due to the sign's Rule (see in (113A) from sect. 12.2) in hyperbolic geometry and STR,

sgn θ13 = −sgn ε ! : if ε > 0, then θ13 < 0, and if ε < 0, then θ13 > 0, i. e., the leg 13

is shifted orthospherically so to the angle A123 = π − ε always that to decrease the sum of
angles in the hyperbolic triangle (see more further).

The vectors e∠
σ
, eσ,
−→eN as well as the vectors eα, eβ ,

−→eN form the right triple due to

(113A), this corresponds to counting scalar angles as counter-clockwise ones in the right-
handed bases, and the oriented vector −→eN determines the right screw of rotations. The triple
e∠
σ
, eσ,
−→rN (θ) is universal for analysis of polysteps motions.

All the six vectors eα, eβ , eν , eσ,
∠
eν ,

∠
eσ are formally inside an angle of magnitude π

in the plane ⟨E2⟩ ≡ ⟨eα, eβ⟩. From (136A), (139A), taking into account (122A), we obtain
their following trigonometric properties:

e′α · eβ = e′β · eα = cos ε, e′α · eν = e′β · e∠
ν
= 0,

e′β · eν = e′α · e∠
ν
= +sin ε = +sin(π − ε), e′ν · e∠

ν
= − cos ε = +cos(π − ε).

The value of cos θ13 is computed with the use of (120A), and in addition vectorial variant
of (135A) and its reverse analog! With respect to the original base Ẽ1 we have

cos θ13 = e′σ · e∠
σ
=
A+ cos ε ·B + cos2 ε · C + cos3 ε ·D

sinh2 γ13
> 0; (143A)

A = (cosh γ12 · cosh γ23 − 1)(cosh γ12 + cosh γ23) > 0,

B = sinh γ12 · sinh γ23 · (cosh γ12 · cosh γ23 + cosh γ12 + cosh γ23 − 1) > 0,

C = sinh2 γ12 · cosh γ23 · (cosh γ23 − 1) + sinh2 γ23 · γ12 · (cosh γ12 − 1) > 0,

D = sinh γ12 · sinh γ23 · (cosh γ12 − 1) · (cosh γ23 − 1) > 0.

If cos ε = +1, then A+B + C +D = sinh2 γ13 = sinh2(γ12 + γ23) with θ13 = 0.
If cos ε = −1, then A−B + C −D = sinh2 γ13 = sinh2(γ12 − γ23) with θ13 = 0.

Theoretically extremal relativistic shift θ13 = ∓π/2 takes place if conventionally orthogonal
velocities are equal to the speed of light c ! Moreover, function (143A) in cos ε has 3 extrema:
maximal value cos θ13 = 1 if cos ε = ±1, minimal value cos θ13 = A/ sin2 γ13 if cos ε = 0.

The latter corresponds to conventionally orthogonal two-step motions with quadratic
scalar sine and tangent formulae (129A - I) and (130A - I). Below we consider in details the
sine variant. At �rst, transform scalar sine quadratic formula (129A - I) into the form:

sinh2 γ13 = (cosh γ12 · cosh γ23)2 − 1 = (cosh γ12 · cosh γ23 + 1)(cosh γ12 · cosh γ23 − 1).
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The absolute value of cos θ13 is minimal i� |θ13| is maximal, this is equivalent to conven-
tional orthogonality of eα and eβ . For the sum of two hyperbolic motions, provided that
ε = ±π/2 (sin ε = ±1), from (143A) and (135A), (138A) we obtain:

cos θ13 =
A

sinh2 γ13
=

cosh γ12 + cosh γ23
cosh γ12 · cosh γ23 + 1

> 0 ⇒ sin θ13 = − sinh γ12 · sinh γ23
cosh γ12 · cosh γ23 + 1

.

So, if γ23 → 0, then θ13 → 0. This is the reason for appearing induced precession in time.

tan θ13 = − sinh γ12·sinh γ23

cosh γ12+cosh γ23
= − tanh γ12·tanh γ23

sechγ12+sechγ23
;

tanh γ13 · eσ = tanh γ12 · eα + tanh γ23 · sech γ12 · eβ ,
tanh γ13 · e∠

σ
= tanh γ23 · eβ + tanh γ12 · sech γ23 · eα.

 (cos ε = 0)

The hyperbolic sine formula above was obtained by Arnold Sommerfeld in 1931 [95]
as result of summing two orthogonal velocities in STR as if on a hypothetic then sphere
of imaginary radius with its angular argument φ = iγ. This gave namely pure scalar
trigonometric interpretation of coe�cient 1/2 in the Thomas precession [93] under condition
that γij → 0 (vij → 0) in this sine formula.

Three particular formulae above for the angle of orthospherical shift θ in cosine, sine and
tangent variants supplement the pure hyperbolic formulae for summing two conventionally
orthogonal motions (velocities) in cosine (128A), sine (129A) and tangent (130A) variants
with maximal orthospherical shifting � for completeness of the results of orthogonal motions
summation! In general, this angle is concomitant for the non-collinear two- and polysteps
principal motions in pseudo-Euclidean, quasi-Euclidean and non-Euclidean geometries. It
has own real meaning, in that number, for applications in physics and quantum mechanics.

If one of the velocities is ±c, for example, it is tanh γ23 = ±1, then cos θ13 = sechγ12,
sin θ13 = ∓ tanh γ12, eσ = ± tanh γ12 · eα + sech γ12 · eβ , (|eσ| = 1); e∠

σ
= ±eβ .

Such a case corresponds to the orthogonal variant of aberration with the pseudo-Euclidean
right triangle of aberration here clarity on the hyperboloid II of radius "ic" � see above.

First leg is the angle γ12 generated due to motion of the Earth relatively to the as if
"immovable" Star. Second leg γ23 under the right angle ε (in its Euclidean orthoprojection)
is generated due to motion of the light ray from the Star to the Earth. The hypotenuse
is sum γ13 directed along eσ. Vector eα inverses direction each half a year, that is why
cosα1 = ±1 and cos ε = ± cosβ1. The angular Lambertian defect of this geodesic right
triangle 123 of aberration (see above) as θ13 is determined now with the use of permutation
of these two legs by the formula (142A):

cos θ13 = e′σ · e∠
σ
= 1− (1− sech γ12) · sin2 β1

1± cosβ1 · tanh γ12
.

We �nished consideration, with our tensor trigonometric approach, mainly of the �nite
motions on the Minkowski hyperboloids II isometric to motions on the Lobachevsky�Bolyai
hyperbolic plane (Ch. 12) with identical to them �nite rotations in the Minkowski space.
We'll continue this by direct way in tensor forms in Ch. 10A, but (!) for both hyperbolids.

If to put γ12 = γ, γ23 = dγ, then for their non-collinear summation, with exactness up
to �rst di�erentials, from the same formula (143A), we get 1-st di�erential of the angular
shift dθ in scalar sine-tangent forms (sin ε = sinA) � see it further also in 3-vector forms:

sin dθ = dθ = − sin ε · sinh γ dγ
cosh γ + 1

= − sin ε · (cosh γ − 1) dγ

sinh γ
= − sin ε · tanh (γ/2) dγ.

* * *
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Cosine formula (143A) can be applicable for other important evaluations. As before, in
in�nitesimal considerations we take advantage of the useful formula for the cosine of �rst
angular di�erential (with exactness up to second power of the angular di�erential).

cosh dγ = 1 + (dγ)2/2 and cos dθ = 1− (dθ)2/2 in hyperbolic and spherical forms.

In (135A(1)), with direct and inverse order, put in ⟨E3⟩: γ12 = γi and γ23 = dγp as the
1-st 3-vector hyperbolic di�erential with eβ also tangent to hyperboloid II. With the use of
the sine formula above, we obtain the di�erential orthospherical shift dθ, i. e., as in (141A),
but at sin θ → dθ. Further, using (141A) with the Sign's Rule from sect. 12.2 (Part II) as

sgn dθ = −sgn ε (at n ≤ 3) and hyperbolic trigonometry, we add to scalar cosine product

(142A) the vectorial sine product in ⟨E3⟩ ⊂ ⟨P3+1⟩ ≡ ⟨E3⟩ ⊠ −→y and reveal the induced
orthospherical shift dθ of eσ, negative to ε, but also around 3-rd space-like normal axis−→eN = eα ⊗ eν , complementary till ⟨E3⟩ (in that number, with two relativistic factors):

−→rN (θ) = −dθ · −→eN = e∠
σ
⊗ eσ = tanh (γ/2)⊗ dγ =

sinh γ · eα
cosh γ + 1

⊗ dγ · eβ =
sinh γ

cosh γ + 1
dγ · −→rN (ε) =

= sin ε ·
sinh γ

cosh γ + 1
dγ ·−→eN = sin ε ·

tanh γ

1 + sechγ
dγ ·−→eN = tanh

γ

2
· sin ε dγ ·−→eN = tanh

γ

2

⊥
dγ · −→eN . (144A− I)

Here the angle γ or Γ is expressed in the original base Ẽ1. In STR, it is the universal base
with relatively immovable Observer N1 in the space-time ⟨P3+1⟩; the di�erential dγ · eβ is

expressed in the base Ẽm = roth Γ · Ẽ1. In dθ tangent variant, we see again the correcting
coe�cient 1/2 of the normal Thomas precession [93] gotten before from experimental data.
For two hyperbolic arcs in (144A) at point M , the third unity normal axis −→eN exists only at
n = 3 as ortho complementary in ⟨E3⟩ to the vectors eα and eν . In own moving bases, they
have the cosine hyperbolic slope. See following developments of (144A) in (171A)�(173A).

* * *

The especial case is non-conventionally orthogonal summation of motions when angles as
1-st di�erentials are in�nitesimal. Let in (144A) as in (131A-II) in�nitesimal values of angles.
On the hyperboloid II with KG = −1/R2 in ⟨P2+1⟩, for the hyperbolic right triangle 123
on it with 3 angles Ak = π− εk at its 3 tops, at γ12 → 0, γ23 → 0 and ε13 = π/2, we obtain:

γ13 =
√
γ212 + γ223 ; −θ13 =

γ12 · γ23
2

=
a12 · a23
2R2

= −KG · S123 = −δ123 → 0.

Here, with angles γ and S123, we get in�nitesimal formulae of the plane Euclidean geometry.
This con�rms the in�nitesimally Euclidean metric on the top Minkowskian hyperboloid II.
For it, we may bond the shift and angular Lambert defect: θ13 = δ123 = 2π−(ε1+ε2+ε3) < 0.
On it in ⟨P3+1⟩ from (144A) for triangle 123 formed by dγ12 and dγ23 with angles A and ε
(sin ε = sinA), we infer di�erential formula for the vector-element of its area (see [21, p. 526]):

−dθ13·−→eN = sin ε· (dγ12) · (dγ23)
2

·−→eN = sin ε· (dλ12) · (dλ23)
2R2

·−→eN =
dS123

R2
·−→eN = −KG dS123·−→eN .

The Signs' Rule acts here in hyperbolic case: if ε > 0, then θ13 < 0; if ε < 0, then θ13 > 0.
We get the interdependent di�erentials: dθ13 and of the vector-area of the triangle S123! Due
to Lambert hyperbolic result [36] or, in general, to the Gauss�Bonnet Theorem [21, p. 533],
the area of geodesic triangle 123 (on a perfect surface of negative constant Gaussian curvature
KG = −1/R2) and the angular defect of the triangle dδ123 = 2π− (ε1 + ε2 + ε3) are bonded
as dθ13 = dδ123 = −dS123/R

2 = KG dS123 < 0 (θ = 0, S = 0). We get di�erential�integral
Identity of the orthospherical shift and the Lambert angular defect in geodesic hyperbolic
triangles on the hyperboloid II and on the Lobachevsky�Bolyai plane at KG = const < 0:

dθ13 = dδ123 = −dS123

R2
= KG dS123 ⇒ θ13 = δ123 = −S123

R2
= KG · S123. (144A− II)
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These formulae mean: the angle θ13 of orthospherical shifting and Lambert's angular
defect δ123 in a hyperbolic triangle are equal ! The assertion is true also for other �gures as
convex polygons (formed from triangles). This is inferred through their decomposition into
triangles. (If such triangle is on a hyperspheroid in ⟨Qn+1⟩, the similar formula for ortho-
spherical shifting θ contains the sign ±, see generally in (173A) and further in Ch. 8A.)
Note, that the orthospherical shifting is more general notion, than the angular deviation for
geodesic two-dimensional �gures, and it acts also in tensor variants. Orthospherical tensor
angle of rotation Θ13, due to matrix formula (115A), is identical to tensor angular defect
of a geodesic triangle (or other convex polygons) on the hyperboloid II. Angular deviations
take place due to dependence of parallel displacement on surfaces with curvature on its way.

Conclusion. Orthospherical induced shifting Θ gives the clear mathematical explanation to
Lambertian angular defect of �gures in hyperbolic geometry and Thomas precession in STR!

* * *

In Ch. 5A, through trigonometric relation (79A) in the instantaneous Cartesian subbase Ẽ
(3)
m

in the Euclidean sub-space ⟨E3⟩(m), we introduced the inner 3-acceleration g, directed along the

instantaneous axis x(m). (An inner acceleration is always with zero time-projection in Ẽ
(4)
m .) And

at collinear two-steps or integral motions, g = gα is collinear with velocity vα. But at non-collinear
integral motions with the current velocity vα and the current inner acceleration g = gβ in the

instantaneous Cartesian sub-base Ẽ
(3)
m , we can decompose this current inner acceleration with the

hyperbolic di�erential causing it into the parallel and normal parts by the Pythagorean Theorem
using (137A) in Ẽ

(3)
m of ⟨E3⟩(m), with respect to the direction of velocity eα in Ẽ

(4)
1 , as follows:

dγβ · eβ = cos ε dγβ · eα + sin ε dγβ · eν = dγβ · eα+
⊥
dγβ · eν ⇒

⇒ gβ = gβ · eβ = cos ε · gβ · eα + sin ε · gβ · eν = gβ · eα+
⊥
gβ · eν ⇒

⇒ (dγβ)
2 =

(
dγβ

)2

+

(
⊥
dγβ

)2

, g2β =
(
gβ

)2
+

(
⊥
gβ

)2

.

 (145A)

It is the Local Absolute Euclidean Pythagorean theorem for spherically orthogonal decomposition
in the Cartesian subbase Ẽ

(3)
m of the brutto di�erential dγ · eβ and the inner 3-acceleration gβ · eβ ,

with respect to the directional vector eα of the hyperbolic angle of motion γ. The parallel part
accelerates motion along the curve, the normal part rotates the direction of motion with its curve.

* * *

Relativistic formulae of the Doppler e�ect for the oscillations frequency of light [76, p. 39],
from the hyperbolic tensor trigonometric point of view, have simple interpretation. It is necessary
in the classical formulae to change spherical tangent tanφR = v/c for hyperbolic one tanh γ = v/c
as was did with tangent relation for velocity in STR, and to introduce the relativistic secant factor
(127A) for the proper time either of moving source of a light or moving Observer of a light source.
In STR only a relative velocity v has importance! With the tangent-tangent analogy, we obtain:

ν(2) · cτ = ν(1) ·∆ct(1) = ν(1) · ct(1) · (1− cosα · tanh γ)⇒ ν(1) = ν(2) · sech γ /(1− cosα · tanh γ),

where ν(2) is the oscillations of light frequency from the source, ν(1) is frequency felt by Observer N1,
α is the angle between a light ray and a velocity vector, sech γ is the relativistic factor, t(1) and
τ are the equivalent time intervals in both these systems. There are four speci�c variants:

A. Longitudinal meeting e�ect: α = 0, cosα = +1, i. e., the source becomes nearer. Then the
"blue shift" of light frequency is observed.

B. Longitudinal opposite e�ect: α = π, cosα = −1, i. e., the source becomes farer. Then the
"red shift" of light frequency is observed.

C. Transversal e�ect: α = ±π/2, cosα = 0. Then Observer N1 �xes the "red shift" too, but it
is less than in case B due to Einsteinian time dilation in the moving source.

D. The Doppler e�ect is absent if cosα = (1− sech γ)/ tanh(±γ) ≈ tanh(±γ)/2.
We get the extremal Doppler e�ects for light and other radiation at tanh γ = 1, cosα = ±1.

And the Hubble Law can be expressed in the ancestral form through the relative change of the

photons frequency as −∆ν/ν = tanh γ = v/c = Hl/c = Ht � see more in Ch. 9A.
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* * *
Consider both trigonometric hyperboloids with the unity radius-parameter R.

The hyperboloid II (see Figure 4) has R = ±i. Radius may be 4-velocity −→c = c · i.
Represent the 4× 1-radius-vector of the unity hyperboloid II as its principal pseudonormal
i = r(II) = p(II) and the principal tangent i(I) to hyperboloid I and to a world line in Ẽ1

i = r(II) = p(II) = i12 =

[
sinh γ12 · eα

cosh γ12

]
= roth Γ12 ·

[
0
1

]
= roth Γ12 · i1, (146A)

where γ > 0 if ∆ct > 0, roth Γ12 = F (γ12, eα) due to (363). Its time-like invariant is

i′1k ·I± ·i1k = sinh′γ1k ·sinh γ1k−cosh2 γ1k = sinh2 γ1k ·e′αeα−cosh
2 γ1k = −1. (147A− I)

i′1k · i1k = −sin′iγ1k · sin iγ1k − cos2 iγ1k = sin2 iγ1k · e′αeα − cos2 iγ1k = −1. (147A− II)

Here for unity hyperboloid-II as the Lambert's sphere of the imajinary radius ±i, with both
these pseudo-Euclidean and anti-Euclidean sine-cosine identical invariants, we denote:
sinh γ1k is the 3× 1-vector projection of i1k into ⟨E3⟩(1) parallel to −→ct (1),
cosh γ1k is the scalar projection of i1k into

−→
ct (1) parallel to ⟨E3⟩(1). In addition,

tanh γ1k is the cross 3× 1-vector projection of i1k into ⟨E3⟩(1) parallel to −→ct (k),
sech γ1k is the cross scalar projection of i1k into

−→
ct (1) parallel to ⟨E3⟩(k).

Consider two-steps geodesic motions i12, i23 ⇒ i13 of an element on hyperboloid II along
two hyperbolae in bases Ẽ1 and Ẽ2, with its polar clear description (see before in (111A)):

i12 i1

{rothΓ23·}Ẽ2
·
[

sinh γ12 · eα

cosh γ12

]
= {roth Γ23}Ẽ2

· {roth Γ12}Ẽ1
·
[

0
1

]
= (148A)

i1 i1

= {roth Γ12 · (roth Γ23)Ẽ1
· roth−1 Γ12}Ẽ2

· roth Γ12 ·
[

0
1

]
= roth Γ12 · roth Γ23 ·

[
0
1

]
=

i23 i1 i1 i13

= {rothΓ12·}Ẽ1
·
[

sinh γ23 · eβ

cosh γ23

]
= roth Γ13·rotΘ13·

[
0
1

]
≡ roth Γ13·

[
0
1

]
=

[
sinh γ13 · eσ

cosh γ13

]
.

Four �nal matrices are in canonical form in Ẽ1. This means clear solution of the task:
To �nd geodesic passed through points 2 and 3. We'll consider such two-steps summation on
hyperboloid II in general tensor-vector-scalar (tvs) presentation to the end of big Ch. 10A.

The trajectory of hyperbolic geodesic motion i12 → i13 is in the cut of the hyperboloid II
by the eigen pseudoplane of matrix {roth Γ12 · (roth Γ23)Ẽ1

· roth−1Γ12·}Ẽ2
including

these two points with the hyperbola. Intersection of this pseudoplane with the projective
hyperplane is a straight line segment in ⟨⟨En⟩⟩, it corresponds to this geodesic trajectory.
A hyperbolic triangle on a hyperboloid II with iR is realized as a cycle of 3 geodesic motions:

{roth Γ12}Ẽ1
u1 = u12, {roth Γ23}Ẽ2

u12 = u13, {roth Γ31}Ẽ3
u13 = u1.

By (148A), for a point element u1, rotation Θ13 annihilates. The triangle cycle returns
a nonpoint object in the start, but the object is turned in the base Ẽ3 at angle Θ13. The point
of application of the nonpoint object moves as u1 → u12 → u13 → u1 along three hyperbolic
geodesic lines. Summation of two-step non-collinear hyperbolic motions, according to polar
decomposition (111A), is represented as the motion along geodesic line γ13 in direction eσ
with the induced orthospherical rotation rot Θ13, but only for a nonpoint element.
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The hyperboloid I (see Figure 4) has R = ±1.
Represent the 4× 1-radius-vector of the unity hyperboloid I and its principal pseudonormal
p = r(I) = p(I) also tangent i(II) to hyperboloid II and pseudonormal to a world line in Ẽ1

p = r(I) = p(I) = p12 =

[
cosh γ12 · eα

sinh γ12

]
= roth Γ12 ·

[
eα
0

]
= roth Γ12 · p1(α), (149A)

where γ > 0 if ∆ct > 0, roth Γ12 = F (γ12, eα). (Here i12 and p12 on II and I are conjugate
� see at Figure 4 for u and v under radius-parameter R.) Its space-like invariant is

p′
1k·I±·p1k = cosh′γ1k·cosh γ1k−sinh2 γ1k = cosh2 γ1k·e′αeα−sinh

2 γ1k = +1. (150A− I)

or

p′
1k · p1k = cos′iγ1k · cos iγ1k + sin2 iγ1k = cos2 iγ1k · e′αeα + sin2 iγ1k = +1. (150A− II)

Here for the hyperboloid-I as the sphere of the real-valued radius ±1, we denote:
cosh γ1k is the 3× 1-vector projection of p1k into ⟨E3⟩(1) parallel to −→ct (1),
sinh γ1k is the scalar projection of p1k into

−→
ct (1) parallel to ⟨E3⟩(1). In addition,

coth γ1k is the cross 3× 1-vector projection of p1k into ⟨E3⟩(1) parallel to −→ct (k),
cosech γ1k is the cross scalar projection of p1k into

−→
ct (1) parallel to ⟨E3⟩(k).

With regard to the hyperboloid I, there is a dilemma with two possible variants of the
tensor hyperbolic angle for points on it with the constant module of radius-vector ρ(v):

1) or, as its argument leave the hyperbolic angle Γ so that for both hyperboloids their
principal angles γ are symmetric with respect to the isotropic cone (see as at Figure 4).

2) or, as its argument one choose the complementary angle Υ (see as at Figure 4). But
then the cosine-sine matrix of hyperbolic rotation must be replaced by the corresponding
cotangent-cosecant rotation matrix with the complementary principal angle υ.

Both these variants are valid, but we choose below the �rst variant with the principal
angle γ for two-steps motions on the hyperboloid I. Their matrices are bonded as follows:

roth Γ = roth Υ∣∣∣∣∣ cosh γ ·
←−−−
eαeα

′ +
−−−→
eαeα

′ sinh γ · eα · · · coth υ ·
←−−−
eαeα

′ +
−−−→
eαeα

′ csch υ · eα
sinh γ · e′α cosh γ · · · csch υ · e′α coth υ

∣∣∣∣∣ . (151A)

For the hyperboloid I, we begin two-steps transformations starting immediately from the
2-nd stage, when matrices are already expressed in the basis Ẽ1, as it was shown in (148A):

p23 p1(κ)

{roth Γ12}Ẽ1
·
[

cosh γ23 · eκ

sinh γ23

]
= {roth Γ12}Ẽ1

· {roth Γ23}Ẽ1
·
[

eκ

0

]
=

p1(κ) p∗
1(κ) p13

= roth Γ13 · rot Θ13 ·
[

eκ

0

]
= {roth Γ13}Ẽ1

·
[

e∗
κ

0

]
=

[
cosh γ13

∗ · e∗
σ

sinh γ13
∗

]
. (152A)

Here the directional cosine vector e∗β of the second motion is orthospherically shifted, with
respect to the original vector eβ . The two-steps hyperbolic motions on the unity hyper-
boloid I are realized with topological constraints corresponding to the cotangent hyperplane
model or more visually to the tangent cylindrical model outside the Cayley oval (sect. 12.1).
They are possible i� hyperplane cotangent or cylindrical tangent projections of these mo-
tions may be connected by straight cotangents (coth γij) or tangent (tanh γij) segments
without topological obstacles. We'll continue considerations of such relations in Ch. 10A.
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As a result, the points of the unity hyperboloids II and I and in corresponding to them two
concomitant hyperbolic and hyperbolic-elliptical geometries (see above and in Ch. 12) have
the additional cotangent�cosecant negative and positive pseudo-Euclidean invariants:

i′ · I± · i = r′(II) · I
± · r(II) = csch′γ · csch γ − coth2 γ = −1 = i2. (II)

p′ · I± · p = r′(I) · I
± · r(I) = coth′γ · coth γ − csch2γ = +1 = 12. (I)

Recall, that due to the formulae of pseudo-Euclidean trigonometry and hyperbolic non-
Euclidean geometry, we have the correspondences for the complementary hyperbolic angles:

sinh(Γ,Υ) = csch (Υ,Γ) ⇔ sinh(Γ,Υ) · sinh(Υ,Γ) = I,

cosh(Γ,Υ) = coth (±Υ,Γ) ⇔ tanh(±Γ,Υ) = sech(Υ,Γ).

This determines strictly the geometric interdependence of these complementary angles shown
at Figure 4 (Ch. 12), i. e., cotangent and cosecant cross projections of the angle Γ or Υ may
be interpret as the usual orthoprojections of the angles Υ or Γ!

In both these cases, for the hyperboloids II and I in ⟨Pn+1⟩, one may interpret clear
these hyperbolic angles through their trigonometric projections by tangent and cotangent
projective models either on the projective hyperplane or on the projective hypercylinder with
respect to the trigonometric n-ball equivalent geometrically to the Cayley n-oval absolute.

With any own re�ector metric tensor of ⟨Pn+1⟩ hyperboloids II and-I are conjugated:

i′ · I± · p = p′ · I± · i = 0 ⇔ r′(II) · I
± · r(I) = r′(I) · I

± · r(II) = 0 .

* * *

Further, we describe in general form an algorithm for evaluating main characteristics
of summary polysteps rotation (motion) in ⟨Pn+1⟩ and ⟨P3+1⟩ ≡ ⟨E3 ⊠ −→ct⟩ (see before in
sect. 11.3, 11.4 and (111A)) in the tensor, vector and scalar forms. The algorithm starts
with application of formula (485) for correct transformation of the initial unity base Ẽ1.
On the �nal step of the algorithm, the polar representation, according to (474)�(476) and
(111A)�(118A), is used. On these stages, the homogeneous modal transformations are

Ẽt = roth Γ12 · roth Γ23 · · · roth Γ(t−1),t · Ẽ1 = T1t · Ẽ1,

T1t = roth Γ1t · rot Θ1t = rot Θ1t · roth
∠
Γ1t .

T1t · T ′
1t = roth2 Γ1t = roth 2Γ1t, T ′

1t · T1t = roth2
∠
Γ1t= roth 2

∠
Γ1t,

rot Θ1t = roth−1Γ1t · T1t = roth (−Γ1t) · T1t.

The latter gives rot Θ1t as defect Θ1t of the Closed cycle of principal rotations! We use

eσ and e∠
σ
, they are the directional vectors in structures (362), (363) for Γij and

∠
Γij ;

cos θ1t = e′σ · e∠
σ

= tr rot Θ1t − 2
n− 1 is the cosine form of orthospherical scalar shift θ in

canonical structure (497). This formula is valid in ⟨Pn+1⟩, see (497) and (120A).
The matrix roth Γ1t is evaluated at n = 3 in canonical forms (362) or generally �

in form (363) or in cell form (324). The matrix rot Θ1t is evaluated at n = 3 in canonical
form (497) or generally � in cell form (259). Lorentzian contraction is evaluated with the use
of the summary rotation angle Γ1t and the hyperbolic deformational matrix with canonical
structures (364), (365), in particular, for objects of Ch. 4A. However, tanhΓ1t (the velocity)
and sech Γ1t (as the relativistic factor) may be computed directly from sinhΓ1t and coshΓ1t.
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The canonical and polar forms of Lorentzian homogeneous transformation,
in that number, for arbitrary and summarized polysteps principal motions:

T1t = roth Γ12 · · · roth Γ(t−1),t = rothΓ · rot Θ = rot Θ · roth
∠
Γ = (153A).

=

[
I3×3 + (cosh γ − 1) · eσe

′
σ sinh γ · eσ

sinh γ · e′
σ cosh γ

]
·
[

[rot Θ]3×3 0

0′ 1

]
=

=

[
[rot Θ]3×3 0

0′ 1

]
·

[
I3×3 + (cosh γ − 1) · e∠

σ
e′
∠
σ

sinh γ · e∠
σ

sinh γ · e′
∠
σ

cosh γ

]
=

=

[
[rot Θ]3×3 + (cosh γ − 1) · eσe

′
∠
σ

sinh γ · eσ

sinh γ · e′
∠
σ

cosh γ

]
=

=

 [rot Θ]3×3 + (cosh γ − 1) · cos θ ·
←−−−
eσe

′
∠
σ

sinh γ · eσ

sinh γ · e′
∠
σ

cosh γ

 (Compare with symmetric tensor (100A)).

eσe
′
σ =
←−−−
eσe

′
σ, e∠

σ
e′
∠
σ
=
←−−−
e∠
σ
e′
∠
σ
= [rot′Θ]3×3 ·

←−−−
eσe

′
σ · [rot Θ]3×3, eσe

′
∠
σ
= cos θ ·

←−−−
eσe

′
∠
σ
. (154A)

If some roth Γij are collinear or if n = q = 1, then they are grouped. Formula (153A) gives
also General Law of summing principal rotations (motions) in ⟨Pn+1⟩, expressed in
hyperbolic form (363) or at n = 3 in (362) in the original base Ẽ1 = {I}. Now, with (153A),
our readers may one time again be convinced in truety of all formulae for summing two-steps
rotations (motions) inferred by explicit multiplications in beginning of this Ch. 7A.

The matrix S = roth Γ is emanated, for example, from the last and lowest elements t44
and tk4 for general matrix T in (153A). They permit to express the matrix S in the base Ẽ1

in canonical forms (362), (363) in ⟨Pn+1⟩ and evaluate scalar and vector trigonometric
functions in the angle γ with its directional vector eσ and the angle θ. The matrix rot Θ in
⟨P3+1⟩ is computed in canonical form (497) with the use of (499) for sin θ13 with the sign
of θ, and eN . For n = 3 and k=1, 2, 3 we obtain, with �nal velocities v∗ and v, the following

cosh γ = t44, sinh γ =
√

cosh2 γ − 1 = v∗/c, tanh γ = v/c; tanh γk = tk4/t44;

cosσk = tk4/ sinh γ, cos
∠
σk = t4k/ sinh γ, eσ = {cosσk}, e∠

σ
= {cos ∠

σk}.
cos θ13 = e′

σ · e∠
σ
; −→rN (θ13) = e∠

σ
⊗ eσ = ∓ sin θ13 · −→eN (last for n = 3).

 (155A)

Scalar �nal results do not change under the mirror permutation of particular motions.
It leads merely to substitution in (153A): T → T ′ with Θ→ −Θ, eσ → e∠

σ
.

Theorem. In general, any polysteps noncollinear hyperbolic rotations roth Γ1t in ⟨Pn+1⟩
or motions on hyperboloids are represented as hyperbolic one and single orthospherical shift.
Such interpretation of Law (153A) of summing hyperbolic motions in Ẽ1 = {I} is con�rmed
with polar decomposition (111A) in the pseudo-Euclidean space, where rot Θ is revealed, for

example, in the hyperbolically shifted Ẽ1h = roth Γ1t · Ẽ1. In physical space-time ⟨E3⊠
−→
ct⟩,

it is con�rmed experimentally by the Thomas precession of the electron spin � see further.
In the sequel, in accordance with our trigonometric approach, we shall use Cartesian sub-

base Ẽ
(3)
1 of the universal base Ẽ1 = {I} analogous to projective homogeneous coordinates

in the Euclidean projective hyperspace ⟨⟨E3⟩⟩ (see in Ch. 12). Consider again the tangents
(velocities) summation in scalar and vectorial trigonometric forms (138A) and (125A) inside
the trigonometric ball as analog of the Cayley oval absolute with radii R = 1 for tangents and
R = c for velocities. Hyperbolic tangent models of principal motions are preferred, because
they are limited by �nite parameter 1 or R! This scale factor belongs to the �nite tangent
�at model of a hyperboloid II and to the �nite tangent cylindrical model of a hyperboloid I.
Indeed, there holds: tanh γ << γ < sinh γ. The hyperbolic cotangent models are in�nite
as well as sine one. Besides, in the tangent-cotangent models, the hyperbolic geodesics are
straight lines, which are coaxial each other � see at Figure 4.
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Consider in details the tangent �at model of principal topologically unlimited motions on
a hyperboloid II (Figure 4A). It is identical to the projective Klein's model of the real-valued
hyperbolic space, see in sect. 12.1. Though the analogous tangent model of a hyperboloid I is
realized on the cylindrical model with taking into account topological constraints! We choose

the origin O of this tangent subbase Ẽ
(3)
1 as the start point (1) of �rst tangent projection

[12], the origin O′ in the subbase is the following point (2) of second tangent projection [23],
where both the projections are summarized, and so on up to the last summand. There is

one to one correspondence between all these origins O in this limited tangent subbase Ẽ
(3)
1

and all these points k inside the Cayley oval. (The coordinate velocity is vij = c · tanh γij .)

Figure 4A. Summing tangent projections of hyperbolic motions in the tangent (velocity)
model due to the theorem on presentation of their sum in biorthogonal Pythagorean form.

Variant 1. Centered triangle in Ẽ
(3)
1 :

[12] = tanh γ12, [23] = tanh γ23 · k∗1 · k2 · k∗3 , [13] = tanh γ13,

[22′] = tanh γ23, [2′3] = tanh
⊥
γ23, ε∗ = π −A∗

123, A∗
132 = ε∗ − ε0.
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Variant 2. Centered right triangle in Ẽ
(3)
1 :

[12] = tanh γ12, [23] = tanh γ23 · sech γ12, [13] = tanh γ13, ε = A123 = π/2.

Variant 3. Decentered triangle coplanar with center O in Ẽ
(3)
1 : ε0 = A213,

[23] = tanh γ23, ε∗1 = π −A∗
123, [34] = tanh γ34, ε∗2 = π −A∗

134, [24] = tanh γ24,

ε∗ = π −A∗
234 = ε∗1 + ε∗2 − ε0 = π − {π − ε∗2 − [π − ε0 − (π − ε∗1)]}.

* * *

The matrix of pure hyperbolic rotation in the base of its own determination Ẽ1 can be
considered as matrix-function roth Γ12 = F (γ, eα) due to its canonical form (363). Each
such matrix with these two parameters γ and the vector of directional cosine eα implements
motion of point (1) and determines any other point (k) inside the oval.

All centered tangent projections tanh γ12 are radiated from the point (1), i. e., center O

of the tangent subbase Ẽ
(3)
1 (for example, along eα). They are not distorted in Euclidean

metric of the Euclidean projective space ⟨⟨E3⟩⟩, i. e., its Euclidean length in Ẽ(3)
1 corresponds

exactly to tanh γ12. Moreover, the central spherical angles ε0 between tanh γ1i and tanh γ1j
in the tangent model are not distorted too. We shall take advantage of these facts!

Following motion γ23 starts at point (2). If it is directed along eα, then in ⟨⟨E3⟩⟩
the second motion in its tangent projection {tanh γ23}Ẽ1

is expressed in the same tangent

subbase Ẽ
(3)
1 with these three coe�cients of distortions in Euclidean subspace ⟨⟨E3⟩⟩:

k1 =
{tanh γ13}Ẽ1

{tanh γ12}Ẽ1
+ {tanh γ23}Ẽ2

= 1/(1 + tanh γ23 · tanh γ12) < 1.

k2 · k3 =
{tanh γ13}Ẽ1

− {tanh γ12}Ẽ1

{tanh γ23}Ẽ2

=
{tanh γ23}Ẽ1

{tanh γ23}Ẽ2

= sech2γ12 << 1,

where k2 = k3 = sech γ12. The �rst distortion is caused by hyperbolic summation of segments
γ12 and γ23 as one for two collinear segments. The sequential distortion is combined from
two factors. The �rst one k2 = sech γ12 is Einsteinian dilation of time in the base Ẽ2, the
second one k3 = sech γ12 is contraction of distance as result of cross projecting at tangent
mapping of distance between two cross-bases (it is formally analogous in result to Lorentzian
contraction of extent, when a distance in ⟨E3⟩(2) is reduced in Ẽ1 due to its cross projecting

into ⟨E3⟩(1) parallel to −→ct (2), see in Ch. 4A).
In the triangle 123 (Figure 4A(1)), only the term [23] is distorted by k2, k3. Due to

Pythagorean theorem (138A) in the big right triangle 12′3, its parallel projection [22'] is
the di�erence of distorted parallel projection [12'] and undistorted term [12], i. e., [22'] is
distorted by k∗1 , k2, k3; its normal projection [2'3] is distorted only by k∗1 , k2:

tanh γ23 =
cos ε · tanh γ23 · sech2γ12

1 + cos ε · tanh γ23 · tanh γ12
= cos ε · tanh γ23 · k∗1 · k2 · k3. (156A)

tanh
⊥
γ23=

sin ε · tanh γ23 · sech γ12
1 + cos ε · tanh γ23 · tanh γ12

= sin ε · tanh γ23 · k∗1 · k2. (157A)

Note, the distorting coe�cients of type k∗ depend on the angle ε, and the coe�cients of
type k3 act only on the parallel projection of tanh γ23 according to the Herglotz Principle
(the last see initially in Ch. 2A).
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Due to Big Pythagorean theorem (125A), (138A) in the right triangle 12'3 in Ẽ1, there hold

tanh2 γ13 = tanh2[γ12 + γ23] + tanh2
⊥
γ23,

cos ε0 = e′σ · eα = tanh [γ12 + γ23]/ tanh γ13, sin ε0 = e′σ · eβ = tanh
⊥
γ23 / tanh γ13.

With squared (156A) and (157A), we obtain in Ẽ
(3)
1 the Small Pythagorean theorem for the

right triangles 22′3 and 123 as (130A), due to variants (1) and (2) at Figure 4A:

tanhγ23 = tanhγ13 − tanhγ12 → {tanh γ23}Ẽ1
= {tanh γ23}Ẽ2

· k∗1 · k2 · k∗3 =

=

√
tanh2 γ23 + tanh2

⊥
γ23 = tanh γ23 · k∗1 · sech ·

√
cos2 ε · sech2 γ12 + sin2 ε.

(Compare k2 and k
∗
3 with coe�cients of Lorentzian contraction � collinear (53A) and non-

collinear (54A).) The Small Pythagorean theorem gives the general variant at Figure 4A(1)
and the simplest variant at Figure 4A(2). For sine and tangent orthogonal summation, both
Small Pythagorean theorems were inferred in (129A), (130A). Note, that we may apply
geometrically the sine vectorial summation (without k3) according to Pythagorean theorem
(124A), (135A). But sine projections are non-limited by R. But in the spherical geometry
(Ch. 8A) the sine projections are limited by R !

The decentered angles subject to distortions too. Consider distortion of the angle ε∗

between tanh γ12 and tanh γ23 (Figure 4A(1)). Cross projecting transfers the origin of
distorted vector 23 into point O′. The distorted angle ε∗ is expressed in terms of the
distorted projection tanh γ23 due to formulae of Euclidean scalar trigonometry:

cos ε∗ =
tanh γ23

{tanh γ23}Ẽ2

=
cos ε · sech γ12√

cos2 ε · sech2 γ12 + sin2 ε
= cos ε · k3/k∗3 < cos ε. (158A)

In STR ε∗ is a distorted spherical angle between velocities v12 and v23 in the space ⟨⟨E3⟩⟩.
If ε = π/2, there is no distortion: cos ε∗ = cos ε = 0, see this variant at Figure 4A(2).

For coplanar decentered motions in the plane ⟨E2⟩ ≡ ⟨eα, eβ⟩) at Figure 4A(3), such angle ε∗

is expressed in terms of distorted partial angles ε∗1, ε
∗
2 and undistorted central angle ε0 between

tanh γ12 and tanh γ23. These open angles π are not distorted too, that follows from (158A). By
theorems of Euclidean scalar trigonometry, there holds:

ε∗ = ε∗1 + ε∗2 − ε0 = π −A∗
234 = π − {π − ε∗2 − [π − ε0 − (π − ε∗1)]}, (159A)

cos ε∗1 =
cos ε1 · sech γ12√

cos2 ε1 · sech2 γ12 + sin2 ε1
, sin ε∗1 =

sin ε1√
cos2 ε1 · sech2 γ12 + sin2 ε1

;

cos ε∗2 =
cos ε2 · sech γ13√

cos2 ε2 · sech2 γ13 + sin2 ε2
, sin ε∗2 =

sin ε2√
cos2 ε2 · sech2 γ13 + sin2 ε2

;

cos ε∗ = cos[ε∗1 + ε∗2 − ε0] =
= [cos ε0 · (cos ε1 · cos ε2 · sech γ12 · sech γ13 − sin ε1 · sin ε2)+
+ sin ε0 · (sin ε1 · cos ε2 · sech γ13 + cos ε1 · sin ε2 · sech γ12)]√

(cos2 ε1 · sech2 γ12 + sin2 ε1) · (cos2 ε2 · sech2 γ13 + sin2 ε2).


Such summation of tanh γ23 and tanh γ34 is realized as [12]+[23]∗ = [13] under ε∗1 and [13]+[34]∗ =
[14] under ε∗2, see at Figure 4A(3). Further we have again variant 4A(1).

But, generally, with non-coplanar summands, for example, tanh γ34 /∈ ⟨E2⟩ ≡ ⟨eα, eβ⟩, for the
summation in ⟨E3⟩, (159A) do not hold. We choose tanh γ13 · eσ(13) = tanh γ13 · eσ due to (138A)

as the �rst segment and tanh γ34 · eβ(34) as the third segment. Further, we use (156A)-(159A) for

this two-steps motions in ⟨E2⟩ ≡ ⟨eσ(13), eβ(34)⟩, etc.!
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* * *

Kinematics of a material body progressive movement is determined by kinematics of
the material point M , which is the barycenter of homogeneous body. For the point M ,
distinction between non-relativistic and relativistic kinematics can be seen in projective
representations of the point movement in the universal base Ẽ1 = {I} as original one. (For
the current coordinate of the proper distance along the movement, we use in Ẽ1 the greek
notation χ = x(1), introduced in (73A), by analogy with the proper time!)

In Lagrange space-time ⟨L3+1⟩ ≡ ⟨E3 ⊕−→t ⟩:
the increment and di�erentials of progressive movement, with decomposition (137A) in ⟨E3⟩,
along a world line of point M change as follows:

∆x(1) = dx(1) + d2x(1)/2! + · · · = dx(1) · eα + d2x(1) · eβ/2! + · · · , dx(1) = dχ · eα,

d2x(1) = d2χ · eβ = d2χ · (cos ε · eα + sin ε · eν) = d2χ · eα+
⊥
d2χ ·eν ≡

≡ d(dχ · eα) = [∂dχ]α · eα + dχ[∂eα]dx = [∂dχ]α · eα + dχ

{
||∂eα|| ·

∂eα
||∂eα||

}
dx

=

= [∂dχ]α · eα + dχ · [∂α]dx · eν . Here we used for eβ decomposition (137A). That is why

[∂dχ]α = cos ε · d2χ = d2χ, dχ · [∂α]dx = sin ε · d2χ =
⊥
d2χ;

v(t) =
dx(1)

dt
= v0 · eα(t0) +

∫ t

t0

g(t)dt;

g(t) =
d2x(1)

dt2
= g(t) · eβ(t) =

d2χ

dt2
· eα(t) +

⊥
d2χ

dt2
· eν(t) = g(t) · eα(t)+

⊥
g (t) · eν(t),

g(t) = cos ε(t) · g(t) =
[
∂dχ

dt2

]
α

,
⊥
g (t) = sin ε(t) · g(t) = dχ

dt
·
[
∂α

dt

]
dx

= v(t) · wα(t), etc.

Orthospherical rotation dα or wα does not change here a progressive nature of the movement.
The Law of Mechanical Energy Conservation holds as [cos ε · F ](t)dχ(t) = d[mv2/2].
The Law of Angular Momentum Conservation holds as [sin ε · F · eν ](t)dt = d[mv · eα].
We see, that in Classic Mechanics similar Laws act separately and independently.

* * *

In Minkowski space-time ⟨P3+1⟩ ≡ ⟨E3 ⊠−→ct⟩:
with (80A), (137A), (145A), there hold:

In Ẽ1 : ∆x(1) ̸= dx(1) + d2x(m)/2! + · · · , dx(1) = dx · eα = dχ · eα;

In Ẽm : d2x(m) = d2x(m) · eβ = dγ(m) · d(cτ) · eβ =

= d2x(m) · (cos ε · eα + sin ε · eν) = d2x(m) · eα+
⊥

d2x(m) ·eν ⇔

⇔ dγ = dγ · eβ = cos ε dγ eα + sin ε dγ · eν) = dγ · eα+
⊥
dγ ·eν .

 .

In ⟨P3+1⟩, the di�erentials dx(1) and d2x(m) are not summed immediately unlike the
case in ⟨L3+1⟩, as they are situated in di�erent subspaces ⟨E3⟩ and thus should be summed
hyperbolically with the use of motion angle γ and its di�erentials dγ(m) = dγ.
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Then from the di�erential d2x(m) in the instantaneous base Ẽm we obtain the current
inner 3-acceleration (as pure Euclidean characteristic in ⟨E3⟩(m), gotten before for collinear
motions in (79A), (82A), and 3D Absolute Pythagorean Theorem in (145A) in ⟨P3+1⟩:

g(τ) = c
dγ

dτ
= F/m0 = g(τ)·eβ =

dv(m) · eβ

dτ
=

d2x · eβ

dτ2
=

d2x · eα+
⊥
d2x ·eν

dτ2
= g(τ)·eα+

⊥
g (τ)·eν .

In the base Ẽm, projective di�erentials d2x and
⊥
d2x are situated together in ⟨E3⟩(m). Then

in the instantaneous base Ẽm, these projections of the inner acceleration are folowing:

c
dγ
dτ

= dv(m)

dτ
= g(τ) = cos ε · g(τ) = F/m0 is the parallel proper 3-acceleration with eα.

c

⊥
dγ
dτ

=

⊥
dv(m)

dτ
= sin ε · g(τ) =

⊥
g (τ) = v∗(τ) · w∗

α(τ) =
⊥
F /m0 is the normal proper

3-acceleration with binormal unity vector eν .

By (119A) we get cos ε = e′βeα, 0 ≤ ε ≤ π (acceleration in [0;π/2), deceleration in (π/2;π]).
Evaluate di�erential variations of the basic scalar and vectorial trigonometric functions

projected from the hyperboloids II and I [see preliminary in (132A), (146A) for II and in
(133A), (149A) for I], including Euclidean projections inside and outside the trigonometric
ball with R = 1 and scalar projections on the time arrow, with produced further from them
the space-like and time-like physical characteristics as velocities, accelerations, momentums
and energy. We'll use formulae for two-steps motions (122A), (124A), (135A), (137A),
(138A) for II with 3D Absolute Pythagorean theorems of type (145A). Analogous formulae
for I will be gotten in last Ch. 10A. In result, at di�rentiation in the base Ẽ1, we'll must
obtain all trigonometric angular di�erentials with proportional to them physical vector and
scalar characteristics. Here dα is the angle of the orthospherical rotation of the velocity vα

or of eα (as above in the 4D Lagrange space-time), and it is the scalar value of deα.
For the correct results in such scalar and 3D evaluations of physical characteristics, we

must use such a metric re�ector tensor of the space-time ⟨P3+1⟩, in order to take into account
usual adopted mathematical forms of them, connected with gotten trigonometric prototypes.
For this correspondence, we use below the tensors {I∓} and {I±}, in accordance with the
imaginary time-arrow of Poincar�e and the classical real-valued Euclidean subspace.

On the hyperboloid I, constrained by its cylindrical topology (Ch. 12A), along the time
arrow and in the Euclidean directions eβ ̸= eα, there hold:

d sinh γ = cosh γq dγq = cosh γ dγ. (160A)

cosh γ = sinh γ · coth γ = cosh γ · eα → coth γ =
dx

dy
=
dx

dy
· eα = coth γ · eα,

d cosh γ = d(cosh γ · eα) = sinh γ dγ · eα + cosh γ dα2 · eµ =
= sinh γq dγq · eκ = sinh γq · [cos ϵ dγq · eα + sin ϵ dγq · eµ],

|d cosh γ|2 = sinh2 γ dγ2 + cosh2 γ dα2
2 = sinh2 γq (dγq)

2 =

= sinh2 γq · [(cos ϵ dγq)2 + (sin ϵ dγq)
2] = sinh2 γq [(dγq)

2 + (
⊥
dγq)

2],

cosh γ = cosh γ · eα(γ) =

= cosh γ0 · eα(0) +
∫ γ

γ0
[sinh γ dγ · eα + cosh γ dα2 · eµ].


(161A)

See in detail in (238A).
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On the hyperboloid II (at its top sheet), along the time arrow and in the Euclidean
directions eβ ̸= eα, there hold:

cosh γ =
d(ct)

d(cτ)
→ d cosh γ = d

d(ct)

d(cτ)
= sinh γp dγp = sinh γ dγ. (162A)

sinh γ =
dx

d(cτ)
=

dχ

d(cτ)
·eα = sinh γ·eα =

v∗

c
, tanh γ =

dx

d(ct)
=

dχ

d(ct)
·eα = tanh γ·eα =

v

c
;

d sinh γ = d(sinh γ · eα) = cosh γ dγ · eα + sinh γ dα1 · eν =
= cosh γp dγp · eβ = cosh γp · [cos ε dγp · eα + sin ε dγp · eν ],

|d sinh γ|2 = cosh2 γ dγ2 + sinh2 γ dα2
1 = (cosh γp dγp)

2 = (cosh γ dγ)2 =

= cosh2 γp · [(cos ε dγp)2 + (sin ε dγp)
2] = cosh2 γp [(dγp)

2 + (
⊥
dγp)

2].

sinh γ = sinh γ · eα(γ) =
= sinh γ0 · eα(0) +

∫ γ

γ0
[cosh γ dγ · eα + sinh γ dα1 · eν ].


(163A)

If γp = 0, we get the Local Absolute Pythagorean theorem (145A). See in detail in (228A).

d tanh γ = d(tanh γ · eα) = sech2γ dγ · eα + tanh γ dα1 · eν =

= sech2γp dγp · eβ = sech2γp · [cos ε dγp · eα + sin ε dγp · eν ],

|d tanh γ|2 = sech4 dγ2 + tanh2 γ dα2
1 = (sech2γp dγp)

2 = (sech2γ dγ)2 =

= sech4γp · [(cos ε dγp)2 + (sin ε dγp)
2] = sech4γp · [(dγp)2 + (

⊥
dγp)

2];

tanh γ = tanh γ · eα(γ) =
= tanh γ0 · eα(0) +

∫ γ

γ0
[sech2γ dγ · eα + tanh γ dα1 · eν ].


(164A)

Relations (161A)�163A) give us di�erential and integral summation on the Minkowski
hyperboloids I and II of these three vector trigonometric functions with the change of their
angular arguments and directions, in addition, to two-steps summations. General tensor-
vector-scalar (tvs) summation with metric forms along a world-line see in last Ch. 10A.

We see in (164A), that |dtanh γ| ≪ |dγ′|, which causes the limitation of the tangent
motion model by R = 1 in the trigonometric ball (the Cayley oval) at Figure 4A. In this
limited �at tangent model, one may begin the motion either from the origin O (at γ′ = 0
and with eα) or from the non-centered point O′ (at γ′ > 0). In any case, summation or
integration is realized in the projective hyperspace ⟨⟨E3⟩⟩ inside this trigonometric ball with
R = 1 (for coordinate velocity v with R = c). On the other hand, we see in non-limited
�at sine model (163A), that analogous motion summation or integration is realized with the
same direction vector eα (!), in all the Euclidean projective hyperspace, in that number for
proper velocity v∗. The angle γ (with its vector of the directional cosines) is main angular
argument of these motion models. For transferring to accelerations we use bond (79A).

In last Ch. 10A, we will give complete 4D representations for these hyperbolic sine�cosine
di�erentials variations with parallel strict inference of the general 4D metric forms along
a world line and on both its concomitant hyperboloids with accompanying calculations of
adjacent geometric and physical characteristics, in particular, as movable tetrahedron � all
in tensor trigonometry form with vector and scalar orthoprojections (i. e., in "tvs" forms).

* * *
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The summary 3-vector of proper velocity v∗(τ) of a particle M or the barycenter of a
body M may be strictly inferred trigonometrically with (163A) and from the parallel and
normal inner accelerations with the use of the proper time, but formally in ⟨⟨E3⟩⟩(1)):

v∗(τ)− v∗(τ0) = c · (sinh γ − sinh γ0) = v∗(τ) · eα(τ)− v∗(τ0) · eα(τ0) = (165A)

= c

∫ τ

τ0

cos ε(τ) · cosh γp(τ) ·
dγp
dτ

dτ · eα(τ) + c

∫ τ

τ0

sin ε(τ) · cosh γp(τ) ·
dγp
dτ

dτ · eν(τ) =

=

∫ τ

τ0

cosh γ(τ) ·
[
c · dγ

dτ

]
dτ · eα(τ) +

∫ τ

τ0

[
c · sinh γ(τ) · dα

dτ

]
dτ · eν(τ) =

=

∫ τ

τ0

dv∗

dτ
dτ · eα(τ) +

∫ τ

τ0

v∗(τ) · w∗
α(τ) dτ · eν(τ) =

=

∫ τ

τ0

cosh γ(τ) · g(τ) dτ · eα(τ) +

∫ τ

τ0

⊥
g (τ) dτ · eν(τ),

where: dα - is the di�erential of the non-relativistic spherical rotation of the vector eα(τ);

cosh γ · g(τ) = dv∗
dτ

= g ∗(τ) is the tangential inner acceleration, v∗ = c · sinh γ � see (82A);

c

⊥
dγ
dτ

=

⊥
dv(m)

dτ
=

⊥
g [t(τ)] = v∗(τ) · w∗

α(τ) is the normal inner acceleration in time τ .

Parallel and normal inner accelerations in Ẽm satisfy the 3D Relative Pythagorean theorem:

g ∗2+
⊥
g
2

= g2 (see about it in details in last Ch. 10A). w∗
α(τ) = dα/dτ is the proper angular

velocity of the Euclidean part of rotations of a world line (or of eα) at a point M in ⟨E3⟩(m).
The summary 3-vector of coordinate velocity v(t) at the pointM may be strictly inferred

also trigonometrically with (164A) and with the use of the coordinate time in ⟨⟨E3⟩⟩(1)):

v(t)− v(t0) = c · (tanh γ − tanh γ0) = v(t) · eα(t)− v(t0) · eα(t0) = (166A)

= c

∫ t

t0

cos ε · sech2γp(t) ·
dγp
dt

dt · eα(t) + c

∫ t

t0

sin ε · sech2γp(t) ·
dγp
dt

dt · eν(t) =

=

∫ τ

τ0

sech2γ(τ) ·
[
c · dγ

dτ

]
dτ · eα(τ) +

∫ τ

τ0

sech2γ(τ) ·
[
c · sinh γ(τ) · dα

dτ

]
dτ · eν(τ) =

=

∫ t

t0

dv

dt
dt · eα(t) +

∫ t

t0

v(t) · w∗
α[τ(t)] dt · eν(t) =

=

∫ t

t0

sech3γ(t) · g[τ(t)] dt · eα(t) +

∫ t

t0

sech γ(t)·
⊥
g [τ(t)] dt · eν [τ(t)],

where t0 = τ0, t = t(τ) along motion (85A). The parallel coordinate acceleration as (83A) is

g
(1)

(t) = sech3 γ · g[τ(t)] = dv

dt
. (167A)

The normal coordinate acceleration with normal τ (84A) and parallel (85A) t to v times is

⊥
g
(1)

(t) = sech γ·
⊥
g [τ(t)] =

⊥
dv

dt
= v(t) · w∗

α[τ(t)] = w(t) · v∗α[τ(t)]. (168A)

(But, in fact, the time in the normal direction of motion streams as proper time τ .)
From here we get the STR formulae for parallel and normal force parts acting on M in Ẽ1:

F = cos ε ·m0 g = m0 · cosh3 γ · g
(1)

(t),
⊥
F= sin ε ·m0 g = m0 · cosh γ·

⊥
g
(1)

(t).
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The current proper distance is evaluated by analogous two ways with the separation in
two time parameters t0 = τ0, and t = t(τ) under condition (84A), (85A) of simultaneity. In
the base Ẽ1, from (165A) and (166A) we obtain two identical integrals for x at τ < t:

xτ (τ)− x0 ≡ xt(t)− x0 =

∫ τ

τ0

v∗(τ) · eα(τ) dτ ≡
∫ t

t0

v(t) · eα(t) dt ≡

≡
∫ τ

τ0

[
v∗0 · eα(τ0) +

∫ τ

τ0

cosh γ(τ) · g(τ) dτ · eα(τ) +
∫ τ

τ0

⊥
g (τ) dτ · eν(τ)

]
dτ =

=

∫ τ

τ0

[
v∗0 · eα(τ0) +

∫ τ

τ0

g ∗(τ) dτ · eα(τ) +
∫ τ

τ0

⊥
g (τ) dτ · eν(τ)

]
dτ ≡

≡
∫ t

t0

[
v0 · eα(t0) +

∫ t

t0

sech3γ(t) · g(t) dt · eα(t) +
∫ t

t0

sechγ(t)·
⊥
g (t) dt · eν(t)

]
dt =

=

∫ t

t0

[
v0 · eα(t0) +

∫ t

t0

g
(1)

(t) dt · eα(t) +
∫ t

t0

⊥
g
(1)

(t) dt · eν(t)

]
dt. (169A)

Variation of the time-like hyperbolic cosine di�erential (not according to its expression
by scalar product (162A) on the hyperboloid II), is proportional to the work of the tangential
inner force (81A) causing a rectilinear part of free progressive movement of material pointM :

d(ct)

d(cτ)

∣∣∣∣τ
τ0

=

∫ γ

γ0

d cosh γ =

∫ γ

γ0

sinhγ dγ =

∫ γ

γ0

(sinh γ · eα) (dγ · eβ) =

∫ γ

γ0

cos ε(τ) · sinh γ dγ =

=
1

c2
·
∫ τ

τ0

cos ε(τ) ·v∗(τ) ·g(τ)dτ =
1

c2
·
∫ t

t0

cos ε[τ(t)] ·v[τ(t)] ·g[τ(t)] dt = 1

c2
·
∫ χ

χ0

cos ε(χ) ·g(χ) dχ =

=
1

m0c2
·
∫ χ

χ0

cos ε(χ) · F (χ) dχ =
1

m0c2
·
∫ χ

χ0

F (χ) dχ =
A

m0c2
=

A

E0
=

∆E

E0
= kE . (170A)

If γ0 = 0, (v0 = 0), then kE = cosh γ − 1 = A/E0 ⇒ E = cosh γ · E0 = E0 +A = mc2 .

kE is a factor of energy increment: kE · E0 = A. We infer, that during progressive motion
of a body its total energy E = mc2 is the hyperbolic cosine orthoprojection of the tensor of
energy�momentum TE = c · TP (Ch. 5A) onto the axis

−→
ct (1); it is conservative under F = 0.

In 1900, genius Henri Poincar�e in his well-known now article [62] inferred �rst (!!!) the
fundamental physical relation between energy and mass as m = E/c2 identical to E = mc2,
for the light's energy, as a kind of electromagnetic radiation. Later in 1905, Albert Einstein
inferred relation m = E/c2 (but as often for him, without reference to article above � see in
the end of Ch.12) for the thermal radiation energy of a hot body, on the basis of the Planck
quantum theory of radiation by massive body [88]. In 1908, Gilbert Lewis con�rmed the
analogous relation E = mc2 (of course, with reference to Einstein's article) between incre-
ments of relativistic kinetic energy of a moving body and of its relativistic inertial mass [68].
However, only after the historical event when the very respected scientist Lise Meitner accu-
rately considered the fact of uranium �ssion in the experiments of her colleagues � chemists
Otto Hahn and Friedrich Strassmann (bombarding thorium with neutrons) and explained
the mass defect in such a process by this fundamental relation m = E/c2, physicists and not
only they will paid superextra great attention onto this formula, with well-known further
consequences for all peoples! However, according to the Rules of Scienti�c Ethics, priority in
the discovery of this fundamental formula belongs to Henri Poincar�e, if the present scienti�c
community continues and will continue to comply with these Rules.
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In Ch. 5A, we marked that as a true progenitor of concepts momentum and energy, in
the relativistic sense, should be considered the own 4-momentum P0 = m0c (98A-II). It is
4-th column of tensor of momentum TP (101A), proportional with coe�cient m0c to our
trigonometric measureless tensor of motion (100A) in the space-time ⟨P3+1⟩, i. e., we have:

P0 = P0 · iα = m0 · cα = P0 ·
[

sinh γ
cosh γ

]
= P0 ·

[
sinh γ · eα

cosh γ

]
=

[
p
P

]
.

It is preserved under F = 0↔ P0 = Const. The scalar value P0 = m0c = E0/c is pseudo-
Euclidean invariant for the particle or body M . The own 4-momentum P0 is a hypotenuse
of the pseudo-Euclidean right triangle of three momenta. Its sides are in the pseudoplane
of motion ⟨eα, i1⟩, which is similar to ones of the interior right triangle at Figure 1A(1),
because TP = P0 ·roth Γ. We get again the Absolute pseudo-Euclidean Pythagorean Theorem
of three momenta (98A-I):

P0 = P0 · i = P · i1 + p · j⇒ (iP0)
2 = (iP )2 + p2 = −P 2

0 = −P 2 + p2. (for tensor I±).

We may adopt thatm = P/c, E = P ·c, p = mv. The own momentum P0 = P0 ·i = m0c, as
absolute 4-vector in ⟨P3+1⟩, is the geometric invariant along a world line to the Lorentzian
transformations, where c = c · i is 4-velocity of Poincar�e. P0 and c are always tangential to
a world line. Its variable cosine projection onto the time arrow

−→
ct (1) is the total momentum

P = P · i1 = P0 · cosh γ · i1. Its variable 3-vector sine projection into the Euclidean space
⟨E3⟩(1) is the real momentum p = p · j = P0 · sinh γ = P0 · sinh γ · eα = m0v

∗ = mv. Both
these relative momenta are expressed in the base Ẽ1 of the Minkowskian space-time ⟨P3+1⟩.

This illustrates, that during progressive movement the real momentum p = mv of
body or particle M is the hyperbolic sine orthoprojection of the tensor of momentum TP
into ⟨E3⟩(1). The tensors TE and TP with 4-momentum P0 are conservative under F = 0.

The real momentum p(t) as sine projection of P0 into ⟨E3⟩(1) due to (165A) changes as

≡ p(t) = p[τ0(t0)] · eα[τ0(t0)] +m0

∫ t

t0

{ g∗[τ(t)] · eα[τ(t)]+
⊥
g [τ(t)] · eν [τ(t)} dτ(t) =

= p[τ0(t0)] · eα[τ0(t0)] +
∫ t

t0

{ F ∗[τ(t)] · eα[τ(t)]+
⊥
F [τ(t)] · eν [τ(t)} dτ(t).

* * *

In STR and external non-Euclidean geometry on the hyperboloid II in ⟨P3+1⟩ ≡ ⟨E3⟩⊠−→y ,
according to (141A) and (144A-I) above, any progressive non-collinear motion of a particle or
a body M is accompanied by the induced orthospherical shift dθ or precession in time w∗

θ of

the 3-rd normal axis e
(m)
µ of the current normal plane ⟨E2⟩(m)

Ns ≡ ⟨e
(m)
α , e

(m)
β ⟩ ≡ ⟨e(m)

α , e
(1)
ν ⟩,

� both rotated with the angular velocity w∗
α under hyperbolic inclination γ to the immobile

axis e
(1)
µ of the base Ẽ1 and hence with the cosine slope to e

(1)
µ . The latter and rotated e

(m)
µ

have the common point of application O as the center of Ẽ1. The rotated (normally to e
(m)
α )

vector e
(1)
ν has the point of application in the body M barycenter. Accordingly, the slower

this rotation, the smaller these induced e�ects up to zero. Initially we have the elements

from (144A-I): tanh (γi/2) = tanh(γi/2)·e(m)
α , dγp = dγp ·e(m)

β , e
(m)
α ×e(1)ν = e

(m)
µ ≡ −→eN (m).

To develop expression (144A-I) in ⟨E3⟩ ⊂ ⟨P3+1⟩ ≡ ⟨E3⟩⊠−→ct , taking in account (162A),
we add the so-called normal relations at γp = 0 [see more at γp ̸= 0 in (230A), Ch. 10A]:

sin ε dγp =
⊥
dγp = sinh γi dα1 ⇔ sin ε · gβ =

⊥
gβ = v∗i · w∗

α. (171A)

It follows if compare normal increments in (132A) and (135A) at eν , or both in (163A). We'll
obtain normal relations with generalization and its rigorous justi�cation in the Absolute
Pythagorean theorems in last Ch. 10A, produced by the di�erential tensor trigonometry.
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With our tensor trigonometric approach continuing (144A) with (171A), we get generating
chain of clarity understood tvs formulae for the induced orthospherical shift and precession.

−dθ = −dθ · −→eN = tanh (γ/2)⊗ dγ =
tanh γ

1 + sech γ
⊗ dγ =

sinhγ
cosh γ + 1

⊗ dγ =

=
sinh γ

cosh γ + 1
· eα ⊗ (dγ · eβ) = cosh γ − 1

sinh γ
· eα ⊗ (dγ · eβ) =

= tanh
γ
2 · sin ε dγ ·

−→eN =
cosh γ − 1
sinh γ

· sin ε dγ · −→eN =
cosh γ − 1
sinh γ

⊥
dγ · −→eN =

=
cosh γ − 1
sinh γ

· sinh γ dα · −→eN = (cosh γ − 1) dα · −→eN = kE dα · −→eN =

= [(dα)⋆ − dα] · −→eN ≈ 1/2 γ2 dα · −→eN ;

−dθ
dτ

= w∗
θ ·
−→eN = tanh

γ
2 · sin ε ·

dγ
dτ
· −→eN = tanh

γ
2 · sinh γ ·

dα
dτ
· −→eN ,

−dθ
dt

= wθ · −→eN = tanh
γ
2 · sinh γ · wα · −→eN = tanh

γ
2 ·

v∗ · wα
c · −→eN =

= (cosh γ − 1) · wα · −→eN = kE wα · −→eN = (w∗
α − wα) · −→eN ≈ 1/2 (vc )

2 · wα · −→eN .



(172A)

Thus, in the instantaneous plane ⟨E2⟩(m) ≡ ⟨e(m)
α , e

(1)
ν ⟩, the orthospherical as if orbital

rotation w∗
α of an electron in a hydrogen atom H, due to its planetary model of Bohr, as a

microscopic gyroscope with its orbital momentum L (in addition to its proper momentum
named by spin), induces mathematically (!) and in a result physically, the orthospherical

precession of the electron orbit axis −→eN (m) ≡ e
(m)
α × e

(1)
ν = e

(m)
µ contrary to direction of w∗

α

and with a lower angular velocity w∗
θ , �xed as wθ in the base Ẽ1 (called sometimes as the

laboratory system) with its 3-rd immobile axis −→eN = e
(1)
µ . In accordance with the Lorentzian

group, this precession causes the negative di�erence −wθ in Ẽ1 between relativistic and non-
relativistic maps of the electron rotation as (w∗

α − wα), perceived by Observer in ⟨E3⟩(1).
At the value ε = π/2 for the electron rotation, this precession causes the additional

correction to spin�orbital interaction in normal direction with the coe�cient "1/2", which
came to be known as the Thomas half. Such interpretation by Llewellyn Thomas in 1926) [93]
was the �rst independent con�rmation of STR with its foundation as a theory of the new
relativistic space-time with the Lorentzian transformations of coordinates, having a group
nature, developed by the great Henri Poincar�e in 1905 [63] in result of his very successful
collaboration with the contemporary to him eminent physicist Hendrik Lorentz!

Expression (172A) gives immediate and simplest tensor trigonometric explanations of
the induced orthospherical shift with the Thomas precession and angular deviations in both
non-Euclidean geometries associated in Chs. 7A, 8A with this shift under the angle ±dθ as:

dθ = (1− cosh γ) dα = [dα− (dα)⋆] < 0↔ dθ = (1− cosφ) dα = [dα− (dα)∗] > 0. (173A)

This angular shift is caused by "angular dissonance" between the true local orthospherical
increment dα in ⟨E3⟩(m) on the trajectory of non-collinear motion, �xed from an electron
moving on its orbit, and its cosine projection (dα)⋆, perceived in ⟨E3⟩(1), according to STR;
and in hyperbolic geometry on the hyperboloid II, in spherical geometry on the hyperspheroid.

Translating this angular shift in time, as in (172A), with the use of these two physical
"relativistic factors γ and β ", we come in the base Ẽ1 to the well-known in STR physical
relativistic formula by L. F�oppl and P. Daniell [91], who in 1913 (!) in G�ottingen predicted
theoretically such a kind of precession as the kinematic e�ect of STR (quite possible, with
the use for such rotations the time dilation, introduced by Herman Minkowski before in 1908
(see in Ch. 3A) and published also in "G�ottingen Nachrichten" [66] without trigonometry:

wθ = dθ/dt = −(cosh γ − 1) · wα ≡ −wα[1/
√
1− β2 − 1] = −wα · (γ − 1). (A)
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The Thomas precession is caused by the fact, that the Euclidean normal plane ⟨E2⟩(m)
N

of the sine binormal rotation dα1 has its current local slope cosh γi exactly in the place of
a particleM (here the electron). It is interpreted either as the di�erence of the same angular
velocity in two bases Ẽm and Ẽ1, or as if the rotation of the di�erence [dα− (dα)⋆] < 0 with
velocity wθ, which is �xed separately by Observer in the immobile laboratory system Ẽ1.

Similar reverse angular dissonance can be observed even at a home. To see it, you need
to swirl the water in a round sink. As a result of braking only of the lower layer of water due
to friction, we'll see an imaginary counter-rotation of water at a much lower angular speed!

This precession, due to (172A), is approximated by area of triangle with sides v/c, g/c
and angle ε between them. Besides, expression (172A) is represented exactly in the physical
relativistic form, but without "c" , through angular velocities g/v and g/v∗:

dθ

dτ
= eα ×

[g
v
− g

v∗

]
= eα × eβ

[g
v
− g

v∗

]
= − sin ε ·

[g
v
− g

v∗

]
· −→eN = −

⊥
g

v
−

⊥
g

v∗

 · −→eN . (B)

This induced orthospherical precession is explained by the matrix formulae of type (111A)
for di�erential summing non-collinear two-steps hyperbolic motions Γ and dΓ in ⟨P3+1⟩, with
appearance in result of the same induced orthospherical precession dθ/dt. In vector formulae
for two-steps hyperbolic motion, due to (141A), the sign "−" for rotation of precessing
axis −→eN illustrates the following Rule sgn θ13 = −sgn ε in the pseudo-Euclidean space of
the theory of relativity and in the hyperbolic space of velocities. These are also mathematical
and physical clear con�rmation of the imaginary nature of hyperbolic motion angles as iγ.

From the point of view of the hypothetic Observer in the uninertial base Ẽm, this induced
orthospherical precession with internal rotation of a body M in ⟨E3⟩(m) is caused by the
manifestation of the Coriolis acceleration gC from the force FC = mgC in the base Ẽm.
Then from (172A) and using connecting relation (79A), we obtain this Coriolis acceleration
of the body or particle in the space-time ⟨P3+1⟩ acting under angular hyperbolic velocity
ηγ = dγ/dτ = g/c of the base Ẽm with exact formula and with approximation:

gC =

[
c · dθ

dτ
+ c · dθ

dt

]
≈ 2c · dθ

dτ
·−→eN = 2[c ·w∗

θ ] ·−→eN ≈ − sin ε · v · dγ
dτ
·−→eN = − sin ε · v · η∗ ·−→eN . (C)

The Thomas precession may have an ephemeral character, so, for rectilinear motions.
This has a place if eβ = const, and it is not obligatory that eβ = eα. This is accelerated
(decelerated) physical movement in the plane ⟨E2⟩ ≡ ⟨eα(0), eβ⟩ ≡ ⟨eα(0), eµ⟩ ≡ Const with

v0 under the angle ε0 to eβ = const. In the origin of the base Ẽ1, such a world line slope
corresponds to tanh γ0 = v0/c with eα(0). Execute the hyperbolic modal transformation

of the base as roth Γ · Ẽ1 = Ẽ1h with γ = γ0 and eα = eα(0). Then, in this new base,
we annihilate the rotation dθ, because in it tanh γ (v) and dγ (g) are collinear vectors
(sin ε = 0). Such modal transformation is equivalent to translation in the base with v = v0.

Thomas precession was the �rst in 1926 real con�rmation of the Theory of Relativity with
its basis Poincar�e � Minkowski 4D space-time, thanks to the remarkable work of Llewellyn
Thomas [93], which was deservedly awarded the Nobelean Prize. He has explained with the
STR group approach the anomalous normal e�ect of Pieter Zeeman with the spin-orbital
interaction of an electron in the hydrogen atom. In Ch. 9A, we'll show that the Thomas
precession has a relation to executing of the Law of Energy conservation by its own part.

In our time, the nature of mass inertia with con�rmation of the Mach Principle and the
Principle of Relativity by Galileo�Poincar�e was inferred in works of the very eminent now
scientist Peter Higgs [82] by the Higgs �eld with its quantum particle "bozon", discovered
experimentally in 2012. The Higgs theory has con�rmed in fact the Poincar�e � Minkowski
space-time of our Universe! We have maintained the same opinion since 1-st edition of this
our book in 2004 [15], despite �erce resistance from some aggressive apologists of the GTR.



Chapter 8A

Trigonometric models of two-steps and polysteps
motions in quasi-Euclidean and spherical geometries

De�nition of the quasi-Euclidean oriented space ⟨Qn+1⟩ (sect. 5.7) is similar, but only in a
certain extent, to that for the pseudo-Euclidean Minkowski space ⟨Pn+1⟩ (sect. 12.1) � see
together in sect. 6.3. The re�ector-tensor I± or I∓ (17A) is also important in ⟨Qn+1⟩. It
determines orientation and admitted own transformations in this space. But the metric of
the quasi-Euclidean space is Euclidean! In geometry of ⟨Qn+1⟩, the quasi-Euclidean tensor
trigonometry act with their spherical functions and re�ectors. They are de�ned in canonical
forms, with respect to the universal base Ẽ1 = {I}, mainly, by the principal rotations rot Φ
(313), (314) with the frame axis and by secondary ones rot Θ (how in hyperbolic case too).

The main geometric (with the radius R) and trigonometric (with the unity radius) object
of this binary space ⟨Qn+1⟩ is an oriented hyperspheroid, centralized in the universal base
Ẽ1 = {I} with the origin O for all admitted Ẽk. It is oriented along its frame axis −→y (1) �
see at Figure 4 in Ch. 12 (similar to orientation of both Minkowski hyperboloids in ⟨Pn+1⟩).
The origin O is also a center of all orthospherically connected universal quasi-Cartesian
bases Ẽ1u = rot θ · Ẽ1. The rotations rot Θ, admitted usually by the coaxially oriented
re�ector tensor I± (17A-I), express, in the external quasi-Euclidean geometry in ⟨Qn+1⟩,
the induced or free orthospherical rotations under summing non-collinear principal spherical
rotations rot Φ; but, in the internal spherical geometry on the hyperspheroid, these rotations
give angular excess in closed geometric �gures, composed from geodesic large circles on the
hyperspheroid. The absolute space ⟨Qn+1⟩ is represented in any quasi-Cartesian base Ẽk as
the spherically orthogonal direct sum of relative axis −→y (k) and Euclidean subspace ⟨En⟩(k):

⟨Qn+1⟩ ≡ ⟨En⟩(k) ⊞−→y (k) ≡ CONST, ∆y > 0, (174A)

where ⟨En⟩ is a Euclidean hyperplane, −→y is an oriented down or up frame axis for angle φ.
From a point of view of the quasi-Euclidean tensor trigonometry, also the subspace

⟨En⟩(k) is k-th Euclidean hyperplane and −→y (k) is a k-th cosine axis. The imaginarization
of the axis −→y transforms our real-valued quasi-Euclidean binary space ⟨Qn+1⟩ into the
complex-valued quasi-Euclidean binary space of index q = 1 by Poincar�e (see in sect. 6.1),
isometric to the real-valued pseudo-Euclidean binary space by Minkowski with the same I±.

The following operations are admitted in ⟨Qn+1⟩ with right bases:
1) rotations of the two types: as principal spherical rot Φ and orthospherical rot Θ;
2) parallel translations preserving the space structure (174A) with re�ector tensor I±.

The principal tensors of rotations (motions) ⟨rot Φ⟩ execute principal spherical rotations
(motions) with the frame axis −→y at spherical angles Φ in ⟨Qn+1⟩; the free or induced tensors
of rotations ⟨rot Θ⟩ execute orthospherical rotations and shifts at orthospherical angles Θ in
the Euclidean part of ⟨Qn+1⟩ in (174A), � according to general conditions (257) from Ch. 5:

rot Φ · I± · rot Φ = I±,

rot′ Θ · I± · rot Θ = I± = rot Θ · I± · rot′ Θ.

 (with re�ector tensor I±) (175A)

That is why, for analysis of homogeneous composite rotation (motion) T , we shall use
the polar decomposition (the right-oriented universal base should be chosen as original one):

Ẽ = T · Ẽ1 = rot Φ · rot Θ · Ẽ1 = rot Θ · rot
∠
Φ ·Ẽ1. (176A)

T = rot Φ · rot Θ = rot Θ · rot
∠
Φ, det T = +1. (177A)
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The hyperspheroid of radius R embedded into ⟨Qn+1⟩, as a perfect hypersurface, is an
object, where its internal spherical geometry is in one-to-one correspondence with the quasi-
Euclidean tensor trigonometry of ⟨Qn+1⟩ up to the coe�cint of similarity R, both having
the same orientation. Abstract spherical-hyperbolic analogy (322) in Ẽ(01), see (443), and

(323) in Ẽ(02), see (444), takes place. Speci�c analogy, for example, as sine-tangent (331),
can be used locally in any universal bases, see in sect. 6.1, 6.2. Thus, the principal spherical
rotations are expressed in Ẽ1, according to abstract analogy (323) as follows:

Γ↔ iΓ↔ Φ, roth Γ↔ rot iΓ↔ rot Φ, (Ẽ(1h) ↔ Ẽ(02) ↔ Ẽ(1s)), (178A)

On the base, we expose the materials of this Chapter in parallel with ones of Ch. 7A !
The spherical tensor of motion rot Φ with the frame axis −→y in ⟨Q2+1⟩ has, due to (313),
(314), the following canonical structure in Ẽ1 corresponding to the re�ector tensor I

±:

{rot Φ}3×3 = cosΦ + i · sinΦ {rot Θ}3×3 re�ector tensor I±

cosφi ·
←−−−−
eα · eα

′ +
−−−−→
eα · eα

′ ∓ sinφi · eα

± sinφi · e′
α cosφi

.......
{rot Θ}2×2 0

0′ 1
............

I2×2 0

0′ −1 . (179A)

The orthospherical rotation in the angle Θ as a rule is also secondary for principal angle.
According to abstract spherical-hyperbolic analogy (323), all formulae of the hyperbolic

geometry from Ch. 7A with relation (119A) are transformed into their analogues in the
spherical geometry. With right correspondence between principal motions in both geometries
measured either by natural pseudo-Euclidean and Euclidean measures of length or by angular
Lambert's hyperbolic and spherical measures of angle, there hold:

a(H) = λ = γ ·R, → a(S) = l = φ ·R, (180A)

Further, we infer formulae of the spherical tensor trigonometry (q = 1) often with the use
of this spherical�hyperbolic analogy (with corresponding to it commentaries). For two-step
noncollinear motions, by (176A, 177A), we obtain the modal transformations with a new
base expressed in Ẽ1 = {I}, as spherical analogs of (111A):

Ẽ3 = rot Φ12 · rot Φ23 · Ẽ1 = {rot Φ12 · rot Φ23 · rot′ Φ12}Ẽ2
· rot Φ12 · Ẽ1 =

= rot Φ13 · rot Θ13 · Ẽ1 = {rot Φ13 · rot Θ13 · rot′ Φ13}Ẽ1s
· rot Φ13 · Ẽ1 = (181A)

= rot Θ13 · rot
∠
Φ13 ·Ẽ1 = {rot Θ13 · rot

∠
Φ13 ·rot′ Θ13}Ẽ1u

· rot Θ13 · Ẽ1 = T13 · Ẽ1 = {T13}.

These formulae are given for the direct order of the two principal motions

Corollary. Two-step noncollinear spherical rotations (motions) rot Φij in ⟨Qn+1⟩ or on
the hyperspheroid may be represented as sequential spherical and orthospherical ones.

Some characteristics of such motions in direct and inverse orders are expressed as

rot
∠
Φ13= rot′ Θ13 · rot Φ13 · rotΘ13 = rot (−Θ13) · rot Φ13 · rot (+Θ13), (182A)

due to (113A) : e∠
σ
= {rot (+Θ13)}3×3 ·eσ (under rule ε > 0→ θ13 > 0)⇒ cos θ13 = e′∠

σ
·eσ.

Rotation ±θ is expressed in Ẽ1s = rot
∠
Φ ·Ẽ1. (If n = 2, it acts in the plane ⟨E2⟩(1s)). If

n = 3, we have −→rN (θ) = e∠
σ
⊗ eσ = ± sin θ · −→eN , −→rN (ε) = eα ⊗ eβ = ± sin ε · −→eN .

There is the essential di�erence between the angles Γ and Φ: in Ẽ1, Γ is symmetric,
Φ is antisymmetric. In their diagonal forms, Γ is real-valued, Φ is imaginary-valued. As
consequence, all these trigonometric formulae are identical, when angles are represented in
symmetric forms: Γ in the base Ẽ1, −iΦ in the base Ẽ(01) � see (271), (277).
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The next formula holds due to this peculiarity in the real-valued original base Ẽ1:

rot Φ13 =
√
rot Φ12 · rot (2Φ23) · rot Φ12 =

√
rot (2Φ13) =

=
√
[rot Φ12 · rot Φ23] · [rot Φ23 · rot Φ12] =

√
T T ⋆, (183A)

The formula is analogous to (114A), but square roots are trigonometric (see in sect. 5.6). We
have a peculiarity, which relates to spherical case for permutation of motions with change
of order into contrary. From the original Ẽ1 = {I}, as in (181A), this leads to the base
Ẽ⋆

3 = rot Φ23 · rot Φ12 = T ⋆
13 · Ẽ1, where T

⋆ is quasi-analog of T ′ in (116A), but T ⋆
13 ̸= T ′

13 !
From the direct formulae (181A), we obtain the orthospherical analog of (115A):

rot (+Θ13) = rot Φ12 · rot Φ23 · rot
∠
Φ31= rot Φ31 · rot Φ12 · rot Φ23 = rot Φ31 · T13. (184A)

It represents this orthospherical rotation as result of the closed cycle of rotations (motions)
rot Φij in the spherical triangle 123 and adds (183A). It is executed as in (115A) from points
1 and 3 in bases of particular rotations (motions) actions along of the triangle sides!

In order that a result of (183A) was rot Φ13, we adopted for two-step rotations (motions)

inverse to (181A) the expression analogous to (116A) (without transition in Ẽ(01)!):

Ẽ⋆
3 = rot Φ23 · rot Φ12 · Ẽ1 = T ⋆

13 · Ẽ1 = rot (−Θ13) · rot Φ13 · Ẽ1 =

= rot
∠
Φ13 ·rot (−Θ13) · Ẽ1 = {rot

∠
Φ13 ·rot (−Θ13) · rot′

∠
Φ13}Ẽ1

· rot
∠
Φ13 ·Ẽ1. (185A)

This expression is completely compatible with (182A), gotten from (181A)! For inverse order of
rotations (motions), we obtain the analogs of (117A), (118A) with inverse cycle (184A):

rot
∠
Φ13=

√
rot Φ23 · rot (2Φ12) · rot Φ23 =

√
rot (2

∠
Φ13) =

√
T ⋆ T , (186A)

rot (−Θ13) = rot
∠
Φ13 ·rot Φ23·rot Φ12 = rot (−Φ32)·rot (−Φ21)·rot (−Φ13) = T ⋆

13·rot Φ31. (187A)

The angles Φ13 and
∠
Φ13 di�er by vectors of directional cosines. Due to (182A), its scalar

summarized angle φ13 (including for polysteps motions) does not depend on ordering of
summands (direct or inverse). The case when the directional cosines of motions are either
equal or additively opposite each other corresponds to collinear motions. Choice of direct
or inverse order of summands in two-steps spherical rotations (motions) T or T ⋆ is redused
to these partial angles substitution analogous to (121A):

φ12 ↔ φ23, αk ↔ βk, k = 1, 2. (188A)

Formulae of two-steps motions summation in ⟨Qn+1⟩ in their direct and inverse follow
are obtained either with multiplying two modal matrices in (183A) and (186A), or using (as
in the end of Ch. 10A) immediate summation of these two motions, or alternatively applying
abstract spherical-hyperbolic analogy (178A). The scalar cosine of summarized angle φ13 is
expressed as abstract analog of hyperbolic (122A), and with the external angle ε = π−A123:

cosφ13 = cosφ12 · cosφ23 − cos ε · sinφ12 · sinφ23 =

= cosφ13 = cosφ12 · cosφ23 + cosA123 · sinφ12 · sinφ23.

 (189A)

It is similar to the cosine formula with +cosA123 in the spherical geometry for solution of a
triangle 123 on a sphere, what no has a relation to our �rst formula of tensor trigonometric
two-steps cosine summation of principal segment-arcs (of big circles) on the hyperspheroid.
This formula shows that cosine scalar summation of motions on the hyperspheroid does not
depend on ordering φ12, φ23 (similar to hyperbolic analog in Ch. 7A).



246 APPENDIX

Motion on the surface of the hyperspheroid with increasing y-coordinate preserves the
angles φij positivity. That is why, for positive angles of motions and distances in the
spherical Lambert measure, the "parallelogram rule" takes place (as in Euclidean geometry
and non-Euclidean hyperbolic geometry):

|φ12 − φ23| ≤ φ13 ≤ φ12 + φ23.

It is analogous to (123A) and follows from (189A). Due to the inequalities and φij > 0,
distance in spherical geometry is a norm. The whole quasi-Euclidean space has Euclidean
metric, that is why the length of a geodesic spherical arc dφ and an orthospherical arc
dθ are Euclidean. The nD hyperspheroid in ⟨Qn+1⟩, in its sine model, is mapped entirely
into the two-side closed projective n-dimensional hypersurface [⟨⟨En⟩⟩], also with topology
of n-sphere (see in Ch. 12 and Figure 4), but only inside the Cayley oval of radius R
(trigonometric circle at R = 1) with its whole internal border. In internal geometry of the
hyperspheroid, the scalar and vector formulae for the sine and tangent of the arcs sum hold
in direct and contrary orders of motions. Thus, the scalar sine formula is evaluated from
(189A), including two commutative variants as the mirror Pythagorean sums, provided that
φ12 ↔ φ23; and, of course, it is a spherical abstract analog of (124A):

sin2 φ13 = 1− cos2 φ13 =

= sin2 φ12 + sin2 φ23 − (1 + cos2 ε) · sin2 φ12 · sin2 φ23 + 2 cos ε · cosφ12 · cosφ23 · sinφ12 · sinφ23 =

= (sinφ12 · cosφ23 + cos ε · sinφ23 · cosφ12)
2 + (sin ε · sinφ23)

2 =

= (sinφ23 · cosφ12 + cos ε · sinφ12 · cosφ23)
2 + (sin ε · sinφ12)

2. (190A)

Tangent direct formula follows from (189A), (190A) as spherical abstract analog of (125A):

tan2 φ23 =

[
tanφ12 + cos ε · tanφ23

1− cos ε · tanφ23 · tanφ12

]2
+

[
sin ε · tanφ23 · sec φ12

1− cos ε · tanφ23 · tanφ12

]2
. (191A)

They express the spherical Big and Small Pythagorean Theorems in ⟨Qn+1⟩, which act in
quasi-Euclidean and spherical geometries also for sine and tangent segments as projections
into [⟨⟨En⟩⟩]. They act in two variants: for direct and inverse orders of these segments.

Further, with Tensor Trigonometry as before in Ch. 7A, we infer all vector trigonometric
formulae for summation of two-steps motions on the hyperspheroid and in the spherical
type of the non-Euclidean geometry, or identically of two-steps principal spherical rotations
with the frame axis (from sect. 5.12) in ⟨Qn+1⟩. These spherical vector formulae with
directional cosines have also the same abstract analogy with summing hyperbolic motions
on the hyperboloid II and rotations in ⟨Pn+1⟩. And the metric form on the hyperspheroid,
given in the end of Ch. 6A, has abstract analogy with one on the hyperboloid II in (132A),
Ch. 7A, etc.. The result of such vector summation depends on ordering of summands φ12

and φ23. So, the summary vector sines in two contrary variants of ordering two motions,
expressed in the initial Cartesian sub-base, are the following:

(1) sin φ13 = sinφ13 · eσ =
= (cosφ23 · sinφ12 + cos ε · cosφ12 · sinφ23) · eα + sin ε · sinφ23 · eν =
= [cosφ23 · sinφ12 − cos ε · (1− cosφ12) · sinφ23] · eα + sinφ23 · eβ ;

(2) sin
∠
φ13 = sinφ13 · e∠

σ
=

= (cosφ12 · sinφ23 + cos ε · cosφ23 · sinφ12) · eβ + sin ε · sinφ12 · e∠
ν
=

= [cosφ12 · sinφ23 − cos ε · (1− cosφ23) · sinφ12] · eβ + sinφ12 · eα.


(192A)

From here, under conditions φ12 = φ and φ23 = dφ, we obtain the same metric form
(109A) of the hyperspheroid from its Pole, but in the vector form � see more in Ch. 10A.

eν =

{
cosβk − cos ε · cosαk

sin ε

}
k=1,2,3

=
eβ − cos ε · eα

sin ε
=

−−−→
eαe′α · eβ
||
−−−→
eαe′α · eβ ||

− see before in (136A).
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The vector eν (and e∠
ν
for inversely ordered summary motions at eα ↔ eβ is used in

biorthogonal decompositions of principal motion increment into tangential and normal parts.
They are executed through biorthogonal representation of the 2-nd vector in the sum:
eβ = cos ε · eα + sin ε · eν , e′ν · eα = 0, e′ν · eβ = sin ε (ε ∈ [0;π]).

In the spherical geometry, this �nite vector sine summation is seen descriptively on the projective
hyperplane at Figure 4, Ch. 12, similar to also �nite tangent summation in the hyperbolic geometry,
for example, as at Figure 4A, Ch. 7A. Sine formulae, in squared and vector variants as (124A),

(135A) and as (125A), (138A), have in Ẽ
(3)
1 similar interpretations in ⟨E3⟩(1):

sin φ23 =
=

sin φ23+
⊥
sin φ23 → sinφ13 = (sin φ12+

=

sin φ23) +
⊥
sin φ23.

Both these relations are compatible. So, as results, we obtain the Big Pythagorean Theorem
in its squared variant corresponding to (124A), and, as a consequence, the Small Pythagorean

Theorem for the second segment in Ẽ
(3)
1 , with the trivial case corresponding to (129A):

sin2 φ13 = sin2(φ12+
=
φ23) + sin2 ⊥

φ23 , sin2 φ23 = sin2 =
φ23 +sin2 ⊥

φ23 .

In these formulae, sin
=
φ13 = cos ε · sinφ13 , sin

⊥
φ23 = sin

⊥
φ13 = sin ε · sinφ13. Their cosines, are,

as due to (122A), the scalar projections into −→y parallel to ⟨E3⟩.

Formula for the vector tangent is analogous to (138A), and given only for completeness:

tan φ13 = tanφ13 · eσ =

(
tanφ12 + cos ε · tanφ23

1− cos ε · tanφ23 · tanφ12

)
· eα +

(
sin ε · tanφ23 · sec φ12

1− cos ε · tanφ23 · tanφ12

)
· eν . (193A)

* * *
As the abstract spherical analogs on the 2D hyperspheroid of the cosine-sine di�erentials (160A, 161A)

on the hyperboloid II, we obtain:

d cosφp = sin γp dγp = sin γi dγi;

|dsin φ(γ)|2 = cos2 φ dφ2 + sin2 φ dα2 = cos2 φp (dφp)2 =

= cos2 φp · [(cos ε dφp)2 + (sin ε dφp)2] = cos2 φp · [dφp

2
+

⊥
dφp

2

] < 1;

sinφ · eα(γ) = sinφ0 · eα(0) +
∫ φ
φ0

[cosφ dφ · eα + sinφ dα · eν ].


(194A)

Here dα is the angle of the secondary orthospherical rotation of Euclidean basis vector.

* * *

Besides, principal angles φ and γ are the covariant parallel angles in the spherical and hyperbolic
geometries � see in Ch. 6 and Ch. 1A. They are accompanied by the complementary countervariant parallel
angles υ (by Lobachevsky) and ξ. All relations between them were inferred entirely in the end of Ch. 6.
Simplest additive bond of spherical scalar and tensor angles φ↔ ξ is a peculiarity of the spherical geometry.
With (317) or by analogy with (496), we give the rotation at complementary tensor spherical angle as follows:

rot Φ = rot Ξ∣∣∣∣∣ sinφ ·
←−−−
eαeα′ +

−−−→
eαeα′ ∓ cosφ · eα · · · cos ξ ·

←−−−
eαeα′ +

−−−→
eαeα′ ∓ sin ξ · eα

± cosφ · e′α sinφ · · · ± sin ξ · e′α cos ξ

∣∣∣∣∣.
* * *

From (189A), for summing conventionally orthogonal particular spherical segments or motions, the scalar
cosine multiplicative formula hold, with its generalization:

cosφ13 = cosφ12 · cosφ23, (ε = ±π/2),

cosφ =

t∏
k=1

cosφ(k), εij = ±π/2, 1 ≤ i, j ≤ t ≤ n, i ̸= j, (on axes −→y and −→y (k)). (195A)

It is the spherical abstract analog of hyperbolic formula (131A) in Ch. 7A. The �nal scalar angle φ and the
distance a = R · φ do not depend on ordering of conventionally orthogonal particular angles.

If all t orthogonal segments are in�nitesimal, then the In�nitesimal Pythagorean Theorem holds for now

non-conventionally orthogonal in�nitesimal spherical segments with the angular measure of Lambert φ.
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For the sine of conventionally orthogonal motions sum, we obtain:
sin2 φ13 = sin2 φ12 + (sinφ23 · cosφ12)

2 = sin2 φ23 + (sinφ12 · cosφ23)
2, (φ = l/R).

Suppose that, instead of the possible k orthogonal spherical motion' angles, we deal with
only their orthogonal di�erentials at zero values of these angles at the point M . Then we
have the Rule of their squared Pythagorean summation on the hyperspheroid (till k = n):

(dφ13)
2 = (dφ12)

2 + (dφ23)
2.

The Rule is analogous to the squared Pythagorean summation of the inner hyperbolic
di�erentials and inner accelerations in the instantaneous local base of STR � see in Ch. 9A.
See analogous quadrics, as decomposition of the inner di�erential, below in (197A).

The projective sine measure R sinh (l/R) may be used also in the �at sine model of
the hyperspheroid of radius R, which follows the Big and Small Pythagorean Theorems.
Decomposition of dsin φ in (192A) and summation in (193A) are executed in this model in
the trigonometric ring (ball), limited in the projective hyperplane [⟨⟨En⟩⟩] by the radius R.
(At R→∞, it is Euclidean as for the hyperboloid II in Ch. 12.)

We can use the same formulae (136A) and (139A) for the vectors of directional cosines:

eν =
eβ − cos ε · eα

sin ε
=

−−−→
eαe

′
α · eβ

||
−−−→
eαe

′
α · eβ ||

, e∠
ν
=

eα − cos ε · eβ
sin ε

=

−−−→
eβe

′
β · eα

||
−−−→
eβe

′
β · eα||

.

And we obtain: cos θ13 = e′∠
σ
· eσ; eβ = cos ε · eα + sin ε · eν ↔ eα = cos ε · eβ + sin ε · e∠

ν
,

e′ν · e∠
ν
= − cos ε = +cosA123, eα · e∠

ν
= eβ · eν = +sin ε = +sinA123.

Vectors e
(1)
α , e

(2)
β , eν , eσ, e∠

ν
x e∠

σ
are formally inside an angle π in the plane ⟨E2⟩ ≡ ⟨eα, eβ⟩.

Due to General Signs Rule, see in (182A) and in sect. 12.2, for spherical geometry

we have: sgn θ13 = +sgn ε ! . If ε > 0, then θ13 > 0, and if ε < 0, then θ13 < 0, i. e.,

the leg 13 is shifted orthospherically in direction always with increasing the sum of angles
in the spherical triangle 123. Plane of this orthospherical rotation is ⟨E2⟩ ≡ ⟨eα, eβ⟩. If
n = 3, then vectors eα, eβ ,

−→eN and e∠
σ
, eσ,
−→eN form the right (ε > 0) or left ε < 0 triples.

They correspond to counter-clockwise scalar angles in right-handed bases. (Oriented vector
−→rN (θ) = e∠

σ
⊗ eσ = ± sin θ · −→eN determines right screw of rotations if n = 3.)

Formula (143A) from Ch. 7A for cos θ13 is transformed by similar way as it was on the
hyperboloid II. For two-steps principal spherical motions, formula gives the angular excess of
geodesic spherical triangle 123 on the hyperspheroid. For two conventionally orthogonal (at
maximum |θ|) and general motions, we obtain these expression for orthospherical shifting θ13:

cos θ13 =
cosφ12 + cosφ23

cosφ12 · cosφ23 + 1
> 0,

sin θ13 =
+sinφ12 · sinφ23

cosφ12 · cosφ23 + 1
; sin dθ = dθ = +sin ε · sinφ dφ

1 + cosφ
= +sin ε · tan (φ/2) dφ.

As before, in in�nitesimal considerations we shall apply the useful formulae for the cosine
of the �rst angular di�erential (with exactness up to 2-nd power of di�erentials):
cos dφ = 1− (dφ)2/2 and cos dθ = 1− (dθ)2/2.

In both sine formulae (194A), put these values of angles: φ12 = φ, φ23 = dφ. The latter
is the di�erential of an arc φ under angle ε to the segment φ. Further, by abstract spherical-
hyperbolic analogy (323) to (172A) at n ≥ 2, and similar to inferring hyperbolic formulae
(144A) in Ch. 7A (using direct and inverse ordering variants of (194A) with the angles φ
and dφ and relations (141A)), we'll obtain the di�erential of the unduced orthospherical
shift in ⟨En⟩(1) of ⟨Qn+1⟩ and, in particular, in the plane ⟨E2⟩(1) ≡ ⟨eα, eβ⟩. In addition, we
use the angle dα of the current rotational shift of the unity directive angle eα in the plane

⟨E2⟩(m) ≡ ⟨eα, e(m)
β ⟩.
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With the spherical sign Rule and normal relation sin ε dφ =
⊥
dφ = sinφ dα, in result we get:

e∠
σ
× eσ = dθ · −→eN

(m) =
sinφ · eα

1 + cosφ
⊗ dφ · e(m)

β = tan
φ

2
dφ · −→rN = +tan

φ

2
· sin ε dφ · −→eN = (196A)

= tan
φ

2

⊥
dφ ·−→eN =

1− cosφ

sinφ
·sinφ dα·−→eN = (1−cosφ) dα·−→eN → dθ = (1− cosφ) dα = 2 sin2(φ/2) dα .

Note that the normal relation (of type above) will obtain with a rigorous justi�cation in the
di�erential 3D Relative Pythagorean theorems in the last Ch. 10A of the Appendix. It is abstract
analog of (171A). In the Euclidean sub-space ⟨En⟩(1), this shift is caused by di�erence between the
real orthospherical rotation di�erential deα = dα in ⟨En⟩(m) on a curved trajectory (maybe closed)
and its spherical (here) cosine projection onto the projective hyperplane ⟨⟨En⟩⟩(1) !

It has positive values due to same directions of θ and ε. The angles φ and dφ are expressed in
the bases Ẽ1 and Ẽm of ⟨Qn+1⟩. This di�erential variant of the induced orthospherical shift and
rotation θ is useful in spherical geometry. For example, on the Globe, it gives the change of latitude
� see further. (But recall that for two arcs, the single normal −→eN exists only in ⟨Q3+1⟩!) Thus, for
a triangle 123 in ⟨Q3+1⟩, formed by dφ12 and dφ23, with their also orthospherical external angle ε
(using the expression for vector element of the area [21, p. 526])), we infer bonded formula dS(dθ):

dθ13 · −→eN = sin ε · (dφ12) · (dφ23)

2
· −→eN = sin ε · (dl12) · (dl23)

2R2
· −→eN =

dS123

R2
· −→eN .

Due to the Harriot's result in spherical geometry or generally to the Gauss�Bonnet Theorem
[21, p. 533], the area of the geodesic triangle 123 (on a surface of positive constant Gaussian curvature
and the angular excess of this spherical triangle (here with external ε) dδ123 = 2π − (ε1 + ε2 + ε3)
are connected as dδ123 = dS123/R

2 = KG dS123 > 0. As results, we obtain the di�erential and
integral formulae for connection of these two speci�c angles

dθ13 = dδ123 =
dS123

R2
= KG dS123 ⇒ θ13 = δ123 =

S123

R2
= KG · S123

in the geodesic triangles on the hyperspheroid and, hence, in the other curvilinear spherical non-
Euclidean spaces too. These formulae mean: the angle θ13 of orthospherical shifting and Harriot's
angular excess +δ123 in a spherical triangle 123 are equal, as well as it was for Lambert's angular
defect −δ123 in a hyperbolic triangle 123 (Ch. 7A)!!!

An inference of both these expressions consists in contour and surface integrating with further
applying their in�nitesimal identity. This is internal point of view on the hyperspheroid geometry.
It (as well as any sphere) cannot be bent without loss of its metrical properties, and, hence, it is
a surface of constant positive radius. (The same is valid for the hyperboloid II as a sphere of the
imaginary constant radius iR, see in Ch. 12.)

The orthospherical tensor of rotation Θ13, in accordance with tensor formulae (184A), (187A),
is identical to tensor angular excess of a geodesic triangle on the hyperspheroid. Angular deviations
(scalar and tensor) take place due to dependence of parallel displacement on a surface with curvature
on its way. The scalar or tensor angular excesses are expressed through the orthospherical shift θ
or Θ as the result of a closed cycle of geodesic motions along the triangle sides! Taking into account
the analogous results in Ch. 7A, we formulate the following our result for the spherical geometry
on the hyperspheroid with frame axis, which adds the previous our results for the hyperboloid II
and for the hyperbolic non-Euclidean geometry.

General Corollary (Theorem). The induced orthospherical rotation Θ is a true cause of the
Harriot, Lambert and, in general, Gauss�Bonnet angular deviations in convex geodesic �gures in
non-Euclidean geometries, including their spherical and hyperbolic types!

The special case is summation of two-steps or polysteps motions when both particular angles
are in�nitesimally small. Suppose that, for example, in formulae (193A), (196A) with n = 2 both
these principal spherical angles are in�nitesimal. So, for right triangle 123 with cos ε = 0, we obtain
as φ12 → 0, φ23 → 0:

φ13 =
√

φ2
12 + φ2

23, θ13 =
φ12 · φ23

2
=

a12 · a23

2R2
= S123 ·KG.
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For k-steps principal spherical motions on the hypersperoid, according to formula (193),
the following generalization holds:

lim
φ(j) → 0

l = R ·

√√√√ k∑
j=1

φ2
(j).

V = φ(1) · · ·φ(k) ·Rk, k ≤ n, ε = ±π/2.

They are the simplest in�nitesimal formulae for the geometry on the hyperspheroid as of
the Euclidean geometry. This con�rms the in�nitesimal character of Euclidean metric on
the hyperspheroid of radius R.

Corollary. Geometry of the hyperspheroid is in�nitesimally Euclidean.

Conclusion. Orthospherical induced shifting Θ gives the clear mathematical explanation,
with the use of Tensor Trigonometry, to the Harriot angular excess in closed �gures in the
spherical geometry, in that number, on the surface of the hyperspheroid!

Commutativity of the partial angles of motion (arcs) takes place in the scalar variant
of conventionally orthogonal summation formulae. In particular, the �rst di�erential of the
total angle arc is represented on the tangent n-dimensional Euclidean subspace ⟨En⟩ to the
n-dimensional hyperspheroid embedded in the quasi-Euclidean space ⟨Qn+1⟩ ≡ ⟨En ⊞ −→y ⟩
with re�ector tensor I± (as on the hyperboloid II in Ch. 7A):

(dφ)2 =

n∑
k=1

[dφ(k)]
2, (dl)2 = (Rdφ)2 =

n∑
k=1

[dl(k)]
2, ε(ij) = ±π/2, (197A)

According to the Big Pythagorean theorem (see it in sine versions: scalar (190A) and
vectorial (192A)), in spherical geometry of the hyperspheroid, it is possible to use Cartesian

sub-base Ẽ
(n)
1 of the original base Ẽ1 = {I}, as sine projective homogeneous coordinates into

the Euclidean projective hyperplane ⟨⟨En⟩⟩, but only inside the ball with radius R or for the
quasi-Euclidean tensor trigonometry at R = 1 (similar to tangent model of the hyperbolic
geometry on the hyperboloid II in Ch. 12). The sine model of principal motions with
its Pythagorean theorem are preferred here, because they are bounded by �nite parameter
either 1 as trigonometric one or R as geometric one for considerations of geometric problems.

* * *
In ⟨Q2+1⟩, for analysis and interpretation of two-steps motions on the hyperspheroid by

di�erential method it is useful to apply decomposition of the inner total di�erential dφβ

along the instantaneous axis x(m) into its spherical orthoprojections, parallel (along eα) and
orthogonal (along eν) ones with respect to the current vector of principal motions eα at the

local point M in the current base Ẽm. We decompose this current inner di�erential of the
increment of motion with the spherical di�erential causing it into the parallel and normal
parts by the Pythagorean Theorem in the current Euclidean sub-space ⟨E3⟩(m), with respect
to the direction of eα, as follows:

dφβ · eβ = cos ε dφβ · eα + sin ε dφβ · eν = dφβ · eα+
⊥

dφβ ·eν → (dφβ)
2 =

(
dφβ

)2
+

(
⊥

dφβ

)2

,

dlβ · eβ = cos ε · dlβ · eα + sin ε · dlβ · eν = dlβ · eα+
⊥
dlβ · eν → dl2β =

(
dlβ

)2
+

(
⊥
dlβ

)2

.

 (198A)

It is the spherical Local Absolute Euclidean Pythagorean theorem for spherically orthogonal

decomposition in the Cartesian sub-base Ẽ
(3)
m of the brutto di�erential dφ · eβ , with respect

to the directional vector eα of the hyperbolic angle of motion φ. The parallel part accelerates
motion along the curve, the normal part rotates the direction of motion with its curve.
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* * *
Consider the hyperspheroid of radius R including trigonometric one if R = 1.

Hyperspheroid (see at Figure 4) has R = +1. (Radius may be R), φ > 0 if ∆y > 0.
Represent it by t(φ) = r(φ) as its radius-vector and the principal tangent to a regular curve
and by n(φ) as the principal quasinormal to the same regular curve in ⟨Q2+1⟩ under absract
analogy with hyperboloid II an I in ⟨P2+1⟩ (see in the end of Ch. 6A). They are expressed
in Ẽ1 with the clockwise φ counted o� −→y (1) and with counterclockwise φ counted o� ⟨En⟩(1).
With presentations from its North Pole and Equator, we have the following two variants:

t(φ) =

[
sin φ
cosφ

]
=

[
sinφ · eα
cosφ

]
, n(φ) =

[
cos φ
− sinφ

]
=

[
cosφ · eα
− sinφ

]
. (199A− II, I)

t(φ)′1k · t(φ)1k = sin′ φ1k · sin φ1k +cos2 φ1k = sin2 φ1k ·e′αeα+cos2 φ1k = 1. (200A− II)

n(ξ)′1k ·n(ξ)1k = cos′ φ1k · cos φ1k + sin2 φ1k = cos2 φ1k · e′αeα + sin2 φ1k = 1. (200A− I)

sin φ1k is the n× 1-vector orthoprojection of t(φ)1k into ⟨En⟩(1) parallel to −→y (1),
cosφ1k is the scalar orthoprojection of t(φ)1k into −→y (1) parallel to ⟨En⟩(1).
cos φ1k is the n× 1-vector orthoprojection of n(φ)1k into ⟨En⟩(1) parallel to −→y (1),
sinφ1k is the scalar orthoprojection of n(φ)1k into

−→y (1) parallel to ⟨En⟩(1) � (see Figure 4).
Consider for the 1-st case the geodesic motions t12, t23 → t13 on the hyperspheroid along large circles

in Ẽ1 and Ẽ2 with tensor of motion (179A), polar decomposition as in (181A) and by analogy with (148A):

t12 t1

= {rot Φ23}Ẽ2
·
[

sin φ12 · eα
cosφ12

]
= {rot Φ23}Ẽ2

· {rot Φ12}Ẽ1
·
[

0
1

]
= (201A)

t1 t1

= {rot Φ12 · (rot Φ23)Ẽ1
· rot′ Φ12} · rot Φ12 ·

[
0
1

]
= {rot Φ12}Ẽ1

· {rot Φ23}Ẽ1
·
[

0
1

]
=

t1 t1 t13

= rot Φ13 · rot Θ13 ·
[

0
1

]
= rot Φ13 ·

[
0
1

]
=

[
sinφ13 · eσ
cosφ13

]
.

We'll continue this in Ch. 10A. A spherical triangle on a hyperspheroid with radius R can
be easy implemented as a cycle of 3 geodesics. If the start apex is a central element u1, then
rot Φ12 · u1 = u12, {rot Φ12 · rot Φ23 · rot′ Φ12}Ẽ2

· u12 = u13, {rot Φ31}Ẽ3
· u13 = u1.

The triple can be converted into a non-centered triangle with the admissible transformation.
A trajectory of spherical motion u12 → u13 is in the cut of unity hyperspheroid by the
eigen quasiplane of rotation {rot Φ23}Ẽ2

. Intersection of this quasiplane with the projective

hyperplane is a straight line segment u23 in ⟨⟨En⟩⟩, it corresponds to this geodesic trajectory.
Thus, for any two points u12 and u13 on the hyperspheroid of radius R, there exists

a unique geodesic line passing through them. However, there is a special case, when two
points of the hyperspheroid are polar (as North Pole CII and South one at Figure 4). Such
two points produce only spherical digons. (It is a polygon with two sides and two vertices.)
This illustrates the following well-known Theorem of spherical geometry: any two points of
a semisphere (beside nonpolar ones) of a sphere can be connected by a unique arc of a large
circle (as geodesic line), this arc is shortest in the natural Euclidean and Lambert angular
length measures. Therefore, this gives the matrix tensor trigonometric way for solving such
a problem. In the base Ẽ2 = rot Φ12 · Ẽ1, the geodesic motion u12 → u13 is going along the
shortest arc with length a23 = R·φ23. By (201A), for only a point element u1, orthospherical
rotation Θ13, in fact, annihilates. A triangle cycle of motions returns a nonpoint object into
the start point, but the geometric object in it is turned in the base Ẽ3 at induced angle Θ13.
Hence, the application point of this non-point object is transformed here as u1 → u12 → u13

along the spherical geodesic lines Rφ12 and Rφ23 as arcs from the large circles of radius R.
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Let us apply the 2D hyperspheroid with the frame Earth axis from sect. 5.12., with North and South

Poles (at φ0 = 0, ξ0 = ±π/2 and θ0 = 0) and the greenwich reper meridian for a tensor trigonometric

model of any angular motions on the Earth globe with two its �xed angular coordinates: ξ = π/2−φ

(a latitude) and θ (a longitude). For this, we'll use both motion tensors from (179A) and general as

T(m) = rot Φ·rot Θ � see it below in (202A). (So, rot Θmay be free and induced orthospherical rotation along

the globe parallels.) We can begin the angular motion from some choosing point with its two coordinates:

ξ0 = π/2 − φ0 (as initial latitude with respect to the Equator) and θ0 (as initial longitude with respect

to the greenwich meridian). Accordingly, in it, we have the initial values of the two tensors as rot Φ0 and

rot Θ0 with T(0) = rot Φ0 · rot Θ0. At the given motion in Northern hemisphere for measuring we chose the

counterclockwise φ = π/2− ξ with its zero point CII as the North Pole, but after the Equator transition for

the same motion in the Southern hemisphere for measuring we chose the clockwise φ = π/2 − ξ by change

of its sign how on the upper and lower parts of the globe. For the Southern hemisphere, we change only the

sign of a latitude. For the Western hemisphere, we change only the sign of a longitude. See also in Ch. 10A.

* * *
Now, we describe in general form an algorithm for evaluating main characteristics of summary

polysteps rotation (motion) in ⟨Qn+1⟩ and ⟨Q2+1⟩ ≡ ⟨E2 ⊞ −→y ⟩ in the scalar, vectorial, and tensor
forms. The algorithm starts with application of formula (485) for right transformation of the
original base Ẽ1 = {I}. On the �nal step of the algorithm, the polar representation (176A), (177A)
according to (181A)-(184A) is used. On these stages, with T and T ⋆ from (183A), the homogeneous
modal transformations are

Ẽt = rot Φ12 · rot Φ23 · · · rot Φ(t−1),t · Ẽ1 = T1t · Ẽ1 = {T1t},

Ẽ⋆
t = rot Φ(t−1),t · · · rot Φ23 · rot Φ12 · Ẽ1 = T ⋆

1t · Ẽ1 = {T ⋆
1t}.

T1t = rot Φ1t · rot Θ1t = rot Θ1t · rot
∠
Φ1t, T ⋆

1t = rot
∠
Φ1t · rot (−Θ1t) = rot (−Θ1t) · rot Φ1t.

T1t · T ⋆
1t = rot2 Φ1t = rot 2Φ1t, T ⋆

1t · T1t = rot2
∠
Φ1t= rot 2

∠
Φ1t .

rot
∠
Φ1t = rot′ Θ1t · rot Φ1t · rot Θ1t; rot Θ1t = rot′ Φ1t · T1t.

The matrix rot Φ1t is evaluated in the base Ẽ1 in canonical forms (313), (314); the matrix rot Θ1t �

by (259) or (497). Quasipolar representation (176A), (177A) is used for inferring the general law of

summing multistep motions or most general homogeneous rotations in the spherical trigonometry

of ⟨Qn+1⟩, identical up to radius-parameter R to the spherical non-Euclidean geometry of the

hyperspheroid. As main result, we obtain the following.

The canonical and polar forms of Quasi-Euclidean homogeneous transformation,
in that number, for arbitrary and summarized multistep principal motions:

T1t = rot Φ12 · · · rot Φ(t−1),t = rot Φ · rot Θ = rot Θ · rot
∠
Φ = (202A)

=

[
cosφ ·

←−−−
eσe

′
σ +
−−−→
eσe

′
σ − sinφ · eσ

+sinφ · e′σ cosφ

]
·
[

[rot Θ]n×n 0
0′ 1

]
=

=

[
[rot Θ]n×n 0

0′ 1

]
·

 cosφ ·
←−−−
e∠
σ
e′∠
σ
+
−−−→
e∠
σ
e′∠
σ
− sinφ · e∠

σ

+sinφ · e′∠
σ

cosφ

 =

=

[
[rot Θ]n×n − (1− cosφ) · eσe′∠

σ
− sinφ · eσ

+sinφ · e′∠
σ

cosφ

]
=

=

 [rot Θ]n×n − (1− cosφ) ·
←−−−
eσe

′
∠
σ
− sinφ · eσ

+sinφ · e′∠
σ

cosφ

 (Compare with asymmetric tensor (153A)).
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Formulae (202A) giveGeneral law of summing principal rotations (motions in ⟨Qn+1⟩
and on the hyperspheroid, expressed in their canonical forms with respect to the initial unity
base Ẽ1 = {I}. The matrix rot Φ(n+1)×(n+1) is emanated, for example, by the last element
tnn and all the right elements tkn for matrix T in (202A). They permit one to express it
in the base Ẽ1 in canonical forms (313), (314) with the frame axis in ⟨Qn+1⟩ and evaluate
scalar and vector trigonometric functions of the angle φ with its directional vector eσ.

The 3D case corresponds to n = 2, when the canonical structures of matrices rot Φ3×3

and cell rot Θ2×2 are expressed by (313) and (259), but with θ. The complete matrix
rot Θ3×3 at n = 2 or general rot Θ(n+1)×(n+1) may be computed also by matrix formula
(184A), or through (497)-(499) if n = 3 with the frame Euclidean axis eN and the sign of θ.

If n = 2, k = 1, 2, there hold:

cosφ = t33, sinφ = +
√
1− cos2 φ = || − sinφ · eσ||; sinφk = −tk3;

cosσk = −tk3/ sinφ, cos
∠
σk = t3k/ sinφ, eσ = {cosσk}, e∠

σ
= {cos ∠

σk}.
cos θ = e′σ · e∠

σ
= e′∠

σ
· eσ, sin θ =

√
1− cos2 θ > 0 at ε > 0 and v. v.

 (203A)

Besides, if n = 3, then we use formulae (499): −→rN (θ13) = e∠
σ
⊗ eσ = ± sin θ13 · −→eN . It is

similar to (153A�155A) in ⟨Pn+1⟩ on the abstract hyperbolic-spherical analogy from Ch. 6.
Scalar �nal results do not change under the mirror permutation of particular motions.

It leads only to the substitution in (202A): T → T ⋆ with Θ→ −Θ, eσ → e∠
σ
.

The speci�c matrix T ⋆ in (185A) with contrary ordering of partial motions (T ⋆ ̸= T ′, as
Φ ̸= Φ′, but Φ = −Φ′) has the general structure, gotten from T with eσ ↔ e∠

σ
:

T ⋆ = rot Φ23 · rot Φ12 = rot
∠
Φ · rot (−Θ) = rot (−Θ) · rot Φ = {rot (−Θ) · T · rot(−Θ)}

=

[
[rot (−Θ)]2×2 − (1− cosφ) · e∠

σ
e′σ − sinφ · e∠

σ

+sinφ · e′σ cosφ

]
. (204A)

T and T ⋆ are connected by simple transposing in original complex binary base (271), where
due to (277) they both are Hermitianly symmetric (see at beginning of this Chapter).

Theorem. In general, any polysteps non-collinear spherical rotations rot Φ1t in ⟨Qn+1⟩ or
motions on hyperspheroid are represented as spherical one and single orthospherical shift.

Such interpretation of law (202A) for summing spherical rotations (motions) is con�rmed
in the quasi-Euclidean space, for example, by the fact, that rot Θ is revealed in the base
Ẽ1s = rot Φ1t · Ẽ1 by polar decomposition in (181A). In the Chapter, laws of hyperbolic
geometry motions, established in Chs. 5A and 7A, were transformed sometimes by us very
simply by inverse hyperbolic-spherical analogy (323) iΓ→ Φ into spherical ones! And then
polar representation (183A) was inferred in analogous form of the quasi-Euclidean tensor
trigonometry with the use of analogy (322) −iΦ↔ Γ. Between two types of geometries and
tensor trigonometries, we used the abstract analogy Φ↔ −iΦ↔ Γ↔ iΓ↔ Φ entirely.

* * *
First steps in creating hyperbolic non-Euclidean geometry were made by J. H. Lambert

[36] and F. A. Taurinus [38]. Lambert assumed its geometric analogy on a hypothetic sphere
of an imaginary radius iR with relations φ → iγ and γ = γ(φ), and revealed exactly the
angular defect in the hyperbolic triangle. Taurinus established on the sphere �rst formulae
of its planimetry and proved that in its triangle the sum of angles less than π/2. Later
F. Klein [48] and H. Minkowski [65] proved that this hypothetical geometric object is the
upper complex hyperboloid II. Nicolai Lobachevsky [40, 41] and J�anos Bolyai [42] created
independently this �rst non-Euclidean geometry in su�ciently full forms by the Euclidean
axiomatic method. Unfortunately the Lobachevsky�Bolyai plane and space on the whole are
unvisual for men, in contrast to the Lambert's imaginary sphere (as upper hyperboloid II).



�Everything must be made as simple as possible. But not simpler.� � Albert Einstein

Chapter 9A

Real and observable by us space-time in the gravity �eld 1

In present we can state, under enough logical previous and modern arguments, that, indeed,
Tensor Trigonometry with its di�erential and integral parts since 2004 [15] is applicable for
simplest correct studying and description of relativistic motions in the Poincar�e � Minkowski
space-time of the Nature in the presence of gravitation and in parallel with the simplest
trigonometric explanations of all STR- and GR-e�ects and paradoxes. For this we apply
mathematical�physical analogy (sect. 12.3) between physical acceleration and intensity of
the gravitational �eld on the basis of the classical Newtonian Principle of Equivalency, with
introducing the so-called accelerational and gravitational cosines as such equivalent factors of
two speci�c time dilations. Note, that they do not relate to the well-known Minkowski time
dilation from velocity (Ch. 3A). Here are the factors from acceleration ga and intensity gf .

If Poincar�e life had not ended so early � at the age of 58 (in 1912), then, perhaps,
he would have continued to develop his new relativistic theory of space-time and in the
gravitational �eld along the same path, especially since in his pioneering article [63] he
predicted the possibility of the existence of gravitational waves, i. e., without unnecessarily
bending space-time, but due to additional bending light rays to Newtonian optical reasons
� see below in (208A). Before the creation of hyperbolic non-Euclidean geometry, in fact on
the surface with its inherent curvature, it never occurred to anyone to take light rays for as
if a priori straight lines. In GTR, the Einsteinian mixing straight lines and light rays into
one concept occurred, but as geodesics in the curvilinear pseudo-Riemannian space-time.

The historical merit that the inertia of any massive object is created by the Mass of the
Universe as a whole belongs to Ernst Mach [55] � eminent physicist and philosopher-positivist
of Science. The mechanism of action of this fantastic Mach hypothesis remained unclear for
a long time. And Albert Einstein in his GTR refused it with all the Galilean inertial systems.
The Mach System, associated with the Center of Mass of the Universe, speci�ed a priori
the unique inertial System of Galileo generally for space-time and relative to it all other
Galilean systems. But in 1964, �nally, the Higgs theory appeared [82], which explained
that, during development of the Universe with formation of its Mass as a whole, the latter
produces the speci�c Higgs �eld, created the Galileo's inertia of any matter as the necessary
force of the Nature. Moreover, just like in the �at space-time by Poincar�e � Minkowski, at
any point and in any direction of this Higgs �eld in the Universe, the inertia depends only
on the mass of an object, in accordance with the Galileo's Law! Then, it is the real space-
time by Poincar�e � Minkowski is combined with the homogeneous and isotropic material
Higgs �eld of the Universe! This corresponds to conditions of the Noether's Theorem for
acting the Law of Energy�Momentum conservation. According to the Newton's Equivalence
Principle, inertial and gravitational mass are identical, and this fact has been repeatedly
and accurately con�rmed, starting with Newton's own experience. Consequently, with the
Newton's theory of gravitation, but taking into account the �nite speed �c� of the wave-like
propagation of gravity, due to Poincar�e himself in [63], in fact since June 1905 such new
relativistic space-time was introduced! The term �uniform rectilinear motion� in the Higgs
Theory has been revived in this relativistic space-time. The so-called "ether", rejected also
by Einstein, factually returned in the Universe as the material medium of the Higgs �eld,
but under other name. Poincar�e and Lorentz never rejected the material medium of the
Universe, and in their works it appeared under the term �ether� accepted at that time. So,
the great chemist Dmitri Mendeleev has placed the �ether� in the zero cell of the fundamental
"Periodic Table of Chemical Elements", which he had discovered on March 1, 1869.

1The chapter 9A had before discussional character up to this 3-rd edition of the book.
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The new essential renovation of the real space-time conception is realizing from 1964 [82],
by the very eminent now Peter Higgs, within the framework of the Standard Model for the
set of elementary particles, put forward a revolutionary theory, that during the formation of
the Universe, according to the Big Bang Theory of the eminent physicist George Gamow, at
the stage when its full Mass appears, the latter creates in the Universe a certain material �eld
with its most massive quantum particle �boson�. It is the Higgs �eld creates �inertia�, as the
fundamental force of the Nature under such its well-known name. The inertia acts on any
massive object proportionally to its mass (as its charge), but i� this object deviates from
the uniform and rectilinear motion in the �eld, i. e., due to Galileo's Law. This Higgs theory
was strictly con�rmed with the discovery of the Higgs boson in 2012 at the Hadron Collider
in the Switzerland. And he was deservedly awarded the Nobelean Prize.

We hope that the brief explanations above help to understand to our readers, why the
author, since �rst publication of Tensor Trigonometry in 2004 [15], develops it together with
the many various applications of this new math subject in the Theory of Relativity, namely,
in the 4D pseudo-Euclidean Poincar�e � Minkowski space-time. But, unlike a number of very
aggressive apologists of GTR-curved space-time, the author did not impose own author's
point of view on the other men, as should be in the Free Science, developing this direction,
in accordance with own self independent scienti�c approach. Besides, we take into account
the �rst theory with �at relativistic space-time in a gravitational �eld by Nathan Rosen,
who was Einstein's assistant at Princeton. However, Albert Einstein did not prevent him
from daring in other direction! But the book author believes that theories with curving
space-time may mapping only observational space-time through as if a gravitational lens of
the gravitation �eld, but any real calculations can be true only in the Poincar�e � Minkowski
space-time. Our approach is a good compromise that does not destroy the harmony, but
excludes the positivism in real assessments of the relativistic world events. Unfortunately,
aggressive behavior of speci�c apologists of a curved space-time resists such a peace-loving
point of view and continues to secretly and persistently hinder its popularization.

The Special Theory of Relativity (STR) formulates the Laws of relativistic movement of
the matter both in inertial and in uninertial coordinate systems under abstract condition that
gravitation is supposed to be absent � see, for example, in [76]. The absolute motion takes
place in the macroworld and the microworld and does not depend on a nature of active forces.
In Chs. 1A�7A, we used tensor trigonometry for describing Laws of the relativistic motion in
clear trigonometric forms. In June 1905, Henri Poincar�e made the super revolutionary step:
he introduced the imaginary time axis with scale coe�cient "c" identical to constant speed
of light in far Cosmos. With the use of this innovation, he suggested the idea of the united
complex-valued space-time with its pseudo-Euclidean metric based on the group nature of
its coordinates' transformations, named by him as Lorentzian ones [63, 76, p. 107]. However
this genius idea of Poincar�e was ignored and not estimated by contemporaries (besides by
Hendric Lorentz himself). In 1909, Hermann Minkowski suggested the reali�cated variant of
the pseudo-Euclidean space-time above [65; 76, p. 41], but without reference to the Poincar�e
fundamental works. He has introduced in the relativistic theory the notions of isotropic cone,
time-like and space-like intervals, proper time, time dilation and many others. (We can only
guess what the relationship was between German and French scientists at that time!)

* * *

While elaborating the GTR [69], Albert Einstein paid attention to empiriocritical Mach's
regards on the celestial mechanics uniting dynamics and gravitation, especially on the Law
of Gravitational and Inertial Masses Identity. So, gravitational mass does not depend on
substance nature, this was established by I. Newton and con�rmed with high precision by
L. E�otv�os. This Principle of Equivalence holds in classical and relativistic forms, but no one
has established experimentally: whether this Principle applies to moving mass "m" or not?
We'll use below such kinematic full mass "m" of the Mercury with non-moving mass "M0"
of the Sun in our trigonometric representation of the Mercury perihelion relativistic shift.
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For more convincing concept of GTR, A. Einstein had proposed the General Principle
of Relativity, instead Galilean-Poincar�e, in which all Laws of Nature have covariant forms
in any free moving frames of reference (but only in the frame's origin!?). For its realization,
he introduced in addition the General Principle of Equivalence of inertia and gravitation.
This led to curving 4D space-time of GTR. Such bend relates not only to time-arrows, but
and to the geometry of 3D Euclidean subspace with its geometric material objects!?

Obviously, this Principle and this de�nition of an inertial system as freely falling in space
completely contradict the Higgs theory. This time aggressive apologists of GTR remain silent!

Another explanation of both these masses identity Law is closer to Mach's approach. So,
for a body M , the Newtonian force of attraction is caused by active gravitational action of
other material objects, while the force of inertia is caused by passive gravitational in�uence of
the whole Mass in the Universe M and now due to the Higgs theory. In such interpretation,
the 2nd Newtonian Law of mechanics complements naturally his the Law of Gravitation.
To get for M their geometric in�uences in Ẽm of ⟨P3+1⟩, we pass from its inner acceleration
to its proportional analog in (81A) � the local pseudo-Euclidean curvature K of a world line:

−F(i) = F(a) = m0g = m0c
2/RK = E0/RK → RK = E0/F(i), K = F(i)/E0 < 0. (205A)

Here:
F is the inner (i. e., applied in the current base Ẽm) active force causing bending trajectory
of the absolute motion of M in ⟨P3+1⟩ with the pseudo-Euclidean curvature K;
F(i) is the passive force of inertia counteracting to F in Ẽm;
m0 and E0 are the own mass and the own energy of the material point;
RK is the radius of instantaneous absolute pseudo-Euclidean curvature K of the world line
at the point M in ⟨P3+1⟩;
c is the constant module of 4-pseudovelocity of M in ⟨P3+1⟩ introduced by Henri Poincar�e.

Energetic gravitational form (205A) of the 2nd Newtonian Law is in accordance (and it
is necessary) with his 1st and 3rd ones, where, in particular, F = F(a) or F = F(f) as the
force of gravitation::

F = 0 ↔ g = 0 ↔ K = 0 (1st), F = −F(i) (3rd). (206A.)

In this Chapter, we'll bond both kinds of the matter Higgs inertia, caused by acting either
physical acceleration g(a) (1) or gravity-intensity g(f) (2) with two equivalent local cosine
time dilations. That is, the inertia in both kinds and the local time dilations in both kinds
are bonded in ⟨P3+1⟩. The �rst case is illustrated at Figure 3A, Ch. 5A, with trigonometric
and physical formulae. See the following development in relations (209A), (210A).

From "energetic formula" (205A), E0 = −F(i) · RK , as an inertial torque of the passive
force F(i), causes local pseudo-Euclidean rotation of a world line (F = 0 ↔ RK = ∞).
For each body absolutely moving with general acceleration (in extreme cases, as parallel or
normal to velocity), such "gravitational interpretation" of inertia as in (205A) means that
F(i) is the centripetal force always directed towards the instantaneous center of a pseudocircle
(either of a hyperbola or of a normal circle), and namely F(i) curves world lines in ⟨P3+1⟩.
Recall, that as long ago as in the 15-th century Nicholas of Cusa (Nicolaus Cusanus) noted:
"The Universe is a sphere, and its Center is everywhere!"

With results, gotten preliminary in Ch. 7A in (131A-III) and (145A), for a point M of
summations in ⟨P3+1⟩, we have got the Euclidean Rules with Pythagorean theorems for
summing orthogonal hyperbolic angular di�erentials, curvatures and inner accelerations, in
that number, collinear and normal ones. Indeed, at cos ε = ±1, we have from (124A):

sinh2 γ13 = sinh2 γ12 +sinh2 γ23 +2 · sinh2 γ12 · sinh2 γ23 +2 · cosh γ12 · sinh γ12 · cosh γ23 · sinh γ23 ⇒

⇒ sinh γ13 = sinh γ12 · cosh γ23 ± cosh γ12 · sinh γ23 ⇒ γ13 = γ12 ± γ23.

At γ12 → 0 and γ23 → 0, we obtain dγ13 = dγ12 ± dγ23 → k13 = k12 ± k23 → g13 = g12 ± g23.
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But at cos ε = 0, we have fo independent two steps and three steps sine summaation in ⟨P3+1⟩:

sinh2 γ13 = (cosh γ23 · sinh γ12)2 + sinh2 γ23 = (cosh γ12 · sinh γ23)2 + sinh2 γ12.

At γ12 → 0 and γ23 → 0, we obtain: dγ2
13 = dγ2

12 + dγ2
23 → k2

13 = k2
12 + k2

23 → g213 = g212 + g223.

By analogy up to Eucldean dimension 3 in ⟨P3+1⟩, we have:

sinh2 γ14 = sinh2 γ12 + sinh2 γ23 + sinh2 γ34+

+sinh2 γ12 · sinh2 γ23 + sinh2 γ12 · sinh2 γ34 + sinh2 γ23 · sinh2 γ34 + sinh2 γ12 · sinh2 γ23 · sinh2 γ34 =

= (cosh γ34 · cosh γ23 · sinh γ12)2 + (cosh γ34 · sinh γ23)2 + sinh2 γ34 =

= (cosh γ12 · cosh γ23 · sinh γ34)2 + (cosh γ12 · sinh γ23)2 + sinh2 γ12.

In its turn, at γ12 → 0, γ23 → 0 and γ34 → 0 , we obtain:

dγ2
14 = dγ2

12 + dγ2
23 + dγ2

34 → k2
14 = k2

12 + k2
23 + k2

34 → g213 = g212 + g223 + g234.

If a material point M is subjected to simultaneous actions of a few of active forces with
di�erent directions (only three may be independent), then forces and generated by them
inner accelerations are summarized as 3-vectors in Euclidean subspace ⟨E3⟩(m) of ⟨P3+1⟩:

F =

t∑
j=1

Fj =

t∑
j=1

m0 · gj = m0 · g = m0g · e → g =

t∑
j=1

gj , k =

t∑
j=1

kj = K · e. (207A.)

Therefore in ⟨P3+1⟩ with fully compatible both the Higgs inertia and Newton gravity �elds,
we �x the cardinal di�erence of this non-relativistic Law of summations proportional inner
characteristics of motions and regular curves from the relativistic Law of summing velocities
in STR, and the same characteristic in the curving space-time of GTR by Einstein.

In Ch. 10A, we'll obtain all Relative and Absolute Pythagorean Theorems for summing in
⟨P2+1⟩ and in ⟨P3+1⟩ all inner curvatures, accelerations and hyperbolic or spherical angular
di�erentials in the most common forms.

Since the admissible spherical curvature has similar properties, then for the radius of
curvature of light's way, the additive optical Newtonian formula acts with the same property:

1/R1 + 1/RF = 1/R2, → k1 + kF = k2 (eα = const), (208A)

where RF is the focal distance of a lens or a mirror, it is either negative, or positive. It is
the �rst formula for summation of curvatures applied repeatedly at summation points
of a certain light ray along optical axis, each time for trigonometric admissible curvatures!).

In STR, from the point of view of a Galilean-inertial Observer Nj in the Euclidean subspace ⟨E3⟩(j), any
accelerated frame of reference Ẽm, as an instantaneous base, preserves formally for his estimations the inertiality
in ⟨P3+1⟩: i. e., Ẽm ∈ ⟨Ẽj⟩. This fact was used in Chs. 5A�7A. However, for an accelerated Observer Nm, situated

in the current Euclidean subspace ⟨E3⟩(m), its frame of reference, noted further as Ẽm, is Galilean-uninertial one

with respect to ⟨Ẽj⟩! Thus we have the relativistic dualism and two ways (simplest and complex) for describing

accelerated movement in ⟨P3+1⟩. Such a dualism was considered, for example, in [105, p. 121-128]. In Ẽm = {x̃, cτ}
coordinates are curvilinear. Mapping Ẽj ↔ Ẽm is isomorphism. Speci�c examples of such isomorphism were given
in Ch. 5A and 6A as descriptions of the same hyperbolic motions in inertial and uninertial coordinates with mapping
pro-generated time-like hyperbola into other curves � as if a time-like catenary and as if a space-like tractrix with
one common internal argument γ along all these curves. The connection between the coordinates in the bases
Ẽm and Ẽm, is expressed also by a smooth function, that is why di�erentials d(cτ) and dx̃k in Ẽm = {x̃, cτ} are

homogeneous linear functions depending on dx
(m)
k and d(cτ(m)) in Ẽm = {x(m), cτ(m)}, this is equivalent to the

one-valued connection of di�erentials as dũ = V −1
(i)

du(m).

The arc of a world line at a point M , as invariant scalar element in ⟨P3+1⟩, may be evaluated by these two

ways, either in Ẽm, or in Ẽm:

[d(cτ)]
2
= [du

(m)
]
′ · I± · du(m)

= dũ
′ · {V ′

(i) · I± · V(i)} · dũ = dũ
′ · G±

(i) · dũ.

The matrix of local linear transformation V(i) is uniquely determined by this general congruent representation of
the metric tensor of inertia (see also in sect. 11.1):

G
±
(i) = R

′ · D± · R = (
√
D⊕ · R)

′ · I± · (
√
D⊕ · R) = V

′
(i) · I± · V(i).
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Thus, the initial metric of the basis space of events is preserved under passage into its accelerated bases. In
the �at Minkowskian space-time ⟨P3+1⟩, applying Gaussian curvilinear coordinates with respect to Ẽm for inner
analysis of accelerated motions formally leads to the use of Ricci tensor calculus with conservation of topology.
So, in uninertial and inertial bases, di�erentials of their coordinates for the same arc are a�ne-connected, this
connection is determined by variable tensor G±

(i)
in the Minkowskian space-time (the so-called metric tensor of

inertia). The tensor acts as a certain function of all coordinates of an arbitrary point M . It is important that

tensor of Riemannian�Christo�elian curvature for G±
(i)

is zero here, as this basis space-time is �at. In an

accelerated frame of reference, bending the coordinate grid takes place just relatively to Observer Nm. He is
situated always in the center of his own instantaneous base Ẽm. But Galilean-inertial Observer Nj notices no

bend of coordinates x and −→cτ with respect to the instantaneous frame of reference Ẽm wherever Nm is in Ẽm. In
particular, a rod moving with acceleration together with Observer Nm is seen by Nj as rectilinear, since for the

Observer at any points of Ẽm the metric tensor is I±. However, uninertial Observer Nm in Ẽm can see the exactly
same rod in Ẽj bent. This relativistic e�ect is observable! There are no additional mechanical stretches in this rod
merely seemed bent, as the same active inner forces may be expressed in any inertial frames of reference (due to

the common scale of a dynamometer in Ẽj). They are identical as absolute characteristics in ⟨P3+1⟩. The metric

tensor G±
(i)

is used for representing the quadratic form of a metric interval in the basis space as the scalar product

of di�erentials. Such tensor is determined also in terms of a linear element ũ di�erentials:

[dl]
2
= du

′
con · ducov ≡ du

′
cov · ducon = du

′
con

ducov

ducon

ducon = du
′
conG(i)ducon ≡

≡ du
′
cov

ducon

ducov

ducov = du
′
covĜ(i)ducov, Ĝ(i) = G

−1
(i) .

In accelerated Ẽm, one have distorted Minkowski geometry, variable G±
(i)

, and the zero tensor of the Riemannian-

Christo�elian curvature (sect. 11.1). Christo�elian symbols in Ẽm play a role of the tensor acceleration.

If gravitation is present, then Nj in Ẽj �xes the distortion of Ẽm too with the metric tensor G± = {gkl} (i. e.,
if till the 2-nd order of approximation to the real distortion!), as Nj and Nm are divided by a �eld. The cardinal
reason for such distortion is that in cosmic space there is only one tool of estimating geometric and temporal
parameters of GTR: it is a light ray between an object and its external Observer (on the Earth Nj in a weak �eld).
This light ray, due to changes in the potential of the �eld on a light's path, is subjected to corresponding Soldner's
[79] and additional Einstein's [69] bends. The idea of accepting rays of light as straight lines or geodesics in GTR)
in cosmic space was taken by Einstein from the experiment of the great Carl Gauss with his students (as a head
of the astronomical observatory in G�ottingen) with measuring the sum of the angles of a triangle formed by three
mountain peaks. It were necessary to solve the dilemma: either what is observed and measured using light rays
should be taken for reality (a positivist approach), or the same should not always be considered as real assessment
of the present, but only as its mapping with possible distortion of real local data (an objectivist approach). Einstein

accepted the �rst point of view, as a result of which, a curvature of the single space-time ⟨R3+1⟩ of GTR with
its time arrow and geometric objects arose. Then for Nj in the �eld, the tensor of Riemann�Christo�el curvature
becomes non-zero in GTR. The dualism in description of the same motion by Nj and Nm was essentially widen:

now two scalar products are one-valued functions one of another. In space-time ⟨R3+1⟩ there is no such deviations

of light rays, because in it these rays are straight lines. In the space-time ⟨P3+1⟩ both deviations of light rays are

�xed with respect to its pseudo-Euclidean straight lines in Ẽj .

Similar dualism takes place in the bimetric theories of gravitation (BMT) with metric tensors I± of the

Minkowskian space-time and G± of the pseudo-Riemannian space-time. They do not full refuse of the Minkowski
space-time, as GTR, and use it in di�erent degree. The �rst BMT was constructed, in the USA, in 1940�1975
by Nathan Rosen [78], who was an assistant and colleague of Albert Einstein, in that number at the Princeton

University! In Rosen variant of BMT, metric tensor I± describes in ⟨P3+1⟩ as in STR the inertial part connected
with the absolute matter motion. The tensor of energy�momentum for a �eld of gravitation is evaluated, it
characterizes this �eld by G±, which determines ⟨R3+1⟩ with the pseudo-Riemannian geometry for observations

of such relativistic movements in a weak �eld. Under translation into ⟨R3+1⟩ by Observer on the Earth, the
time slows down; but geometric parameters are as if distorted, as real kinetic distortion of material objects is

impossible. We have paradox in BMT like apparent optical curving a light picture seen through a lens, where G±

is a gravitational lens for ⟨R3+1⟩ as the lensed space-time! This term is used in Astronomy, when cosmic objects
are observed on the Earth through a strong �eld of gravitation [97].

In the USSR, in 1984-1987 the group of physicists from the Moscow St. University headed by academician
Anatoly Logunov constructed the relativistic theory of gravitation (RTG), as a kind of BMT [104], used the same
two metric tensors with dividing inertia and gravitation unlike GTR. Gravitation is regarded to the tensor physical
�eld in ⟨P3+1⟩ generated by the tensor of energy-momentum for all kinds of matter including �elds. The motions

equations were formulated in the e�ective Riemannian space-time, generated by tensor G± of this �eld.
The Riemannian binary space has some internal local geometry. Its geometry has a di�erential character,

de�ned through the set symmetric metric tensor of its space, as the function of a point element. But the Riemannian
geometry as a whole di�ers signi�cantly from homogeneous geometries, such as quasi- and pseudo-Euclidean ones,
in which the concepts of group of motions, freedom of motion of �gures, and topological properties are of particular
importance. For the Riemannian space as a whole with its inde�nite topology, the notion of "embeddability" with
respect to the Euclidean superspace does not make any sense. This causes the uncertainty for it of the minimum
dimension of the enveloping superspace nmin. But if we restrict ourselves to the study of any topologically a�ne-
equivalent domain of the Riemannian m-dimensional space, then the value of nmin is determined entirely by its
local di�erential-geometric properties. The symmetric tensor of ⟨Rm⟩ contains a maximum of k = m · (m + 1)/2
independent functional scalar elements gij in all its cells. Hence, the domain D of the Riemannian m-space is

embeddable in �at ⟨Ek⟩ without changing internal geometry. This was inferred strictly by E. J. Cartan [108].
Consider an analytical de�nition of D in the superspace ⟨En⟩, where n ≥ k, with its Cartesian base through
n × 1-radius-vector u with m degrees of freedom of translations. Let each degree of freedom u corresponds to the
Gaussian curvilinear coordinate vt of the Riemannian m-space. Then there is an exact map v(u) ↔ u(v). Hence,
at an each point v of D in ⟨Rm⟩ there exists n × m Jacobi matrix du/dv (n > m) as 1-st derivative of u in v.
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The internal geometry of D is de�ned through the homomultiplication as the m×m metric tensor of ⟨Rm⟩ ⊂ ⟨En⟩:

dv
′ · G+ · dv = du

′ · du ⇔ G
+

=

{
du

dv

}′
·
{

du

dv

}
, det G

+ ̸= 0 (v,u ∈ D).

For ⟨R3+1⟩, due to A. Friedman in 1961 [109], there is 10D space of embedding ⟨P9+1⟩, and then

dv
′ · G± · dv = du

′ · I± · du ⇔ G
±

=

{
du

dv

}′
· I± ·

{
du

dv

}
, det G

± ̸= 0 (v,u ∈ D).

For the functional independence of all k elements of the symmetric metric tensors, it is necessary that the inequality

n ≥ k holds. In the case of an equal sign, this independence is realized only with the a�ne topology of the

given Riemannian space. Otherwise, they are connected by some parameters. So, Cartesian coordinates of a

sphere are connected by its radius R. For n > k, the analogue of Gaussian Egregium Theorem allows to lower

the order of embedding of a bounded domain of the Riemannian m-space to at least nmin = k using bending.

By this way, an isomorphic translation of the motions described in k-dimensional pseudo-Euclidean space, but

within m-dimensional pseudo-Riemannian space embedded in it, is carried out. For the observational pseudo-

Riemannian space-time ⟨R3+1⟩, it is nmin = 10. ⟨P9+1⟩ can be a �at space-time for complete mapping motions

in a gravitational �eld by Observer in a weak �eld. (See more in 2004 [15, p. 290-293] and further in 2011 [107].)

* * *
For simplest kinds of gravitational �elds, it is possible to use our trigonometric approach

with the Newtonian Principle of Equivalence as −g(i) = g(a) ≡ g(f). The hyperbolic motion
in ⟨P3+1⟩ (see in Ch. 5A), produced by the uniformly accelerated rectilinear movement in
the time under an action of a constant tangential inner acceleration g(a), is as if physically
equivalent to the hyperbolic motion under (only!) an action of a static gravitational �eld with
the �eld intensity g(f) (as the rectilinear movement in the time) � both beginning from the

origin of the common base Ẽ1 (with x0 = 0, t0 = τ0 = 0). Another simplest pseudoscrewed
motion in ⟨P3+1⟩ (see in last Ch. 10A), produced by the uniformly accelerated circular
movement in the time under an action of a constant centripetal inner acceleration g(a), is as
if physically equivalent to the pseudoscrewed motion under (only and one-times!) an action
of a spherically symmetric gravitational �eld with the �eld intensity g(f) from an astronomic
object (as the circular planetary movement in the time) � both with the common origin of the
base Ẽ1 (with x0 = 0, t0 = τ0 = 0). For a correct comparison of the local coordinate time t
(usually on the Earth) and the local time in the motion and in the �eld τ , we chose for them
as now adopted the local standard atomic clocks. Below at estimations of the potentials,
where g ≈ const and v << c, for both rotations we use E ≈ m0v

2/2 = J0w
2/2 = m0(rw)

2/2.

d
d(ct)
d(cτ)

= d cosh γ(a) = g(a)dχ/c
2 = F(a)dχ/(m0 · c2) = dE(a)/E0 = d(PE)/c2,

d(ct)
d(cτ)

= cosh γ(a) = 1 + g(a)χ/c
2 = 1 +∆E(a)/(m0 · c2) = 1 +∆(PE)/c2 > 1,

d(ct)
d(cτ)

= cosh γ(a) = 1 + (rw(a))
2/2c2 = 1 + E(a)/(m0 · c2) = 1 + (PE)/c2 > 1.


(209A)

d
d(ct)

d(c
•
τ)

= d cosh γ(f) = g(f)dχ/c
2 = F(f)dχ/(m0 · c2) = dE(f)/E0 = d(−PG)/c

2,

d(ct)

d(c
•
τ)

= cosh γ(f) = 1 + g(f)χ/c
2 = 1 +∆E(f)/(m0 · c2) = 1 +∆(−PG)/c

2 > 1,

d(ct)

d(c
•
τ)

= cosh γ(f) = 1 + (rw(f))
2/2c2 = 1 + E(f)/(m0 · c2) = 1 + (−PG)/c

2 > 1.


(210A)

In accordance with the classical Newton's Equivalence Principle, we introduced in (209A)
accelerational and in (210A) gravitational hyperbolic cosines in result of acting inner force
F = m0g on a body with inner acceleration in direction of pseudonormal, causing equivalent
cosine time dilation dt⇒ dτ always in direction of tangent to a world line (see in Ch. 10A).
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We established on these extreme examples of motions � hyperbolic and pseudoscrewed,
that a transition to proper time dt ⇒ dτ requires proportional expenditure of energy, here
mechanical or gravitational, with increasing potential. It is the transition to proper time
needs in the increase of energy's level (as potential), with respect to time in immovable state
or in inertially moving frame of reference in (209A) and (210A). For arbitrary motion, our
inferring is generalized by decomposition of the inner acceleration g onto tangential and
normal accelerations, with respect to the current velocity vector v, in accordance with the
Absolute 3D Euclidean Pythagorean theorem (145A) � see it strictly in (229A), Ch. 10A.
Therefore the true cause of matter inertia in the real space-time ⟨P3+1⟩ is a transition to
proper time dt ⇒ dτ , which is appeared in the process of accelerated/decelerated motions
with energetic expenditures! This statement corresponds to the Higgs theory of inertia [82].

For instance, the direct and reverse hyperbolic motions need in equal expenditures of
energy � see at Figure 3A. It is the transition to proper time dt ⇒ dτ is felt by us or
perceived by instrument as the inertia! Such translation of the time dilation in the inertia
is realized in the Higgs �eld with the de�nite energetic expenditure!

The gravitational time dilation was predicted by Einstein in 1907 [73], but as local one!
From (210A) we get the Einsteinian gravitational time dilation, however at c = const (!):

d(c
•
τ1)

d(c
•
τ2

=
d

•
τ1

d
•
τ2)

= [1 + (−P2)/c
2]/[1 + (−P1)/c

2] ≈ 1 + [(−P2)− (−P1)]/c
2. (211A)

However such time dilation is evaluated up to now by decreasing electromagnetic radiation
frequency, usually by oscillations frequency of photons. While, locally in ⟨P3+1⟩, photons
get farer from the smaller negative potential −P2 to the bigger negative potential −P1, their
kinetic energy hν and frequency ν decrease due to overcoming negative [(−P2)−(−P1)], but
with increasing energy's level (as potential) in the �eld with −P1. Therefore the Einsteinian
gravitational time dilation has a pure quantum�mechanical nature under conserving ⟨P3+1⟩!

If P1 = 0 = max, then
•
τ1= t(1) is also non-relativistic time of N1 on the Earth, and (!)

the Newtonian potential ofM gives us rather precise estimation in the near-Solar region [73]:

d(ct)

d(c
•
τ)

= cosh γ(f) = 1 +
(−PG)
c2

≈ 1 +
fM
r /c2 = 1 + g(f)r/c

2 > 1. (212A)

Hence, "gravitational twins paradox" with g(f) is possible in addition to g(a) in STR, Ch. 5A.
At free accelerated motion in space-time under acting gravitation, we obtain exactly twice

time dilation from two factors g(i) and g(f) � factually Newtonian and Einsteinian at only
equivalence of inertial and gravitational masses. One must choose � either additional local
curving of a world line of the free moving object M from g(f) in the Minkowski space-time
or, according to Einstein [69], equivalence local curving of space-time with its transformation
into the pseudo-Riemannian space-time with the sign inde�nite metric tensor. According to
our tensor trigonometric approach, we chose �rst variant with STR in ⟨P3+1⟩.
Free Science allows freedom of choice! Who believe it should be controlled hold back it!

Up to now we dill with massive particles or body with the relativistic mass in moving
m = m0 · cosh γ. The same cosine coe�cient leads to the time dilations in (209A) and
(210A). In the following, we'll dill with the so-called massless particle, mainly, as a photon.
The term "massless" means only their zero mass as if in absence of motion. According to
the Planck-Einstein formula for massless particles, for example, for a photon, the kinetic
energy of its motion is equal to EL = hν, i. e., it is de�ned only by the frequency ν
of its oscillation during motion. And for them the concepts in (209A) accelerational and
in (210A) gravitational hyperbolic cosines are as if not acting. Thus, instead (212A), for
massless particles with a photon, we must adopt, that

d(ct)

d(c
•
τ)

=
•
ν
ν = λ

•
λ
= 1 +

(−PG)
c2

≈ 1 +
fM
r /c2 > 1. (ν · λ =

•
ν ·

•
λ= c = const) (213A)
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A photon, as the Newtonian corpuscle of light, was introduced again in XX cent. by Albert Einstein
to interpret due to the Quantum mechanics dualism the Laws of photoe�ect by Alexander Stoletov
(in 1888-90). Evaluate Newtonian, but with STR (1), and refractional (2) approaches to revealing
complete de�ection of a light ray near the Sun. Let that a photon of mass m (in moving) moves
with respect to an astronomical mass M at velocity v = c under angle ε to the radius-vector r from
M barycenter. By the Newtonian Laws with STR, there holds:

F = F · eβ = [(f ·M ·mL)/r
2] · eβ = mLg · eβ = [(mL · c2)/R] · eβ =

⊥
F · eν + F · eα. (214A)

⊥
F= sin ε · [(f ·M ·mL)/r

2] = (mL · c2)/
⊥
R = EL/

⊥
R = hν/

⊥
R , (214A− I)

F = cos ε · [(f ·M ·mL)/r
2] = (mL · c2)/ R =

d(mL · c)
dτ

=
dPL

dτ
=

dEL

dl
=

d(hν)

dl
. (214A− II)

Two orthoprojections of the inner force F , acceleration g and curvature K = 1/R, as normal and
tangential, are summarized by the Pythagorean Theorems as above and generally in last Ch. 10A.
Since M >> m, then a photon at each moment of time receives some total di�erential of movement
in ⟨E3⟩ around the Sun. F tangential projection causes acceleration/deceleration of the light particle
along vector-velocity c. For the photon, it merely increases or decreases its energy EL and oscillation
frequency during motion at c = const. Hence, this projection (with very small change of mass m)
does not in�uence on the Newtonian normal spherical deviation of a light. Hyperbolic curving is
also absent at c = const as the scale coe�cient to time by Poincar�e. Contrary, F normal projection,
as a centripetal force, causes the Newtonian bend of the light ray with its local normal radius.

Note that the trajectory of this light ray is extremely stretched due to the high velocity c of light.
For the simple trigonometric approach, this makes it possible to construct a special current right
triangle with a constant leg b opposite the spherical angle ε between the vectorial speed of light c

and the radius-vector r, directed as �eld's intensity g(f). From (I) we have: 1/
⊥
R = sin ε(fM)/(rc)2.

In the right triangle [79; 69; 75, p. 351-355], the leg b = const is the distance between barycenter of
M and the intersection point of this light ray two asymptotes: b ≈ r · sin ε ≈ min(r), the extremely

stretched arc of this light ray and second leg is l ≈ r · cos ε; then 1/
⊥
R = sin3 ε(fM)/(bc)2.

With (I) this light ray bend is expressed in the di�erential and integral forms as follows:

dδI = dl/
⊥
R ≈ d(−r · cos ε)/

⊥
R = b d(− cot ε)/

⊥
R = [fM/(bc2)] · sin ε dε = [−P (ε)/c2] dε > 0,

δI ≈ [fM/(b · c2)] ·
∫ π

0

sin ε dε = 2fM/(b · c2) = 2 · (−Pmin)/c
2.

With (II), the photons in this light ray itself along the vector c, till the middle way point, receive
the energy, and after middle way point, give back it as ±h∆ν, with preserving their initial energy (!)
Just this Newtonian estimation δI was obtained by Einstein in 1911 [76, p. 202] at c = const, but as
often for him, without references to predecessors. So, Johann von Soldner was historically �rst, who
evaluated it in 1801 [79; 97, p. 7] following to the Newton's gravitational and corpuscular theories.
Moreover, Isaac Newton forecasted discovery of this e�ect for his light corpuscles in 1704!

In 1915, Einstein evaluated GTR correction for a light ray bend in a spherically symmetric
gravitation �eld using the Tensor Calculus, with decreasing c in the �eld. New value was proved
to be twice larger. To estimate in ⟨P3+1⟩ this 2-nd term, we use the mathematical analogy of light
propagation in the optic medium with variable refraction index and in the gravitational �eld with
variable potential [75, p. 308]. But we took into account the variable frequency of photons in parallel
projection (II), causing by the change of photons kinetic energy hν from the variable potential, and
constancy of the light speed with relation c = ν ·λ = const. The oscillations frequency of photons ν
increases in the 1-st part of its trajectory and decreases in the 2-nd with the same relation for ±∆ν,
with the corresponding changes of their waves length ∓∆λ. The angle of incidence is ε, if ε ≤ π/2,
the angle of incidence is (π−ε) if ε > π/2. With (II) and the Snellius Law (1626), this is interpreted
as the additional to the classic Soldner's bend of a light ray towards the barycenter of M :
sin ε/ sin(ε− dδII) =

ν+dν
ν

, ε ≤ π/2; sin(π − ε)/ sin(π − ε+ dδII) =
ν−dν

ν
, ε > π/2 →

→ dδII = ±dν/ν =
⊥
dc /c =

⊥
g dτ/c =

⊥
g dl/c2 = dl/

⊥
R = dδI . Here 1-st di�erencial of the deviation

of the vector c with the light ray is orthogonal to it and hence has above corresponding notation.
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Under �nally been accepted by physicists condition in the �eld ν · λ = c = const, we have
dν/ν = d(c/λ)/(c/λ) = −dλ/λ. The refractional spherical deviation δII in the gravitational
�eld relates only to oscillating time particles moving near light, including De Broglie ones!
For a ray along the central axis from the Star to the barycenter of mass M, there is no
gravitational refraction at all (how for an optical spherical lens!) as the normal to world line
deviating projection of the gravitation force F is zero in this case with ε = 0.

We got with (214A-I and II) twice deviation of a light ray from the Sun potential changes:

δ = δI + δII = 4fM/(bc2) = 4(−Pmin/c
2) = 4(−PS/c

2) · (r/b) � under c = const! (215A)

1-st curving is caused by variable normal g(f), 2-nd curving is caused by variable PG.
The photon's momenta vectors P0 and p change only direction. The work of positive or

negative parallel projections turns in positive or negative changes of its kinetic energy ±∆hν.
The normal positive or negative parts of photon's energy changes relate to the Newtonian
part also in accordance with the Law of Energy Conservation:
dE = ±(−Pmin)·sin ε dε·hν0/c2, ∆Emax = (−Pmin)·hν0/c2, hνmax = hν0[1+(−Pmin)/c

2].

We may add to the Poincar�e Principle of Relativity in ⟨P3+1⟩, but with a �eld of gravity:
The gravitational potential in any world point cannot be determined by the
value of speed of light c = νλ measured locally by some manner. Scalar speed of
light c in the cosmic vacuum is equal to the Poincar�e scale coe�cient for time.

A very far Observer in a weak �eld perceives the same local events in a strong �eld as if in
distorted space-time ⟨R3+1⟩ with bivalent metric tensor up to 2-nd order of approximation.

Consider another, but as if GR-e�ect � the "red shift" of the Sun radiation spectrum,
predicted in 1913 by Albert Einstein. Though it was predicted �rst in 1783 by John Michell
in his letter to the London Royal Society [81] on the basis of the Newton's corpuscular and
gravitation theories! It is caused by slowing-down of all electromagnetic oscillations from
the Sun surface due to there very strong negative potential [75, p. 346]. Due to (212A-II),

we have: λ >
•
λ , (ν ·λ = c). Let's pay attention to the fact that the assessment of this e�ect

is con�rmed precisely on the Earth with the atomic clocks, i. e., in a weak gravitational �eld!
The "red shift" was precisely a�rmed on the Earth in 1959 by R. Pound and Jt. Rebka with
the use of M�ossbauer's e�ect [96]. Though the di�erence of two potentials was very small.

We interpret "red shift" by the energetic part of our conception without normal refraction
(at ε = 0). The photons or other massless particles, under negative acting of gravitation,
get decreasing of their kinetic energy E = hν with increasing of their light waves length
λ = c/ν = h/(E/c) = h/p for an Observer of this radiation on the Earth. For massless
particles at v = c, there holds E = pc = mvc = mc2 as here E0 = 0. (For a body, we have
equivalent decreasing of total energy E and pc = mvc (Ch. 5A) with increasing of De Broglie
waves length λ = h/p = h/(mv).) Then this e�ect for the Sun radiation is explained by us on
the basis of the Newtonian gravitation accompanied by the quantum-mechanical approach:

EL = hν = mLc
2 =

•
EL −(−PS)·mL = h

•
ν −(−PS)·mL < h

•
ν ⇒ ν <

•
ν, λ >

•
λ, (216A)

where mL = hν/c2 is the Planck�Einstein formula for the mass of a moving photon;
•
ν ,

•
λ

are local values on the Sun surface; ν, λ are values on the Earth. The energetics approach,
with full executing the Law of Energy Conservation, were �rst noted by the eminent physicist
(progenitor of the matrix quantum mechanics) Max Born [74]. He did not develop this idea
and rested Einsteinian GTR-interpretation of this e�ect. Recall also (see more in the end of
Chs. 12 and 7A), that relation E = mc2 for the light's energy, as a kind of electromagnetic
radiation, was discovered in 1900 by Henri Poincar�e in one from many his pioneer articles [62].
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Indeed, due to this Law, while photons get farer from the Sun to the Earth, its kinetic
energy and frequency decrease due to overcoming the negative Sun potential in direction to
the Earth. Without the Doppler e�ect, suppose initially that speeds of light near them are:
•
c =

•
ν ·

•
λ � on the Sun, and c = ν · λ = on the Earth at h = const.

From (216A), we obtain result: ν = c/λ <
•
c /

•
λ =

•
ν. Further we have only two variants:

(1) λ >
•
λ ⇒

•
c = c � it is correct variant, the e�ect "red shift" is �xed on the Earth;

(2) λ =
•
λ ⇒

•
c > c � it is incorrect variant. (The variant

•
c < c is absent in (216A) at all!)

One must choose either the correct variant (1), or choose even the non-existing incorrect
variant (2) and in the "red shift" theory refuse of the Law of Energy Conservation. We chose
variant (1). It corresponds to strictly inferred relation (216A). The photons on the Sun in
its strong gravitational �eld have the initial frequency by the local atomic clocks on the Sun
and the wave length (as those radiated on the Earth or without gravitation at all). When
they achieve the Earth, this radiation has less its frequency by the local atomic clocks on the
Earth proportionally to decreasing of photons energy and more its wave length, according to
variant (1) with the "red shift". Interchange a source of radiation and Observer. Due to the
Principle of Relativity, Observer in the strong �eld will see inverse "violet shift". Both shifts
of De Broglie waves length must take place also for massive or massless particles. In essence,
this e�ect relates to Newtonian theories with the Quantum Mechanics, but no to Relativity!

It is usually believed that the third GR-e�ect "the Mercury perihelion relativistic shift"
is not explained in frame of Newtonian theories with STR, and can be interpreted only
by GTR in the strange form: "It is GTR-equations' solution". Our its simplest tensor
trigonometric explanation with immediate physical interpretation in ⟨P3+1⟩ is based on
three STR cosine time dilations (Ch. 3A, 5A), with their doubling as in the equivalent
accelerational and gravitational hyperbolic cosines in (209A) and (210A), in that number, for
relativistic rotations. For estimation of this e�ect, we adopt the next. (1) The motion of the
Mercury is almost circular. (2) In two rotational formulae from (209A) and (210A), we use
now the values of kinetic energy E ≈ mv∗2/2 = Jw∗2/2 = m(rw∗)2/2 as approximated well
to relativistic values, instead classical. On the orbit of the Mercury, we obtain in rotational
parts of (209A) and (210A) three STR cosine dilations: one by translation to the relativistic
mass m = cosh γ ·m0 and two by translation to the proper velocity in the item v∗2, where
v∗ = cosh γ · v. With (206A), (209A), (210A), they lead to the summary time dilation by
six factors kE = cosh γ − 1 under approximation cosh6 γ − 1 ≈ 6(cosh γ − 1) at v/c << 1.

With respect to a time in a weak �eld as on the Earth, for the orthospherically planetary
rotated Mercury at our correction above in (209A) and (210A) in the base Ẽ1 and without
hyperbolic bending of its world line, the perihelion is shifting orthospherically with coe�cient
k = 3× 2πr, that up to now nobody physically understanded ! Estimate this relativistic shift
of the Mercury perihelion in one its revolution, in such our interpretations at v/c << 1:

∆ = +T · 6 (cosh γ − 1) · dα
dt

=
6 · 2πr
v

· (w∗
α − wα) ≈

12πr

v
· sinh

2 γ

2
· wα =

6πr

c2
· v∗ · w∗

α =

=
6πr

c2
· v

∗2

r
=

6πr

c2
·
⊥
g(f)=

6πr

c2
· fM
r2
≈ 6π · fM

rc2
= 6π · (−PG)

c2
> 0. (217A)

We got the well-known and con�rmed formula for this e�ect that accumulates over time.
With such approach, it is not necessary to reduce the local speed of light and to bend
Minkowski space-time, but only to dilate time by six factors kE (99A). This positive orbital
orthospherical shift is expressed in Ẽ1 in the normal plane of Euclidean rotations ⟨E2⟩N as if
together with negative Thomas precession (172A) around the instantaneous axis eµ ≡ eα×eν
perpendicularly to the orbit. The eccentricity of the Mercury orbit gives only an astronomical
opportunity us to observe this perihelion shift. The average radius r is calculated through
the well-known connection r = a(1− e2) with a big semiaxis of the exactly elliptical orbit.
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Albert Einstein evaluated this additional shift of the Mercury perihelion by the so called
"exact formula" (inferred above), but in the frame of GTR with curving by gravitation space-
time, in his articles [72, 69]. For objectivity, it should be noted, that Einstein took the well-
known in that time formula by Paul Gerber again without reference, published twice in 1898
and 1902, which has explained the Mercury perihelion's shift very well, but from the non-
relativistic arguments [99]. Einstein has expressed the opinion that such physical formula
would be impossible to derive strictly as the exact solution from the GTR equations. However
in 1916, in the frame of the Einsteinian GTR, the World War I veteran Karl Schwarzschild
introduced dilation of coordinate time into proper one [100; 75, p. 326, 348], and, in his new
coordinates, realized such "exact formula". In Chs. 5A and 6A, we showed that translation
dt→ dτ leads in Theory of Relativity to the loss of polysteps principal operations ⟨roth Γk⟩.
Such approach is arti�cial as if for a necessary known result, as was often in GTR infers.

Note, thanks to the mathematically identical sixfold dilation of time in (217A), we proved
that in Newton's Law of Universal Gravitation, both gravitational masses must not only be
equivalent to the inertial masses, but also be relativistic, i. e., with their own cosine factors!

For executing the Law of Energy conservation, we must adopt, that energetic expenditure
on this Mercury perihelion positive relativistic shift in time is compensated by the Sun, close
enough to the Mercury. Contrary, the electron in the Thomas precession has no energetic
compensation. Then the Thomas precession is caused physically also by negative one-times
kinematic energy rebound with the factor kE in (99A) and (172A) of the increased relativistic
energy of rotation on orbit with the same factor kE due to w∗

α > wα under translation to
proper time. And, thus, this rebound restores acting of the Law of Energy conservation!

In our STR-interpretation of ∆, in accordance with Einstein's wishes in the Epigraph to
Chapter, it is seen that the dissonance δ = w∗

α−wα = (cosh γ−1) ·wα is the quintessence of
our formulae (217A) and (172A), which moves with the plus sign the Mercury perihelion and
with the minus sign in (172A) the Thomas precession, and kE = ±(cosh γ − 1) = ±∆E/E0

is an energetics factor in them. The dissonance arises from the fact that both these rotations
with close velocities act in adjacent Euclidean planes at small inclination γ between them.

Our explanations of GR-e�ects are in accordance with the Principle of Correspondence by
Niels Bohr! So, transferring to non-relativistic time and ignoring the gravitational refraction,
we return to the Newtonian theory. We are not at all satis�ed with the notorious approach
to explaining GR-e�ects with camou�aging formulations like: "it is equations' solution"
(similar to abstract fantasies). Theory of Relativity in its original sense with the group
mathematical approach by Poincar�e�Lorentz is the rigorously determined and exact science.

There is an undeniable fact: GR-e�ects in the Solar system are �xed by Observers on the
Earth in a weak �eld of gravitation, but occur in a strong �eld of gravitation near the Sun.
Therefore, their full description must have dualism from two points of view as in BMT. But
GTR gives only single interpretation [75, p. 346-356], as seen by Earth Observers without
taking into account that local information must reach him through decreasing gravity �eld.
Such positivist interpretation inevitably leads to violation of the Law of Energy Conservation.

The historical statement of David Hilbert as the �rst author of GTR motions equations
[70] (1917) becomes: "I assert ... that for the general theory of relativity, i. e., in the case
of general invariance of the Hamiltonian function, ... corresponding to the energy equations
in orthogonally invariant theories do not exist at all. I could even take this circumstance
as the characteristic feature of the general theory of relativity." [71]. This has not been
recognized by physical community for a long time. This violation is caused by that GTR
space-time do not contain the ten-parametric group of motions (presenting in ⟨P3+1⟩), due to
its pseudo-Riemannian space-time bent in a �eld of gravity � see in [105, p. 163]. That is why,
D. Hilbert, yet in the beginning of 1915, put the task for famous colleague Emmy Noether
in G�ottingen: to �nd conditions for ful�lling this Law of Nature. And in 1915, she proved
the fundamental Theorem of mathematical physics, connected the Integral Law of Energy
and Momentum Conservation for motions with parameters of a space-time symmetry [102].
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However the general pseudo-Riemannian space-time is non-homogeneous and non-isotropic.
Therefore this fundamental classical Law of Nature cannot hold in it. The curved space-time
cannot have even constant curvature, as it depends on hierarchical casual mass distribution.

In 2004, with publication in Russia of 1st edition of our "Tensor Trigonometry" [15], at
this time the eminent English mathematician, physicist and GTR philosopher Roger Penrose,
professor of Mathematics at the University of Oxford, wrote the similar in his book [98]:

"We seem to have lost those most critical conservation laws of physics, the laws of
conservation of energy and momentum! In fact, there is a more satisfactory perspective on
energy-momentum conservation, which refers also to certain curved space-timesM as well
as to Minkowski space . . . These conservation laws hold only in a space-time for which there
is the appropriate symmetry, given by the Killing vector k. Nevertheless, they do not really
help us in understanding what the fate of the conservation laws will be when gravity itself
becomes an active player. We still have not regained our missing conservation laws of energy
and momentum, when gravity enters the picture." Anything to add to these clear words!

Soviet academician Vladimir Fock proved that predictions of GTR concerning GR-e�ects
in the Solar system are ambiguous [77]. They depend on coordinate conditions. By the cause,
Einstein considered GR-e�ects as if they are in a weak stationary gravitational �eld in fact
embedded into the Minkowskian space-time ⟨P3+1⟩ [105, p. 156�165]. Such an arti�cial
approach did not �x this problem. Numerous strange attempts to combine GTR without
group approach and the Quantum Mechanics with group approach, including many years
Einsteinian himself, have not yielded any results and do them similar squaring a circle (but
here as a hyperbola). The main reason of this lies in the positivist essence of the GTR, which
combines the real and the observable into one whole. If return to the Poincar�e � Minkowski
space-time, then this problem can be solved quite naturally, as was in the well-known Pole
Dirac approach to the Quantum Mechanics [101], but now together with the Higgs �eld.

The �x-idea of Einstein's GTR [69] is expressed by the General Principle of Relativity
as his Postulate: All physical Laws in free arbitrary moving frames of reference Ẽm must
have locally standard forms determined by metric tensor I± (as if in all Ẽk of STR). Strictly
speaking, this Postulate is a hypothesis and relates only to zero point of Ẽm, while it is not
con�rmed convincing enough, so, by experiments with a free horoscope in a cosmic orbit.
STR is valid in GTR only in locally tangent ⟨P3+1⟩, hence the Mach's base Ẽ0 was refused
by Einstein. Although he did not turn away from the Mach's positivism [55). That is why,
GTR cannot be realized in the material Higgs �eld with its Galileo inertia! Thus, in GTR
all frames of reference free-moving in presence of gravitation became equivalent. This was
expressed in his well-known extreme, but scienti�cally honest statement on the equal rights
of Kopernik and Ptolemy Solar systems. Indeed, in Einsteinian curved space-time, it is so.
In �at Minkowski space-time it is not so! Unfortunately, the very aggressive behavior of
speci�c apologists of a really curved space-time still resists for other logical points of view
in the sphere of scienti�c publications and they continue to make from Albert Einstein as
if the new Ptolemy how in the middle Ages. So, recall wise saying of Einstein himself:
�Um mich f�ur meine Autorit�ats Verachtung zu bestrafen, hat mich das Schicksal selbst zu
einer Autorit�at gemacht!� (To punish me for my contempt for authority, fate made me an
authority myself !) The �rst con�rmation of GTR curved space-time with a lot of sensational
noise around this event was that astronomers con�rmed the twice bend of a light beam close
enough to the Sun during its eclipse. Nobody remembered that a light beam is bent, passing
through an optically non-homogeneous medium due to the Snellius Law under the in�uence
of electromagnetism, which determines the refractive index, and this may be also in addition
to its Soldner's bending. Nobody had previously thought to curve our space under acting the
electromagnetic �eld to explain such a bend of the light beam. Those who accept everything
remotely observed and measured as an exact reality are committed to positivism, although
this pseudo-scienti�c philosophy with its apologists as if remained in the 19th century.
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The observed and real space-time cannot be perceived identically on the astronomical
scale of the Universe, if only because the information about variously distant space objects
arrives to the Earth at di�erent time intervals. So far, no one has managed to make this
picture seem us simultaneous. However, by our opinion, the most unacceptable thing in the
GTR is such, that in gravity �eld its real distortion propagates not only to the time, which
is quite natural even due to STR, but and to the geometric parameters of material objects in
the Universe?! Similar a misconception was once held by some relativists regarding reality of
the Lorentz contraction (see in Ch. 4A). The enthusiasm with the empty project of voyages
through "wormholes-tunnels" in the Universe, with a renovated and now cosmic perpetuum
mobile, and many other baseless GTR-fantasies are an usual pseudo-scienti�c PR-populism!

These unanswered by the GTR questions are answered clarity and unambiguously by
BMT�theories with two metric tensors. The �rst BMT (as if with metric tensors I± of basis
⟨P3+1⟩ and G± of observable ⟨R3+1⟩ till the 2-nd order of approximation to the possible
distortions), was created by Nathan Rosen, the Einstein's assistant and clouse colleague! [78].
Correct physical conclusions can be drawn as true only from local and not observed data.
That is why, ⟨P3+1⟩ exists really in BMT, but with its accompanied observed lensed mapping
as ⟨R3+1⟩, i. e., with acting the great Mach Principle [55]! Conception of BMT, by historic
roots, rises on the Hegel dialectic spiral [57] to teachings of great thinkers of the Past: I. Kant
with his Postulate on the basic role of the Euclidean space in the real world [56] and, of
course, I. Newton with his Postulate on the absolute space and time [54]. These notions were
united by H. Poincar�e in 1905 [63] and by H. Minkowski in 1909 [65] in the absolute space-time
⟨P3+1⟩ of the Nature. BMT may interpret the pseudo-Riemannian space-time as observable
lensed Minkowski space-time. Then all motions and events have place really in basis ⟨P3+1⟩,
what gives compatibility with the Principles of Correspondence, Causality, Uniqueness, with
the Law of momentum-energy conservation according to the Noether Theorems [102], and
with the Laws of Quantum mechanics (as in STR)! But in order to close this problem, it
is necessary to abandon the existing up to now positivist approach to General Relativity
and theoretically to separate the real and observed pictures of the Universe. Such dualism
of BMT approach may be used in explicit description of relativistic motions in space-time
under the �eld of gravitation: �rstly, as real ones in 4D Minkowskian space-time, and,
secondly, as observable ones in ⟨R3+1⟩, or even in the 10D space-time ⟨P9+1⟩ (see above),
with the use of the Tensor Trigonometry. (See more about the last idea in [109], [15], [107]).

In passing, we note that BMT leads to the a�ne topology of the Nature space-time with
properties of endlessness and in�nity. Ones argue so: an in�nite space-like part of this 4D
world must have due to the H. Olbers' paradox (1826), the light night sky, contrary to the
�nite world of radius R. But the mathematical in�nity of ⟨P3+1⟩ does not mean the in�nity
of world's matter. It may be limited. How apologists of the �nite space-time can place in it
the endless time-arrow without violating the determinism? According to H. Poincar�e, this
time-arrow is imaginary, which revealed by him a pseudo-Euclidean nature of our space-time.

A dual opinion on the "Black Holes" in Big Cosmos from points of view of descriptions
in ⟨P3+1⟩ and in observed ⟨R3+1⟩ deserves a brief explanation. So, these objects were
predicted in 1783 by John Michell on the basis of Newtonian Theories and later they have
considered in details by the great Laplace [81]. The smaller and very larger "Black Holes"
can be formed accordingly by some enough massive tight Star and in the center of some
very massive Galaxy, including our Milky Way. Such "Black Holes" are surrounded by their
theoretical horizon of events. And what is happening beyond this horizon, no one knows, but
purely theoretical it is possible to look there. For massive tight Stars, the Michell's radius
of such "Black Hole" is equal r = fM/c2, even in according to the Newtonian Theories.
The so-called Schwarzschild radius for the Einsteinian "Black Hole" is twice more, i. e., as
r = 2fM/c2 [100]. This dual opinion is explained by the equivalent in�uence of accelerational
and gravitational hyperbolic cosines from (209A) and (210A), as we noted above for similar
doubling the relativistic Mercury perihelion shifts and consider further in last Ch. 10A.
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The Hubble Law in its 1-st ancestral form ∆λ/λ = −∆ν/ν = −∆hν/hν = Hl/c = Ht,
with author's interpretation of the constant H, only connects the relative light's "red shift"
and the distance l or "light time" t till a Galaxy. Later, from discovery in 1929, it was used
for con�rmation of the Theory of Expanding Universe by Alexander Friedmann (and later by
others with acceleration?!). But this Law have another logical interpretation of the eminent
astrophysics F. Zwicky in 1929 (introduced concept of "black matter"). So, this "red shift"
may express the lack of the photons energy proportionally to their long way from a Galaxy to
the Earth due to permanent loss of their energy (like a certain cosmic "friction"). Then the
photons lose energy with decreasing frequency and increasing wave length at c = const. And
as a result of such interpretation, a need in the so called dark energy to justify the hypothesis
of the Universe expansion with its acceleration is absent. At analyzing of this red shift, the
light coming from the galactic cloud from billions of Stars, as something average with a
uniform scale of local time, should not be considered, of course, exactly as a beam of light
from the Sun or other single Stars. Though, for the book author, a pulsating model of the
Universe (expansion-contraction) is more preferable, since in it matter does not disappear
anywhere and does not come from anywhere, under its conservation. The strange courage is
striking when some hypotheses relating even to the Universe and its hyper-remote objects
are easily turned by their apologists into the �nal theories that are not subject to doubt!

A priori a certain geometry of the real space-time in the large was not here discussed. For
our opinion, the complete knowledge of its global structure, in principle, cannot be achieved.
Illusions of complete knowledges in Mathematics were broken by the G�odel's Theorems.
But in Theoretical Physics, the idea about transcendent nature of all the Universe is not
yet understood. Moreover, in our time, any physicist-relativist must decide on the main
dilemma: either to accept again the great Principle of Relativity by Galileo � Poincar�e,
formulated fully at the beginning of the 20th century, compatible with the new Higgs theory
of matter inertia (even with the Rosen's BMT under two metric tensors), or to continue
to stubbornly adhere to General Principle of Relativity by Einstein (1916), incompatible
with the Higgs theory, as well as with the Quantum Mechanics; and what is even worse: to
continue to impose the latter in new scienti�c publications and in the educational process.
However a concept of the entire Universe curved by the global gravity was not con�rmed by
numerous long time astronomical observations, beside of curving the light rays propagation.

Since the 1-st edition of our monograph in 2004 [15], in �nal Chapter 10A, we apply
widely the Poincar�e�Minkowski space-time (but now combined with the Higgs �eld), using
our tensor trigonometric approach, added by its di�erential and integral parts, for analysis
of motions along any world lines and regular curves in pseudo- and quasi-Euclidean spaces.

As a result, it is possible to adopt reasonably the following important inferences.
If we consider various relativistic motions exclusively locally as if in the real physical

space-time including a gravitational �eld, but with the real Minkowski or complex Poincar�e
space-time, where c = dx(k)/dt(k) = const, then it is possible, with fairly high degree of
accuracy (as was shown above), to study and describe these motions with their kinematic and
dynamic characteristics at a local level directly in such basis space-time without distortions.

Thus, relativistic motions in 4D Minkowski space-time ⟨P3+1⟩ have the four absolute
geometric and physical parameters with relative ones in the 3D Euclidean subspace ⟨E3⟩
and scalar projection onto the time-arrow

−→
ct . Absolute motion is mapped by a world line in

⟨P3+1⟩ in pseudo-Cartesian coordinates with admitted values of its slope to the time-arrow.
A world line has important feature as its dynamical character with 4-velocity c of Poincar�e.
This enable us to determine all absolute and relative geometric and physical parameters of
the motion along it of a body or a particle. After full con�rmation of the Higgs Theory
with the Mach Principle in 1964�2012, the Tensor Trigonometry became simplest, clear,
well-understanding and all-around mathematical instrument for homogeneous and isotropic
spaces, perfect hypersurfaces with non-Euclidean geometries, and the Theory of Relativity!



�Poincar�e, genie �egal �a Gauss, et aussi universel.�
� Jean Dieudonn�e, fondateur du groupe Bourbaki

Chapter 10A

Di�erential tensor trigonometry of world lines and curves

According to Hermann Minkowski [65], each material point M , including barycenter of
a body, is permanently absolutely moving along its world line in the homogeneous and
isotropic space-time ⟨P3+1⟩ at n = 3, q = 1 as reali�cated isomorphism of the original
complex-valued Poincar�e space-time ⟨Q3+1⟩c. We may analyze a curved world line with an
increase in its complexity from n = 1 till n = 3 (q = 1) for rectilinear, �at and spatial
relativistic movements. The world line is a geometric invariant of Lorentzian continuous
transformations of the pseudo-Cartesian bases, and it is a regular curve with local 4 × 1
radius-vector r(cτ). The inexorable absolute motion, limited by the slope of a world line to
the time-arrow below of the light line, ensures its regularity. Physically its trajectory is a
locally oriented proper time-arrow −→cτ of object or particle M . The scalar integral value of
proper time along a world line does not depend on a pseudo-Cartesian base too. By their
slope dr � Figure 2A, the world lines relate only to the internal cavity of the light cone. For
descriptivety and visuality, we analyze world lines with pseudo-Cartesian bases Ẽ1 = ⟨x,−→ct⟩
and Ẽm = ⟨x(m),−→cτ ⟩. In Ẽ1, their inclination corresponds, due to speci�c tangent�tangent
analogy, to the visual spherical angle φR : tanh γ ≡ tanφR. In a neighborhood of its
point M , the world line with its orientation and con�guration is completely determined
by four absolute scalar and relative 4-vector di�erential-geometric parameters in ⟨P3+1⟩.
The scalar parameters are invariants under continuous Lorentzian transformations. Such
construction gives us opportunity for using Frenet�Serret approach to the di�erential theory
of regular curves in the 3D Euclidean space [21], when they are supposed to be embedded
namely in the homogeneous and isotropic space of its �xed dimension for unique results.

All angular parameters of motion along a world line � hyperbolic angle γ of motion with
its direction eα are de�ned initially through the radius-vector of a world point on it:

r(1)(cτ) =


x1

x2

x3

ct

 =

[
x(cτ)
ct(cτ)

]
, iα = iα(cτ) = i(γ, eα) =

dr
d(cτ)

=

[
sinh γ · eα
cosh γ)

]
;

sinh γ = dx
d(cτ)

= sinh γ · eα = v∗
c , tanh γ = dx

d(ct)
= tanh γ · eα = v

c = sinh γ/ cosh γ;

γ = arsinh

√
dx2

1 + dx2
2 + dx2

3

d(cτ)
= artanh

√
dx2

1 + dx2
2 + dx2

3

d(ct)
> 0, as d(ct) > 0;

eα = {cosαk}, k = 1, 2, 3; cosαk = dxk
||dx|| ; η∗γ =

dγ
dτ

, w∗
α = dα

dτ
= −angular velocities.


In particular, the so-called uniform absolute motions r = r(cτ) are of especial interest.
Among them, the physically most important are the following three types:
the uniform rectilinear movement at γ = const, eα = const (Chs. 1A�4A);
the uniformly accelerated rectilinear movement at η∗γ = const, eα = const (Ch. 5A);
the circular movement with velocities v∗ = const and w∗

α = const at γ = const.
In ⟨P3+1⟩ with tensor {I±} (17A), we introduced in Ch. 5A measureless trigonometric

4 × 4 tensor of motion roth Γ(m) = F (γ, eα) (100A), as the pseudoorthogonal bivalent
symmetric tensor, on the basis of rotations (348) and (362), (363) for applications in Theory

of Relativity. It determines along a world line the current local base Ẽ
(4)
m = roth Γ(m) · Ẽ1,

and its local hyperbolic inclination Γ with the local Euclidean orientation eα in Ẽ1.
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This tensor is de�ned at the current pointM in the base Ẽ1 = {I} by canonical structures
(362) or (363). The change dΓ causes locally the change of hyperbolic inclination as arc of
the hyperbolic rotation dγ and the change of spherical orientation eα as possible arcs of the
orthospherical rotations deα = dα1,2,3 for a curve in ⟨P3+1⟩ with ⟨E3⟩(m). Hence any world
line can have at its point M maximum four intrinsic vector-parameters of orders up to 4,
completely de�ned its local con�guration in ⟨P3+1⟩. The pseudo-Euclidean integral length
of a world line −→cτ is counted conventionally from the initial point O with its di�erential dr.
It is an internal argument for a world line. In the theory of relativity, speed of an absolute
motion of a material point M along a world line is de�ned as the time-like 4 × 1-velocity
introduced in �rst by Henri Poincar�e in 1905 with his homogeneous 4 space coordinates:

c(cτ) = c · dr
d(cτ)

= dr
dτ

= d−→cτ
dτ

= c · i(cτ) = c · iα,

c′(cτ) · I± · c(cτ) = ||c(cτ)||2P = −c2 = const.

 ( −→c = c · iα ) (218A)

It may be also represented in ⟨P3+1⟩ as the 4×1 radius-vector R = ic of the hyperboloid II.
Its pseudomodule ”c” is the constant normalizing scale multiplier to time-axis, introduced by
H. Poincar�e in 1905 [63] for isotropy, homogeneity and metric properties of ⟨P3+1⟩ (Ch. 1A).
Other proper parameters, in term of proper time τ along a world line, mean the following:
r(cτ) is a 4× 1-radius-vector of the point M of a world-line in the base Ẽ1 = {I},
i(cτ) = iα is a unity 4-vector along proper time arrow −→cτ which may be interpreted as
1) the 4-tangent to a world line as r(cτ), 2) the 4-th column of tensor of motion roth Γ(m),
3) the time-like 4× 1 radius-vector (146A) of the unity hyperboloid II.

Since in homogeneous coordinates of Poincar�e, with the scaling coe�cient c for times t(k),
the light ray is expressed in bases Ẽk as ∆x

(k) = ∆[ct(k)], then the consequence immediately
follows: ∆x(k)/∆t(k) = c = const. (Hence, it is excess Einsteinian STR Principle of equality
of light speed "c" in all Ẽk [67].) Though the constancy of c, as result of measurements on
the Earth and in near cosmos, is merely a hypothesis, which cannot be inferred and spread
into the whole Universe and onto the global world time. Perhaps, it is more important than
the answer to the still debatable question: �Is it necessary bending space-time or not?�

Coordinate 3-velocity v is a tangent cross projection (Ch. 4A) of the 4-velocity c into ⟨E3⟩.
Its sine projection is a proper 3-velocity v∗. (Both velocities have Euclidean direction eα.)

Its cosine projection onto
−→
ct is a scalar supervelocity of the time t stream c∗ = cosh γ · c

for given angle γ of motion in the base Ẽ1 = {I}. The 4-velocity c of a particle or a body
can be changed only in its spatial directions: hyperbolic γ with respect to the time-arrow
and/or spherical eα with respect to the Euclidean subspace. This takes place whenever

inner force
−→
F acts on them. For any material objects (an electron, a down, a star, and so

one) independently on their mass the pseudomodule of 4-velocity of their absolute motion
in ⟨P3+1⟩ is the constant c. All these arguments are summarized in the following assertion.
Any material body is permanently absolutely moving in the Minkowski space-time ⟨P3+1⟩
along own world line as its current time-arrow −→cτ with the motion 4-pseudovelocity c = c · i
having the constant c and the directional pseudounity 4-vector i, which is constant only for
uniform rectilinear physical movement of the body i� no any inner force is applied to it.

In philosophy, such an assertion means the so called perpetual matter movement.
The Postulate is based on the original notions introduced by Poincar�e and Minkowski

as 4-velocity c and a world line in space-time as a trajectory of the absolute motion of the
body M . With it we connect main dynamic physical characteristics: the own 4-momentum
P0 = m0

−→c , the real momentum p = mv = m0v
∗ and the total momentum P = mc. See

them in Chs. 5A and 7A, where they were connected by the pseudo-Euclidean Absolute
Pythagorean Theorem in ⟨P3+1⟩. All measured physical values relate to their projections

from a world line onto
−→
ct and into ⟨E3⟩. They are changed i� the direction of i is changed!
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The General Postulate by Poincar�e�Minkowski gives us to do the important infers.
1. It allows to consider world lines not only geometrically, but and physically as the time

nature world trajectories with absolute local kinematic and dynamic characteristics of the
body M in the metric space-time ⟨P3+1⟩, and evaluate additionally its relative independent
geometric and physical characteristics of orders till 4 in a certain pseudo-Cartesian base Ẽk.

2. It gives simple explanation to a nature of the permanent matter movement as stream of
proper time cτ along a world line, and vice versa! They both move with 4-pseudovelocity c.

3. It mathematically explains either hyperbolic, or orthospherical (under hyperbolic sine
and cosine slopes) partial distortions of a world line in ⟨P3+1⟩ under physical factors acting
on a particle or barycenter of a body. Indeed, due to constant pseudomodule of c, its vector
derivative along a world line is permanently pseudo-Euclidean orthogonal to c (or i):

c′(cτ) · I± · c(cτ) = −c2 = const ⇒ c′(cτ) · I± ·
[
c · dc(cτ)

d(cτ)

]
= c′(τ) · I± ·

[
dc(τ)

dτ

]
=

= c′(τ) · I± · g(τ) = c′(cτ) · I± · g(cτ) = c · i′(cτ) · I± · p(cτ) · g = 0. (219A)

We obtain zero scalar product of the time-like 4-vector c with its space-like 4-vector-
derivative g, though such pseudoorthogonality holds with new other 4-vector-derivatives of
higher orders up to 4 in ⟨P3+1⟩. In result of successive orthogonal di�erentiation of unity
vectors along a world line, we should obtain all four unity vectors (of its curvatures and
proportional accelerations with scalar parameters) orthogonal to each other. Similar idea
was realized in the Frenet-Serret theory of regular curves in Euclidean space ⟨E3⟩ [14, 21].

We also note that the pseudoorthogonal characteristics, as 4-vectors c and g, di�er here
from the orthogonal Euclidean 3-projections in that, they contain non-zero fourth scalar
time projections. Before in Chs. 5A, 7A, 8A we dealt with similar absolute notions, but they
were by pure Euclidean 3-vectors, i. e., they were expressed in the instantaneous base Ẽm

under zero value of fourth time projections � see (97A), (145A) (161A), (198A). Now we
mean them as more general absolute concepts in full form as 4-vectors with their scalar
modulus characteristics too, for example, in the original base Ẽ1. The concepts which include
only spatial or only temporal components, provided that both of them are non-zero, are
considered as relative ones. For example, the theorems expressed by formulae (145A), (198A)
were absolute, but relations of type (135A), (163A), (192A) give the relative theorems.

Continuing (219A), in the neighborhood of a pointM along a world line, in result of free
1-st pseudoorthogonal di�erentiation of the tangent i(cτ) in cτ not only within the osculating
pseudoplane to a curve, we get total scalar and 4-vector characteristics of the 2-nd order as
4-pseudocurvature k (with radius RK = 1/K) and inner 4-acceleration g = c2 ·K, introduced
by us in (79A) and (161A) as 3-vector, with their common unity pseudo-Euclidean vector
of the instantaneous pseudonormal pβ and common internal Euclidean direction eβ :

Kβ(cτ) = 1/R
(m)
K = gβ(cτ)/c

2, (220A)

kβ(cτ) = Kβ(cτ) · pβ(cτ) = [gβ(cτ)/c
2] · pβ(cτ) = gβ(cτ)/c

2. (221A)

De�ne the order of embedding ζ of a world line as the least dimension ζ = k + 1 of the
pseudo-Euclidean subspace ⟨Pk+1⟩ of the space-time ⟨P3+1⟩ containing the whole curve. All
the possible values of this order are ζ ∈ {1, 2, 3, 4} at k = 0, 1, 2, 3. So, if ζ = 1 (k = 0), then

this enveloping subspace is the straight time-arrow
−→
ct as itself. This is a relatively immovable

voyage in time along a straight world line with the same pseudovelocity c. A �at world line
has ζ = 2 (k = 1). This corresponds to accelerated rectilinear movement. A twisted world
line has order ζ as 3 or 4 corresponding to order of the line curvature 2 or 3. The order
k = ζ − 1 is the minimal dimension of the Euclidean subspace ⟨Ek⟩, where a trajectory of
physical movement is represented as Euclidean orthoprojection of absolute motion in ⟨Pk+1⟩.
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Unity principal tangent iα(cτ) to a world line (Figure 2A(3)) is the primary vector
characteristic of a curve r(cτ) � see in Ch. beginning. It is produced in the pseudo-Cartesian
base Ẽ1 by the unambiguous hyperbolically orthogonal di�erentiation (218A) of radius-
vector r(cτ) in dγ exactly along a world line in the space-time ⟨P3+1⟩ (as a regular curve):{

dr(cτ)

dγ

}
α

= iα(cτ) =

[
sinhγi · eα

cosh γi

]
= roth Γi · i1 = rothΓi ·

[
0
1

]
, (222A)

where i1 is center (146A) of the unity hyperboloid II (Figure 4) and the unity 4-vector of
−→
ct ;

roth Γi = F (γi, eα) is here tensor of motion (100A), with frame axis
−→
ct , bonding i1 and iα.

From here, at constant eα, we have the 1-st di�erential of hyperbolic motion, considered
in Ch. 5A. If to do this di�erentiation along a world line more free as non-collinear one, we
must use in addition the lateral di�erential orthospherical rotation, and both motions must
be in correspondence with the 1-st two-step metric normal form (132A) on a hyperboloid II.
What is more, the time-like tangent iα(cτ) of a such world line is simultaneously both a
pseudonormal as 4 × 1 radius-vector (146A) of hyperboloid II and 4-vector of a time-like
tangent to the locally conjugated hyperboloid I, where only one geodesic hyperbola can pass
through a point M . In the following similar bonds help us till the �nal di�erentiation along
a world line, when they will close all the cycle, and here's why.

Let's pre-attach to a world line with dγi ̸= 0 at M the concomitant movable conjugate
unity hyperboloids I and II (see at Figure 4) so, that they may be determined locally by
four current pseudoorthogonal each to other unity basis vectors of a world line � tangent iα,
pseudonormal pα and two binormals (as the hyperboloidal model). Our idea is to connect for
trigonometric descriptivety as one to one the 1-st metric form of a world line with the 1-st
metric forms of two unity hyperboloids (132A, 133A). We'll �nd these metric forms with
their basis unity vectors in process of sequential di�erentiations along a world line. This
will interrupt the process of di�erentiation in �nal, as it should be in the type of theory.
In second, we must connect this system of four pseudoorthogonal basis vectors with the
existing system of four basis vectors-columns in our tensor of motion (100A) in form (362).

The principal and free-valued characteristics kα and kβ are produced with the 1-st
di�erentiations in cτ along a world line with one and two degrees of freedom (at ζ ≥ 3, k ≥ 2),
logically accompanied with the concomitant hyperboloid II:{

diα(cτ)
d(cτ)

}
α

= Kα(cτ) ·
[

cosh γi · eα
sinh γi

]
= Kα(cτ) · pα(cτ) = kα(cτ) =

gα

c2
,

diα(cτ)
d(cτ)

= Kβ(cτ) ·
[

cosh γp · eβ
sinh γp

]
= Kβ(cτ) · pβ(cτ) = kβ(cτ) =

gβ

c2
.

 (223A)

Unity space-like 4-vectors pα and pβ are principal and free pseudonormals to a world line.
Derivatives in γ: i′α = pα ↔ p′

α = iα; iα and pα at change of curve slope either converge
or diverge. First expression in (223A) is the tensor trigonometric pseudoanalog of the 1-st
Frenet�Serret formula, but second expression must reveal the binormal in the normal plane.
All free vectors pβ are pseudoorthogonal to iα (222A), pα is pure hyperbolically orthogonal
to iα. We have cos ε = e′βeα = e′αeβ . From the condition of pseudoorthogonality for iα
and pβ , we obtain the connection of positive angles γp and γi:

{tanh γp = cos ε ·tanh γi ↔ tanh γp = cos ε ·vi/c} → γp < γi(γ ∈ [0,∞), ε ∈ [0;π]). (224A)

If eβ = eα, then iα and j1 = pα determine conjugate points on the hyperboloids I and II

in (146A), (149A) and at Figure 4. If eν ⊥ eα in ⟨E2⟩(m) ≡ ⟨eα, eβ⟩(m) ≡ ⟨v,g∗⟩(m),
then j2 = pν is a binormal (i. e., a pseudonormal with its minimal pure Euclidean norm at
cos ε = 0, γp = 0, see bottom point on II). Recall also very useful decomposition (137A):

eβ = cos ε · eα + sin ε · eν ,where ε ∈ [0;π], (e′β · eα = cos ε, e′β · eν = sin ε, e′α · eν = 0).



272 APPENDIX

Proportional space-like 4-vectors kβ and gβ = c2 ·kβ in (233A) are directed inside region
of concavity of a world line arc d2r(m) out center O of the osculating hyperbola � see at
Figure 2A(3): cos ε > 0 for accelerations (gβ > 0), cos ε < 0 for decelerations (gβ < 0).
If cos ε = ±1, then the Euclidean projection of g is parallel to v (movement is rectilinear).
If cos ε = 0, then the Euclidean projection of g gives no increment to ||v|| and leads to world
line bend towards eν , i. e., Euclidean orthogonally to the curve (movement is centripetal).

Further, for beginning, we consider in particular the instantaneous space-like geometric
and physical characteristics from (223A) with their decompositions into pair of orthogonal
projections along a world line in the space-time ⟨P3+1⟩, expressed in the base Ẽ1 = {I} and
in the current base Ẽm = roth Γ

(m)
i ·Ẽ1 = {roth Γ

(m)
i } = {F (γi, eα)}. We'll do in two stages

these orthogonal decompositions: at the 1-st stage, of relative Euclidean items on the relative

Euclidean sine normal plane of curvature given by 3-vectors as ⟨E2⟩(m)
Ns ≡ ⟨e

(m)
α , eν

(1)
⟩;

and, at the 2-nd stage, of the intrinsic characteristics on the real Euclidean sine normal

plane, given here by 4-vectors as ⟨E2⟩(m)
Ns II ≡ ⟨p

(m)
α ,b

(1)
ν ⟩ in the �rst partial 3D space-time

⟨P2+1⟩II ≡ {⟨E2⟩(m)
Ns ⊠

−→
ct} ≡ {⟨E2⟩(m)

Ns ⊠
−−→
y(m)} (at ζ = 3), where pα is a unity 4-vector of the

principal pseudonormal with eα, bν is a unity 4-vector of the sine binormal with eν . The
total pseudocurvature kβ in (223A) is also decomposed into tangential and normal ones.

In the Minkowski space-time ⟨P3+1⟩ with metric tensor {I±} (17A) (or in the isomorphic
to it Poincar�e complex space-time) at ζ ≥ 3, due to (223A) with the use of (137A), we execute
the �rst two-steps di�erentiation along a world line with orthogonal decomposition of the
4-vector of a free pseudocurvature kβ and revealing all relative and absolute characteristics:

kβ(cτ) =
diα(cτ)

d(cτ)
=

dγp

d(cτ)
·
[

cosh γp · eβ
sinh γp

]
=

dγp

d(cτ)
· pβ(cτ) = Kβ(cτ) · pβ(cτ) ≡ (225A− I)

≡
dγi

d(cτ)
·
[

cosh γi · eα
sinh γi

]
α

+

[
sinh γi · deα

d(cτ)
0

](1)
γ

=
dγi

d(cτ)
·
[

cosh γi · eα
sinh γi

]
α

+

[
sinh γi · dα1

d(cτ)
· eν

0

](1)
γ

=

= Kα(cτ) ·
[

cosh γi · eα
sinh γi

]
α

+Kν(cτ) ·
[

eν
0

](1)
γ

= Kα(cτ) · pα(cτ) +Kν(cτ) · bν(cτ) ≡

≡
dγp

d(cτ)
·
[

cosh γp · eβ
sinh γp

]
=

dγp

d(cτ)
·
{[

cos ε · cosh γp · eα
sinh γp

]
+

[
sin ε · cosh γp · eν

0

](1)}
=

= Kβ(cτ) ·
[

cosh γp · eβ
sinh γp

]
= Kβ(cτ) · pβ(cτ) = K×

β · pα(cτ)+
⊥
K⋆

β ·bν(cτ) = k×
β (cτ)+

⊥
k⋆
β (cτ).

Below we use intuitive understandable notations beginning from the general curvature Kβ :

Kβ =
dγp
d(cτ)

=
gβ
c2

; K◦
β = sinh γp · Kβ = K◦

α = sinh γi · Kα; Kα =
dγi
d(cτ)

=
gα
c2

;

K⋆
β = cosh γp · Kβ =

g⋆β
c2

, K×
β =

√
cos2 ε · cosh2 γp − sinh2 γp · Kβ = kp · Kβ = Kα;

K⋆
β = cosh γp · cos ε · Kβ = cosh γp · Kβ = cosh γi · Kα = K⋆

α =
g⋆β
c2

=
g⋆α
c2

;

⊥
Kβ=

⊥
gβ
c2

,
⊥
K⋆

β=

⊥
g⋆β
c2

= cosh γp · sin ε · Kβ = Kν = sinh γi · dα1
d(cτ)

=
v∗i w

∗
α1

c2
=

gν
c2

.

K2
β = K⋆

β
2 −K◦

β
2 = K⋆

β

2
+

⊥
K⋆

β

2

−K◦
β
2 = K×

β

2

+
⊥
K⋆

β

2

= K2
α +K2

ν = K2
R (dγp

2
+

⊥
dγp

2

).



(225A− II)

Equaling under I± paired summands, we get next relations with ϱ > ε : dγ2
p = cosh2 γp dγ2

p−sinh2 γp dγ2
p =

= (cos2 ε · cosh2 γp dγ2
p + sin2 ε · cosh2 γp dγ2

p)−sinh2 γp dγ2
p = (cosh2 γi dγ2

i + sinh2 γi dα2
1)−sinh2 γi dγ2

i =

= dγ2
i + sinh2 γi dα2

1 = (cos2 ε · cosh2 γp − sinh2 γp) dγ2
p + (sin2 ε · cosh2 γp) dγ2

p = cos2 ϱ dγ2
p + sin2 ϱ dγ2

p > 0.

Surprisingly, but we get two identical decompositions of dγp � pseudo-Euclidean and Euclidean (with under-

line for Relative and Absolute Theorems), the latter corresponds to 1-st metric form (132A) of hyperboloid II !

This paradox relates to hypotenuses of right triangles only in the external cavity of isotropic cone at n ≥ 2.
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pα =

[
cosh γi · eα
sinh γi

]
is a principal pseudonormal, as a unity vector of the principal pseudo-

curvature Kα, and kα = Kα · pα is a 4-vector of the principal (collinear) pseudocurvature;

bν =

[
eν
0

]
is a space-like sine binormal, as the unity vector of the normal curvature Kν ,

kν = Kν · bν , situated contrary to the angle γi, is a 4-vector of the sine normal curvature;
||deα||E
dτ

· deα
||deα||E

= dα1
dτ
· eν = w∗

α1
· eν is a proper orthospherical angular velocity of eα.

We use asterisk for proper items, star and circle for cosine and sine projections!
The Relative Pythagorean theorem follows from space-like part of (225A) in 3-vector and

quadric scalar forms. It acts in the sine normal plane ⟨E2⟩(m)
Ns ≡ ⟨e

(m)
α , e

(1)
ν ⟩ for these three

proportional characteristics as their orthoprojections into the Cartesian subbase Ẽ
(3)
1 at

γ ∈ [0,∞), ε ∈ [0;π], using (225A) with (137A) and con�rming preliminary (162A), (163A):
cosh γp dγp · eβ = cosh γp (cos ε dγp · eα + sin ε dγp · eν) = cosh γi dγi · eα + sinh γi dα1 · eν ,

cosh2 γp dγ2
p = cosh2 γp (cos2 ε dγ2

p + sin2 ε dγ2
p) = cosh2 γp [(dγp)2E + (

⊥
dγp)2E ] =

= cosh2 γi dγ2
i + sinh2 γi dα2

1;

⇒

⇒


Kβ · cosh γp · eβ = K⋆

β · eβ = cos ε · K⋆
β · eα + sin ε · K⋆

β · eν = K⋆
β · eα+

⊥
K⋆

β · eν =

= Kα · cosh γi · eα + sinh γi · dα
d(cτ)

= K⋆
α · eα +

v∗i · w∗
α1

c2
· eν = K⋆

α · eα +Kν · eν =

⇒

⇒

 = k⋆
β = k⋆

β+
⊥
k⋆
β= k⋆

α + kν ,

(K⋆
β)

2 = (K⋆
β)

2 + (
⊥
K⋆

β)
2 = (K⋆

α)
2 + (Kν)

2;

⇒
⇒

 cosh γp · gβ = g⋆
β = g⋆

β+
⊥
g⋆
β= cosh γi · gα · eα + v∗i w

∗
α1
· eν = g⋆α · eα + gν · eν ,

cosh2 γp · g2β = g⋆β
2 = (g⋆β)

2 + (
⊥
g⋆β)

2 = cosh2 γi · g2α + (v∗i w
∗
α1

)2 = g⋆α
2 + g2ν .

 (226A)

Kβ · sinh γp = Kα · sinh γi ⇔ sinh γp dγp = sinh γi dγi → dγp/dγi > 1. (227A)

⇒ cosh γp · cos ε dγp = cosh γp dγp = cosh γi dγi ⇒ cos ε = 1↔ γp = γi, cos ε = 0↔ γp = 0;

γp/γi < 1− see in (224A),⇒ γp < γi (vp < vi), γi = 0↔ γp = 0; dγp > dγp > dγi {γ ∈ [0,∞)}.
From (225A)�(227A), we obtain the Absolute Euclidean Pythagorean theorem with the 1-st mobile

trihedron Ê
(3)
m = ⟨pα, bν , iα⟩ in ⟨P3+1⟩ under metric tensor I± (17A-I)! It acts on the Euclidean

sine normal plane ⟨E2⟩(m)
Ns II

≡ ⟨p(m)
α ,b

(1)
ν ⟩ in 3D ⟨P2+1⟩II ≡ {⟨E2⟩(m)

Ns ⊠
−→
ct} (ζ = 3). In the right

triangle of iα rotations, it corresponds to the angular normal 1-st metric form (132A) for the
concomitant hyperboloid II (!!!), as a perfect hypersurface of ⟨P3+1⟩. It is expressed in the universal
complete tensor-vector-scalar ("tvs") form with own proportional geometric and physical items: kβ = Kβ pβ = K×

β pα+
⊥
K⋆

β bν = Kα pα +Kν bν ,

K2
β = (K⋆

β)
2 − (K◦

β)
2 = ( K×

β )2 + (
⊥
K⋆

β)
2 = K2

α +K2
ν ,

⇒
{

gβ = gα pα + gν bν ,

g2β = g⋆β
2 − g◦β

2 = g2α + g2ν ,

}
⇒

⇒


dγp · pβ = dγi · pα + sinh γi dα1 · bν , (p′

α · I± · pα = +1, b′
ν · I± · bν = +1)

dγ2
p = dγ2

i + sinh2 γi dα
2
1 = cos2 ϱ dγp

2 + sin2 ϱ dγp
2 =

(
dγp

)2

P
+

(
⊥
dγp

)2

E

> 0.

 (228A)

Here dγp = dλR/R, ϱ > ε. By this Egregium Theorem of Di�erential Tensor Trigonometry

(1-st from two hyperbolic), we reduce this mixed motion in the initial Ẽ1 along a world line
and on II as a perfect surface to the hyperboloidal angular arc as hypotenuse dγp in the �nal

base Ẽm. Here gβ is a summary 4-acceleration of M , but along hypotenuse dγp (at velocity
vp = c · tanh γp). Both are collinear due to (225A). The equation d cosh γp = d cosh γi infers,

that change of time dilation is equal to one in Ẽ1, where real velocity vi acts at a world line.
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According to Poincar�e simplest approach in 1905�1906 [63, 64] to construction of new
relative and absolute dynamical characteristics in the relativistic space-time, based on the
classical Newton's mechanics and STR time dilation (Chs. 5A, 7A), we get the relations for
a relativistic kinematic capacity of the progressively moving body M . Indeed, the factor
sinh γp dγp = sinh γi dγi → d cosh γp = d cosh γi in (227A) causes following equations:

v∗p · gβ = v∗i · gα → v∗p ·m0gβ = v ∗i ·m0gα = v∗p ·Fβ = v∗i ·Fα → N(s)
∗
p
= N(s)

∗
i
in Ẽm and Ẽ1!

The values γp and vp = c · tanh γp = cos ε · vi = cos ε · c · tanh γi are calculated by (224A).
Hyperboloidal model (here as top II) is useful for interpretation of relativistic kinematics.

We saw this on the numerous examples before. In the given case, due to (228A), the summary

velocity vp or angle γp in the �nal base Ẽm is less than values of vi or γi in the initial base Ẽ1.

If vi or γi is zero, then the acceleration gα and di�erential dγi in such an immobile base Ẽ1 are
become as internal ones with necessary zero gν and dα1. From the other hand, the summary
acceleration gβ or di�erential dγp in the base Ẽm is bigger than values of gα and dγi in the

base Ẽ1. If the velocity vp or angle γp is zero, then the acceleration gβ and di�erential

dγp in such an immobile Ẽm are become as internal ones. In such an immobile base Ẽm,
the summary internal acceleration gβ and di�erential dγp are decomposed orthogonally into
parallel and normal ones, with respect to the velocity vi or vector eα; and as γi = 0↔ γp = 0,
then γp = γi = 0. We get the Local Absolute Euclidean Pythagorean Theorem acting in the

sine normal plane ⟨E2⟩(m)
Ns and given non-completely in (145A), Ch. 7A, now from (228A)

as the purely Euclidean case with such an orthogonal decomposition of internal dγp and gβ :
dγp · eβ = dγi · eα + sinh γi dα1 · eν ,
{dλ/R}2 = dγ2

p = dγ2
i + sinh2 γi dα2

1 =

= (cos ε dγp)2 + (sin ε dγp)2 = (dγp)2E + (
⊥
dγp)2E ,

⇒
 kβ = kβ+

⊥
kβ = kα + kν ,

K2
β = Kβ

2
+

⊥
K

2

β = (Kα)2 + (Kν)2,

⇒

⇒

 gβ = gβ+
⊥
gβ = cosh γi · gα · eα + v∗ · w∗

α1
· eν = gα · eα + gν · eν ,

g2β = (gβ)
2
E + (

⊥
gβ)

2
E = cosh2 γi · g2α + (v∗ · w∗

α1
)2 = gα2 + gν2.

(229A)

Here we inferred in STR the spherically orthogonal decomposition of the general inner
acceleration gβ into parallel gα and normal gν ones! If brie�y, in (229A), (145A) and (226A),
formally we apply also the orthogonal decomposition of as if �nal here directional vector eβ
in the Euclidean subspace of ⟨P3+1⟩ using our useful simple formula (137A) from Ch. 7A.

In addition, we inferred that in transformations above normal sine 3-orthoprojection
sinh γi dα1 · bν does not change, since eν is perpendicular to the direction of motion eα.
We again state the ful�llment of the Herglotz Principle [84] � see it in Chs. 2A and 4A.
That is why, for normal projections in Ẽ1 we did not use special asterisk as for parallel ones.

Geometrically (228A) corresponds to rotation of tangent iα with two degrees of freedom:
at complete arc dγi and at as if cutting arc dα1. Indeed, above we have only its space-like
sine projection into ⟨E2⟩. Although complete dα1 with its cosine and sine projections in

−→
ct

and ⟨E2⟩ is a time-like vector sum at the time-like unity normal time-arrow iν . (Also under
metric tensor I±.) Such cutting is caused by mixing its time-like projection cosh γi dα1 with
the time-like projection cosh γi dγi in dγi · pα in (228A). However, at γi = const, similar
mixing is absent, and we can execute as alternative to (225A) two-steps di�erentiation
along a world line with orthogonal decomposition of the complete 4-vector dα1 · iν into
its sine and cosine orthoprojections. Obviously, such two-steps time-like orthospherical
motion must have own trihedron in ⟨P2+1⟩, but (as we shall see) in the central zone of the
concomitant hyperboloid I, with the own Absolute pseudo-Euclidean Pythagorean theorem.
We'll implement this scenario later for correct construction by Tensor Trigonometry of the
time-like pseudoscrewed world line as the 2-nd type of uniformly accelerated motion (in
addition to time-like uniform hyperbolic motion in Ch. 5A). In the Frenet-Serret theory
of regular curves in ⟨E3⟩, the peculiarity with mixing in the trihedron by Frenet of the

tangent to a curve and its torsion (in TT it is the orthoprocession along
−→
ct) is hushed up

by authors of text books in Di�erential Geometry. Our Tensor Trigonometry in the pseudo-
and quasi-Euclidean spaces with frame axis −→y revealed and eliminated such peculiarity!
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According to both theorems (226) and (228A), the geometric meaning of the hyperbolic
di�erential arc dγ in normal relation (171A) has become completely clear (with dγ = dγp).
Physically, it is proportional to the normal acceleration in the Thomas precession. With
identical expressions, extracted from 1-st relations in (226A), we give both normal relations,
when γp = 0 and when γp ̸= 0, as rigorously inferred in the original Euclidean subspace ⟨E3⟩,
produced now by the tensor di�erential trigonometry in ⟨P3+1⟩ under the same tensor I±:{

cosh γp · sin ε dγp =
⊥
dγp = sinh γi dα1 ⇒ cosh γp · sin ε · gβ =

⊥
gβ = v∗i · w∗

α (γp ̸= 0),

sin ε dγp =
⊥
dγp = sinh γi dα1 ⇒ sin ε · gβ =

⊥
gβ = v∗i · w∗

α (γp = 0).
(230A)

Thanks to this normal relation, we may add to the 2D Euclidean normal motion in (226A)
and (228A) the angular shift −dθ from (172A) with the Thomas precession in time −wθ

around the 3-rd normal axis eµ ≡ eα×eν , with expansion of whole description of di�erential
motions (225A) on the 3D hyperboloid II in complete ⟨P3+1⟩, because these additional shift
and precession are connected with the space-like cosine projection cosh γi dα1 ·eµ in (173A)!
It is the di�erence between real arc dα1 and its space-like cosine projection causes the angular
defect by Lambert with the physically detected precession by Thomas � see in detail in the
end of Ch. 7A and further after (238A). In the beginning of Ch. 7A, we revealed this induced
precession in matrix form, but for two-steps non-di�erential hyperbolic motions.

* * *
In (228A) 3 vectors pα(cτ), bν(cτ), iα(cτ) form the right mobile base or the �rst 3D trihedron

Ê
(3)
m = ⟨pα(cτ), bν(cτ), iα(cτ)⟩ in ⟨P2+1⟩II . Generally, in ⟨P3+1⟩, it must be subbase of the

cardinal pseudo-Cartesian base Ê
(4)
m = ⟨j1(cτ), j2(cτ), j3(cτ), i(cτ)⟩. Di�erentiating anyone of

orthogonal unity vectors, for example, a1 along a world line is reduced to its orthogonal rotation
around second vector a2 with third vector a3 in a pseudoplane or a plane formed by a1 and a3. Then
fourth rested basis unity vector a4 outside this trihedron in ⟨P3+1⟩ must be immobile! A result of
this rotation is a3. This result is equivalent to the result of vector product a1 × a2 = ±a3 with its
right sign. Below, for illustration of this approach, we give these complete Tables with signs for such
vector products for two trihedrons in ⟨P3+1⟩ with a frame axis iα and ⟨Q2+1⟩ with a frame axis j3.

for Minkowski space-time⟨P3+1⟩ in ⟨E3⟩(m) ⊂ ⟨P3+1⟩

pα bν iα
pα 0 +iα +bν

bν −iα 0 +pα

iα −bν −pα 0

,

pα bµ iα
pα 0 −iα −bµ

bµ +iα 0 −pα

iα +bµ +pα 0

;

j1 j2 j3
j1 0 +j3 −j2
j2 −j3 0 +j1
j3 +j2 −j1 0

.

1-st trihedron Ê
(3)
m = ⟨pα,bν , iα⟩ 2-nd trihedron Ê

(3)
m = ⟨pα,bµ, iα⟩ (and in ⟨E3⟩(m) ⊂ ⟨P3+1⟩)

In �nal, in general, both trihedrons must form the tetrahedron.

Due to these Tables of the products (in the left one for pseudo-Euclidean rotations, in the right
one for orthospherical rotations too in the subspace ⟨E3⟩(m) � in the latter, in that number, for the
Thomas precession around its axis bµ with velocity w∗

θ), in the upper row we chose the rotated
(di�erentiated) unity vector and in the left column we chose the axis of its rotation in the subspace
of rotation. In the intersection, we get the vectorial product. So, for example, we get iα×pα = +bν .
The mathematical reason for this behavior of signs is that hyperbolic functions preserve their sign
during di�erentiation, while spherical functions change it. The di�erence in signs of both theories
in Euclidean space is eliminated by operation bν ↔ bµ, due to our chosen strategic plan.

The hyperbolic rotations are described by the sine-cosine functions. Di�erentiations along
the curve as a world-line lead here to the equivalent trigonometric processes sinh γ → cosh γ →
sinh γ... and cosh γ → sinh γ → cosh γ... for radius-vectors of hyperboloids I and II (Figure 4), where
we have sign ” + ” for both the concave arcs on hyperboloids I and II. For analogous trigonometric
version of the Frenet�Serret theory, we obtain such processes for radius-vectors of the hyperspheroid
(Ch. 8A) with signs variations: sinφ→ cosφ→ − sinφ... and cosφ→ − sinφ→ − cosφ....

* * *
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In the Lagrangian space-time ⟨L3+1⟩, the tangent and the principal normal to a world line are applied,
but a pseudonormal does not exist. Non-relativistic decomposition of acceleration at the point M on a world

line in the plane ⟨E2⟩(m)
K ≡ ⟨eα, eβ⟩(m) ≡ ⟨v,g⟩(m) is performed in the Euclidean-a�ne space-time ⟨L3+1⟩

(see Ch. 1A), it is the following:

u(t) =

[
x
t

]
,

du

dt
=

[
v
1

]
=

[
v · eα

1

]
,

d2u

dt2
=

[
g
0

]
=

[
g · eβ
0

]
=

[
dv
dt
· eα
0

]
+

[
v · deα

dt
0

]
=

[
g · eα

0

]
+

[
⊥
g ·eν
0

]
,

where g =
dv

dt
= g · cos ε,

⊥
g= v ·

||deα||E
dt

= v · wα =
v2

r
= g · sin ε;

g2 = (g)2 + (
⊥
g )2, g = g +

⊥
g, g || v,

⊥
g ⊥ v (

⊥
g = g − g).

Here g(t) is decomposed along the direction eα of the velocity v and the orthogonal direction eη of the

principal normal to the curve in the constant Euclidean subspace ⟨E3⟩ of the Lagrange space-time ⟨L3+1⟩,
but with single Pythagorean Theorem!

* * *
Since, at collinear motion, a length of a curve's arc is dl = K ·R, then the 1-st part of (223A) is

pseudoanalog of the 1-st Frenet�Serret formula, gotten by a purely trigonometric alternative way.
So, using the hyperbolic angle of motion γ in the osculating pseudoplane, with arc dγ, we obtain:

di = p dγ ⇔ di

dγ
= p ⇔ di

Rdγ
=

di

d(cτ)
=

dγ

d(cτ)
· p =

p

R γ
= Kγ · p. (231A− I)

For regular Euclidean curves with eα = const in its osculating quasiplane in the quasi-Euclidean
space ⟨Q2+1⟩ with reper axis −→y (Ch. 8A), using the principal angle φ, with arc dφ, we obtain, by
a purely trigonometric alternative way, quasianalog of the 1-st Frenet�Serret formula:

de = n dφ ⇔ de

dφ
= n ⇔ de

Rdφ
=

de

dl
=

dφ

dl
· n =

n

Rφ
= Kφ · n. (231A− II)

* * *
Continuing the previous process, we realize the next two-steps di�erentiation along

a world line, but now as of the principal pseudonormal pα to �nd the remaining motion
parameters in the 3D space-time ⟨P(2+1)⟩I under contrary to (228A) metric tensor {I∓}
also for descriptivety. Now we'll consider this di�erentiation logically as accompanied with
the concomitant hyperboloid I. For certainty, in the beginning, we take into account only
the time-like variant of summary angular motion along a world line (relating namely to the
STR), because the rotations of the pseudonormal pα give time-like and space-like particular
di�erentials � see preliminary for the hyperboloid-I in (133A-H) and (133A-S) in Ch. 7A.

The principal and free characteristics iα and iκ are produced with the 2-nd di�erent-
iations in cτ along a world line after (223A) with one and two degrees of freedom (at ζ = 4):{

dpα(cτ)
d(cτ)

}
α

= Kα(cτ) ·
[

sinh γi · eα
cosh γi

]
α

= Kα(cτ) · iα(cτ) = qα(cτ) =
jα
c2
,

dpα(cτ)
d(cτ)

= Qκ(cτ) ·
[

sinh γq · eκ
cosh γq

]
= Qκ(cτ) · iκ(cτ) = qκ(cτ) =

jκ
c2
.

 (232A)

Let's adopt relation as (137A) for new characteristics in (232A) with connection as (224A)
from condition of pseudoorthogonality of pα and iκ, with a free directive vector eκ under
sine slope to eα and 3-rd directive vector eµ = eα× eν also in the original Euclidean plane::

eκ = sin ϵ ·eα+cos ϵ ·eµ, ϵ ∈ [0;π], (e′κ ·eα = sin ϵ, e′κ ·eµ = cos ϵ, e′α ·eµ = 0). (233A)

From condition of pseudoorthogonality for pα and iκ, we get relations contrary to (224A):

{tanh γi = sin ϵ · tanh γq ∼ coth γq = sin ϵ · coth γi} → γq > γi(γ ∈ [0,∞), ϵ ∈ [0;π]);
at complementary angle{cosh υq = cos ϵ · cosh υi} → υq < υi(υ ∈ [0,∞), ϵ ∈ [0;π]).

}
(234A)
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At the 2-nd free di�erentiation in cτ along a world line, due to (232A) and with the use of (233A),
we get as if the pseudoanalog of the 2-nd Frenet-Serret formula, with revealing a space-like cosine
binormal bµ and the same principal curvature Qα = Kα, but at the principal tangent iα, and now

in the second partial 3D space-time ⟨P2+1⟩I ≡ {⟨E2⟩(m)
Nc ⊠

−→
ct} ≡ {⟨E2⟩(m)

Nc ⊠
−−→
y(m)} (also at ζ = 3):

qκ(cτ) =
dpα(cτ)

d(cτ)
=

dγq

d(cτ)
·
[

sinh γq · eκ
cosh γq

]
=

dγq

d(cτ)
· iκ(cτ) = Qκ(cτ) · iκ(cτ) ≡ (235A− I)

≡
dγi

d(cτ)
·
[

sinh γi · eα
cosh γi

]
α

+

[
cosh γi · deα

d(cτ)
0

](1)
γ

=
dγi

d(cτ)
·
[

sinh γi · eα
cosh γi

]
α

+

[
cosh γi · dα2

d(cτ)
· eµ

0

](1)
γ

=

= Qα(cτ) ·
[

sinh γi · eα
cosh γi

]
α

+Kµ(cτ) ·
[

eµ
0

](1)
γ

= Qα(cτ) · iα(cτ) +Kµ(cτ) · bµ(cτ) ≡

≡
dγq

d(cτ)
·
[

sinh γq · eκ
cosh γq

]
=

dγq

d(cτ)
·
{[

sin ϵ · sinh γq · eα
cosh γi

]
+

[
cos ϵ · sinh γq · eµ

0

](1)}
=

= Qκ(cτ) ·
[

sinh γq · eκ
cosh γq

]
= Qκ(cτ) · iκ(cτ) = Q×

κ · iα(cτ)+
⊥
Q◦

κ ·bµ(cτ) = q×
κ (cτ)+

⊥
q◦
κ (cτ).

Below we use again intuitive understandable notations beginning from the general curvature Qκ!

Qκ =
dγq
d(cτ)

=
jκ
c2

; Q⋆
κ = cosh γq · Qκ = Q⋆

α = cosh γi · Qα; Qα = Kα =
dγi
d(cτ)

=
jα
c2

;

Q◦
κ = sinh γq · Qκ =

j◦κ
c2

, Q×
κ =

√
sin2 ϵ · sinh2 γq − cosh2 γq · Qκ = kq · Qκ = Qα;

Q◦
κ = sinh γq · sin ϵ · Qκ = sinh γq · Qκ = sinh γi · Qα = sinh γi · Kα = Q◦

α =
j◦κ
c2

=
j◦α
c2

;

⊥
Qκ=

⊥
jκ
c2

,
⊥
Q◦

κ=

⊥
j◦κ
c2

= sinh γq · cos ϵ · Qκ = Kµ = cosh γi · dα2
d(cτ)

=
c∗w∗

α2

c2
=

jµ
c2

.

∓Q2
κ = ±(Q◦

κ
2 −Q⋆

κ
2) = (Q◦

κ

2
+

⊥
Qκ

2

)−Q⋆
κ
2 = −Q×

κ

2

+
⊥
Q◦

κ

2

= −Q2
α +K2

µ.
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Equaling under I± paired summands, we get next relations at η < γq : ∓dγ
2
q = ∓(cosh

2
γq dγ

2
q − sinh

2
γq dγ

2
q ) =

= ±[(sin
2
ϵ · sinh2

γq dγ
2
q + cos

2
ϵ · sinh2

γq dγ
2
q )− cosh

2
γq dγ

2
q ] = (sinh

2
γi dγ

2
i + cosh

2
γi dα

2
2)− cosh

2
γi dγ

2
i =

= −dγ
2
i + cosh

2
γi dα

2
2 = ±[(sin

2
ϵ · sinh2

γq − cosh
2
γq) dγ

2
q + cos

2
ϵ · sinh2

γq dγ
2
q ] = ∓(− sinh

2
η dγ

2
q + cosh

2
η dγ

2
q ).

We have two identical decompositions of dγq � usual and new pseudo-Euclidean, the latter correspond to
the 1-st metric form (133A) of the hyperboloid I ! We use also underline for Relative and Absolute Theorems.

The Relative Pythagorean theorem follows from the space-like part of (235A) in its 3-vector and quadric

scalar forms acting on the cosine normal plane ⟨E2⟩(m)
Nc ≡ ⟨e

(m)
α , e

(1)
µ ⟩ for three proportional characteristics

as their orthoprojections into the Cartesian subbase Ẽ
(3)
1 at γ ∈ [0,∞), ϵ ∈ [0;π], using (235A) with (233A):

Qκ · sinh γq · eκ = Q◦
κ · eκ = sin ϵ · Q◦

κ · eα + cos ϵ · Q◦
κ · eµ = Q◦

κ · eα+
⊥
Q◦

κ · eµ =

= Qα · sinh γi · eα + cosh γi · dα2
d(cτ)

· eµ = Q◦
α · eα +

c∗ · w∗
α2

c2
· eµ = Q◦

α · eα +Kµ · eµ.

⇒

⇒

 q◦
κ = q◦

κ+
⊥
q◦
κ= k◦

α + kµ,

(Q◦
κ)

2 = (Q◦
κ)

2 + (
⊥
Q◦

κ)
2 = (Q◦

α)
2 + (Kµ)2,

 {Qα = Kα =
dγi

d(cτ)
, but they are time-like and space-like} ⇒

⇒


sinh γq dγq · eκ = sinh γi dγi · eα + cosh γi dα2 · eµ;
sinh2 γq dγ2

q = sinh2 γi dγ2
i + cosh2 γi dα2

2 =

= sinh2 γq · [(sin ϵ dγq)2 + (cos ϵ dγq)2] = sinh2 γq [(dγq)2 + (
⊥
dγq)2],

⇒
⇒

 j◦κ = j◦κ +
⊥
j◦κ= sinh γq · jκ = sinh γi · jα · eα + c∗ · w∗

α2
· eµ = j◦α · eα + jµ · eµ,

j◦κ
2 = (j◦κ)

2 + (
⊥
j◦κ)

2 = sinh2 γq · j2κ = sinh2 γi · j2α + (c∗ · w∗
α2

)2 = j◦α
2 + j2µ.

 (236A)

⇒ sinh γq · sin ϵ dγq = sinh γq dγq = sinh γi dγi → dγq/dγi < 1,

[γq/γi > 1− see in (234A).] { γq > γi (vq > vi), γq = 0↔ γi = 0; dγq < dγq < dγi} γ ∈ [0,∞);

Qκ ·cosh γq = Qα ·cosh γi = Kα ·cosh γi, Qα = Kα ⇔ cosh γq dγq = cosh γi dγi → dγq/dγi < 1. (237A)
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From (235A)�(237A), we obtain the Absolute pseudo-Euclidean Pythagorean theorem with the

2-nd mobile trihedron Ê
(3)
m = ⟨pα, bµ, iα⟩ in ⟨P3+1⟩ under the same metric tensor I± (17A-I)!

And it acts on the pseudo-Euclidean cosine normal pseudoplane ⟨P1+1⟩(m)
Nc I

≡ ⟨i(m)
α ,b

(1)
µ ⟩ in 3D

⟨P2+1⟩I ≡ {⟨E2⟩(m)
Nc ⊠

−→
ct} (ζ = 3). In the right triangle of pα rotations, it corresponds to the

angular pseudonormal 1-st metric form (133A) for the concomitant hyperboloid I (!!!), as a perfect

hypersurface of ⟨P3+1⟩. It is expressed in the initial baseẼ1 = {I} and �nal base Ẽm in the universal
complete tensor-vector-scalar ("tvs") form with own proportional geometric and physical items: qκ = Qκ iκ = Q◦

κ iα+
⊥
Q◦

κ bµ = Qα iα + Kµ bµ, (Qα = Kα)

∓Q2
κ = ±(Q◦

κ
2 − Q⋆

κ
2) = −(Q◦

κ)
2 + (

⊥
Q◦

κ)
2 = −Q2

α + K2
µ;

 ⇒


jκ = jα iα + jµ bµ, (jα = gα)

∓j2κ = ±(j◦κ
2 − j⋆κ

2) = −j2α + j2µ,

 ⇒

dγq · iκ = dγi · iα + cosh γi dα2 · bµ, (i′α · I± · iα = −1, b′
µ · I± · bµ = +1) ⇒

−dγ2
q = −dγ2

i + cosh2 γi dα2
2 = − cosh2 η dγq

2 + sinh2 η dγq
2 = −

(
dγq

)2

P
+

(
⊥
dγq

)2

E

< 0,

+dγ2
q = −dγ2

i + cosh2 γi dα2
2 = − sinh2 η dγq

2 + cosh2 η dγq
2 = −

(
dγq

)2

P
+

(
⊥
dγq

)2

E

> 0.


(238A − I, II)

Here dγq = dλR/R, η < γq. By this Egregium Theorem of Di�erential Tensor Trigonometry (2-nd
from two hyperbolic), we reduce these mixed motions in Ẽ1 along a world line and on I as a perfect
surface to hyperboloidal arc if dγ2

q < 0, to ellipsoidal arc if dγ2
q > 0 and to horoline if dγq = 0 as

hypotenuses in �nal Ẽm. Factor cosh γq dγq = cosh γi dγi → d sinh γq = d sinh γi in (237A) causes
equations: c∗q ·gκ = c∗i ·gα → c∗q ·m0gκ = c∗i ·m0gα = c∗q ·Fκ = c∗i ·Fα → N(c)

∗
q
= N(c)

∗
i
in Ẽm and Ẽ1!

Values γq and sq = c · coth γq = sin ε · c · coth γi = sin ε · si are calculated by (234A). But all these
items relate to the so-called and hypothetical Looking Glass of Theory of Relativity � see below.

Note, in (228A) and (238A), when γi ̸= const→ dγi ̸= 0, we con�rmed our hyperboloidal model
for world lines metrics! They propagate on cases with dγi = 0 too � see further for screwed lines.

We obtain in (236A) the cosine normal acceleration jµ = c∗ w∗
α2
. Besides, j∗α

2 = g∗α
2 − g2α is

the acceleration g∗α excess, which was not explicitly revealed in (226A). We inferred that in (238A)
the normal cosine projection of dα does not change, since they with eµ are perpendicular to the
principal direction of motion eα. We again state the ful�llment of the Herglotz Principle [84] � see it
in Chs. 2A and 4A and in (228A). That is why, for normal projections in Ẽ1, we did not use special
sign circle as for parallel ones. For more clarity note, that both parts of dγq · iκ at I in (238A) give
in the STR the pseudo-Euclidean interior and exterior right triangles in ⟨P(1+1)⟩(m) ≡ ⟨bµ, iα⟩(m).
Earlier in (226A) g∗α (as a leg) and gα (as a hypotenuse) given only the exterior right triangle with
the acute angle γi between them, and g∗α

2 − j∗α
2 = g2α = j2α. In (236A) the parallel accelerations j∗α

(as a leg) and jα (as a hypotenuse) give the interior right triangle with the obtuse complementary
angle υi between them. Now we obtain contrary g∗α

2−j∗α
2 = j2α = g2α. In both right triangles, j∗α lies

contrary to γi. For characterization of hyperboloids I and II, it is necessary to distinguish between
their geometry as a whole and the part that relates to Theory of Relativity. We will analyze below
the geometric features and more in detail what is related to the theory of world lines.

Theorem (238A) acts at the tangent pseudo-Euclidean hyperplane to concomitant hyperboloid I at
slopes of summary motion's arc dγq = dλR/R inside or outside light cone. Two-steps di�erentiation
(235A) gives rotations of the pseudonormal pα with two degrees of freedom: pα × bµ = +iα and
pα × iα = +bµ (bν = const). Thus, unity bµ and iα are here the 2-nd pair of the cardinal

pseudo-Cartesian base Ê
(4)
m = ⟨pα(cτ), bν(cτ), bµ(cτ), i(cτ)⟩ as the movable tetrahedron, which

is rotated around an arbitrary world line in the entire binary space-time ⟨P3+1⟩ (see further). The
4-vector iα was obtained in (222A) for the sequential two-steps di�erentiations (225A) and (235A).
Each they are realized with two degrees of freedom producing two own speci�c trihedrons: in (228A)

Ê
(3)
m = ⟨pα(cτ), bν(cτ), iα(cτ)⟩ and in (238A) Ê

(3)
m = ⟨iα(cτ), bµ(cτ), pα(cτ)⟩.

Non-collinear motions in (238A) and on the hyperboloid I with their two di�erential arcs have
own normal relations, in addition to (230). Here is dγ = dγq. Since in (238A) γi < γq, then at
γq = 0 we get γi = 0, i. e., physical movement is absent. Hence the Local Absolute pseudo-Euclidean
Pythagorean theorem in ⟨E3⟩(1) is absent! That is why, from (235A-II), in the Euclidean subspace
⟨E3⟩(1), when γq ̸= 0, we produce on the hyperboloid I in ⟨P2+1⟩I its own normal relations:

cos ϵ · sinh γq dγq =
⊥
dγq = cosh γi dα2 = (dα2)

⋆ > dα2 (γi < γq). (239A)
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Note, in the end of Ch. 7A, we established through our simple trigonometric formula (173A)
that a true primary reason of the Thomas precession in STR is mathematical "angular dissonance"
of a hyperbolic cosine type, having place also in the hyperbolic triangles on the hyperboloid II and
on the Lobachevsky�Bolyai hyperbolic plane as the Lambert angular defect. By (173A) we have

dθ = dα1 − (dα1)
⋆ = dα1 − cosh γi dα1 < 0→ dθ/dt = wθ = wα − w∗

α < 0. (240A)

Di�erential rotation dα1 of a world line acts in (228A) in the sine normal plane ⟨E2⟩(m)
Ns ≡ ⟨e

(m)
α , e

(1)
ν ⟩

around its instantaneous normal precessing axis e
(m)
µ sloped locally under cosh γi to immobile e

(1)
µ

in the base Ẽ1. But how we may describe with (240A) forming the complete Lambert negative
angular deviation −dθ, for example, on the hyperboloid II (or in time as the Thomas precession) ?
For this we'll use the descriptive process of drawing the triangle on the curvilinear surface of
the hyperboloid II continuously and perpendicularly to the vector eµ. When we pass along 3
sides of the hyperbolic triangle, the Lambert angular defect is integrated with (240A) along its
sides. In the last apex of the hyperbolic triangle, we'll receive the complete angular deviation∫ α1

0
[dα1− cosh γi(α1) dα1] = π−α⋆

11−α⋆
12−α⋆

13 < π−α11−α12−α13 = 0. See strictly the prove
of the bond of orthospherical shift dθ with the Lambert angular deviation in (244A-II), Ch. 7A.

However, we obtained above in (236A) the similar normal item cosh γi dα2, but it is for the
second independent cosine normal rotation-motion of a world line, projected in the instantaneous
cosine normal plane ⟨E2⟩(m)

Nc ≡ ⟨e
(m)
α , e

(1)
µ ⟩, what is more, around its instantaneous normal axis e

(m)
ν !

* * *
The joint pseudoorthogonality of motions in (228A), (238A) and also (!) of motions on both

conjugated Minkowski hyperboloids in ⟨P3+1⟩ are reduced to the equation p′
β ·{I±}·iκ = 0, which is

executed according to (224A) and (234A) i� e′
β · eκ = cos ε · sin ϵ . Then we have this �nal equation

with conditions of the consistent orthogonality of all four basis vectors, inferred strictly the existence
of a complete pseudoorthogonal cardinal base Ê

(4)
m . But the complete orthogonality of the vectors

eβ and eκ is realized in any of these three cases: (1) cos ε = 0→ eβ = ±eν according to (137A) and
(2) sin ϵ = 0→ eκ = ±eµ according to (233A) or full (3) cos ε = sin ϵ = 0→ eβ = ±eν , eκ = ±eµ.

* * *
To realize various alternative motions with the entire angular di�erential dα, essentially in the

important case when dγi = 0, we introduce new necessary additional unity vectors. Below put:

bα =

[
eα

0

]
is a cutting 3-rd space-like binormal (from complete pα and iα).

i1 =

[
0
1

]
is a cutting time-like binormal (from complete iα and pα).

They arise, as the additional unity 4-vectors, when total curvatures of the given principal rotations
of time-arrow iα and pseudonormal pα are decomposed into their spatial and temporal parts.

In addition, for further constructions of screwed curves, we introduce the speci�c time arrow
and pseudonormal, perpendicular to principal ones iα and pα also presented here for comparison:

iν =

[
sinh γi · eν

cosh γi

]
, pµ =

[
cosh γi · eµ

sinh γi

]
; iα =

[
sinh γi · eα

cosh γi

]
, pα =

[
cosh γi · eα

sinh γi

]
.

* * *
Geometrically (238A) corresponds to rotation of principal pseudonormal pα with two degrees of

freedom: at complete arc dγi and at as if cutting arc dα2. Indeed, above we have only its space-like
cosine projection into ⟨E2⟩. Although complete dα2 with its sine and cosine projections in

−→
ct and

⟨E2⟩ is a space-like vector sum at the space-like unity 4-vector of the normal cosine pseudonormal pµ.
(Also under metric tensor I±.) Such cutting is caused by mixing its time-like projection sinh γi dα2

with the time-like projection sinh γi dγi in dγi · iα in (238A). However at γi = const, similar
mixing is absent, and we can execute as alternative to (235A) two-steps di�erentiation along a
world line with orthogonal decomposition of 4-vector dα2 · pµ into two trigonometric projections.
Obviously, such two-steps space-like orthospherical motion must have own trihedron in 3D ⟨P2+1⟩,
however (as we shall see) also in the central zone of the concomitant hyperboloid I, with the own
Absolute pseudo-Euclidean Pythagorean theorem. We'll implement this scenario below for correct
construction by Tensor Trigonometry of the space-like pseudoscrewed "superlight world line" as the
2-nd type of uniformly accelerated motion (in addition to space-like uniform hyperbolic motion).

* * *
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In order to replenish our study of relativistic motions in entire ⟨P3+1⟩, let us remember words
of the great Niels Bohr to dared physicists: �Your theory is not correct, as it is not crazy enough!�
Then, we may realize the more complete tensor trigonometric presentation of relativistic motions
in entire ⟨P3+1⟩, with world lines of two types � usual as they were before and superlight, separated
there by an isotropic cone. The �rst are used in the true Poincar�e � Minkowski space-time, and
the second act in the hypothetical Looking Glass of Theory of Relativity, with the well-known and
nice voyager Alice (following here to the non-ordinary English writer-mathematician Lewis Carroll).
This Looking Glass is realized in entire relativistic or binary geometric ⟨P3+1⟩ and physically beyond
the horizon of events as if in another adjacent othersided world. So, for instance, it may be inside
the so-called black hole, predicted in 1783 by the eminent John Michell [81] only on the basis of
the Newtonian Celestial Mechanics. Beside, at our time, in 1962, the well renowned physicist and
Pioneer in quantum Tachyon Theory Gerald Feinberg predicted so-called tachyons, as elementary
particles that move at speed greater than the constant speed of light c in a vacuum and no-when
non-equal really to it. Moreover, up to now nobody asked the sacramental question: "According to
what laws and equations of kinematics and dynamics the superlight relativistic motions should be
carried out inside the Looking Glass of Theory of Relativity of entire ⟨P3+1⟩?" We may logically
adopt, that in this superlight space-time, such laws are developed from di�erentiation of pα along a
superlight world line as in (238A). We get the hyperbolic angles of motion −υ o� an isotropic cone
to ⟨E3⟩ and complementary to it −γ(−υ) as clockwise ones in ⟨P1+1⟩. Coordinate supervelocity is
u = c ·coth γ = c ·cosh υ ≥ c from c till∞ and proper supervelocity is u∗ = c ·cosh γ = c ·coth υ ≥ c
from ∞ till c. Scalar supervelocity of the time t stream is c⋆ = c · sinh γ = c · csch υ ≥ c from ∞
till zero! The arc of a superlight world line is a real valued cosine-sine pseudoinvariant (dt, dτ > 0).
The tensors of motion and deformation with dynamic tensors from Ch. 5A have the tensor angles
−Υ or −Γ with their structures of types (496) under also constant coe�cients m0c and m0c

2.
For the next clarity, it is time to consider real localizations of two complete angular arcs dγ

and all three independent orthospherical arcs dα1,2.3 in entire ⟨P3+1⟩. Tangent and pseudonormal,
produced by di�erentiation (222A), (225A), (235A) change along a world line under equivalent
action of motion tensor (100A). Two arcs dγ, primary space-like in (228A) and mutual time-like in

(238A), are situated in pseudoplane ⟨P1+1⟩(m)
H ≡ ⟨pα, iα⟩ of entire ⟨P3+1⟩ presented by analogy with

two bonded primary and mutual spherical arcs dφ in quasiplane ⟨Q1+1⟩(m)
S ≡ ⟨nα, tα⟩ at Figure 3 of

entire ⟨Q3+1⟩. The �rst is the hyperbolic osculating pseudoplane of the hyperbolic curvature Kα. The
second is the spherical osculating quasiplane of the spherical curvature Kα. Hyperbolic and spherical
angles and di�erentials act as binary ones too. Both binary di�erentials dγ act symmetrically with
respect to isotropic cone in the middle between them � see at Figure 4. They express the hyperbolic
identical, but contrary di�erential rotations of iα and pα, due to the especial binary structure of our
hyperbolic tensor of motion (100A), with their permanent symmetry to an isotropic cone. It is from
here we have their pairwise equality in (225A-II), (235A-II), but as scalar ones. These features has
a place in the quasi-Euclidean space for double di�erentials dφ for simultaneous contrary spherical
rotations of tangent tα and quasinormal nα under our spherical tensor of motion (313).

The sine bν and cosine bµ binormals with their sine and cosine normal curvatures act in the sine
and cosine Euclidean normal planes, but with the possible common orthospherical rotation dα3 in
the binormal's Euclidean plane ⟨E2⟩(1)B ≡ ⟨bν ,bµ⟩ � similar to the Cardano gimbal in the Euclidean

space ⟨E3⟩. This plane is spherically orthogonal to the main binormal b
(m)
α in ⟨E3⟩(m). And the 3-rd

arc dα3 expresses a non-relativistic free orthospherical rotation in the binormal's Euclidean plane.
In the 4D pseudo-Euclidean space ⟨P3+1⟩, Euclidean binormal's plane and osculating pseudo-

plane are pseudoorthogonal and form a direct pseudoorthogonal sum from these relative summands!
Each from them is a direct pseudoorthogonal complement to another and is de�ned by 4×2-lineors
A1 = |pα, iα| and A2 = |bν ,bµ| � see them in Ch. 5. We state the additional to (500) and (174A)
pseudo- and quasi orthogonal decompositions of both binary spaces into their relative summands:

⟨P3+1⟩ ≡ ⟨P1+1⟩(k)H ⊠ ⟨E2⟩(k)B ≡ CONST. (241A− I)

⟨Q3+1⟩c ≡ ⟨Q1+1⟩c
(k)

H ⊞ ⟨E2⟩(k)B ≡ CONST. (241A− II)

⟨Q3+1⟩ ≡ ⟨Q1+1⟩(k)S ⊞ ⟨E2⟩(k)B ≡ CONST. (242A)

Such properties with (500) and (174A) create a nice trigonometric harmony of these binary spaces!
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* * *

Let us note one important property of a world line in ⟨P3+1⟩. Its principal tangent and its
pseudonormal are always symmetric with respect to the isotropic cone. The same property relates
to concomitant hyperboloids. This property is preserved even during their two-steps di�erentiations
along a world line. So, this should lead to the fact that during two-steps di�erentiation in (235A),
with revealing two basis vectors � the principal tangent and the space-like cosine binormal with
cosine curvature at it, in previous (228A) synchronously and in addition to them the principal
pseudonormal and the space-like sine binormal with sine curvature at it should appear from (238A).
This gives the complete three-steps 1-st metric form for a world line in the usual 4D space-time:

diα
d(cτ)

=
diγi

d(cτ)
· pα + sin iγi · dα1

d(cτ)
· bν + cos iγi · dα2

d(cτ)
· bµ =

= sin iγi · diγi

d(cτ)
· i1 + cos iγi · diγi

d(cτ)
· bα + sin iγi · dα1

d(cτ)
· bν + cos iγi · dα2

d(cτ)
· bµ =

= Kα · pα + Kν · bν + Kµ · bµ = Ysin · i1 + Xcos · bα + Kν · bν + Kµ · bµ,

{dλ/R}2 = dγ2
i + sinh2 γi dα1

2 + cosh2 γi dα2
2 =

= − sinh2 γi dγ2
i + cosh2 γi dγ2

i + sinh2 γi dα1
2 + cosh2 γi dα2

2 ⇒

⇒ CR
2 =

η
∗
γ
2

c
2 + sinh2 γi ·

w
∗
α1

2

c
2 + cosh2 γi ·

w
∗
α2

2

c
2 = K2

α + K2
ν + K2

µ;

gΣpΣ = gαpα + gνbν + jµbµ ⇒ g2
Σ = (cη∗

γ)
2 + (v∗w∗

α(1))
2 + (c∗w∗

α(2))
2.



(243A, 244A)

The item cosh γi at dα2 is situated trigonometrically ofside Cayley oval, and they give proportional
cosine normal acceleration as also Euclidean pojection. However STR does not impose restrictions
onto accelerations, but only on the value of velocity v, besides of the voyager himself! If s ≪ c,
then cosh γi → 1 and Kµ → dα2/d(cτ) is as if for rotation of the moving gyroskop on its world line.
We have again complete compatibility with the Principles of Correspondence by Niels Bohr!

And now we may do the following infers: Kα,Kν ,Kµ ̸= 0 is a condition of the 4D-spatial curves;
any two from these curvatures as non-zero is a condition of the 3D-spatial curves; anyone from them
as non-zero is a condition of the �at curves; Kα,Kν ,Kµ = 0 is a condition of the straight world line.

In the Looking Glass of Relativity, for a superlight world line with the cotangent coordinate
velocity s = coth γi ·c ≥ c (from Ch. 6A) in external cavity of isotropic cone, we get in the entire 4D
space-time or the geometric space ⟨P3+1⟩ the next relations, where as if pα and iα are exchanged:

dpα

d(cτ)
=

diγi

d(cτ)
· iα + cos iγi · dα2

d(cτ)
· bµ + i sin iγi · dα1

d(cτ)
· bν =

= sin iγi
diγi

d(cτ)
· i1 + cos iγi

diγi

d(cτ)
· bα + cos iγi · dα2

d(cτ)
· bµ + i sin iγi · dα1

d(cτ)
· bν =

= Kα · iα + Kµ · bµ + iKν · bν = Ycos · i1 + Xsin · bα + Kµ · bµ + iKν · bν ,

{dλ/R}2 = −dγ2
i + cosh2 γi dα2

2 + sinh2 γi dα1
2 =

= − cosh2 γi dγ2
i + sinh2 γi dγ2

i + cosh2 γi dα2
2 + sinh2 γi dα1

2 ⇒

⇒ SR
2 = −

η
∗
γ
2

c
2 + cosh2 γi ·

w
∗
α2

2

c
2 + sinh2 γi ·

w
∗
α1

2

c
2 = −K2

α + K2
µ + K2

ν ;

gΣiΣ = gαiα + jµbµ + gνbν ⇒ g2
Σ = −(cη∗

γ)
2 + (c∗w∗

α(2)
)2 + (v∗w∗

α(1)
)2.



(245A, 246A)

We reduce the arbitrary most general motions in absolute entire ⟨Q3+1⟩c and ⟨P3+1⟩, mixed from
hyperbolic and orthospherical (under hyperbolic inclinations), again to purely angular ones, along
hypotenuse of the right parallelepiped from three legs in ⟨E3⟩(m), while preserving the symmetry of
tangent and pseudonormal with respect to isotropic cone and under the common metric tensors.

Note, that metric forms (228A), (238A) transform, by abstract analogy, in two-steps quasi-
Euclidean ones in quasi-Euclidean space ⟨Q3+1⟩ and on concomitant 3D hyperspheroid, separately
from Pole of II and from Equator of I. But this analogy does not relate to three-steps forms,
because both hyperboloids do not form one-connected hypersurface, contrary to the hyperspheroid!
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In both variants of motions above, their projections onto the frame axis give us the so-called
orthoprocessions Y along it with a point of application M . These orthoprocessions move a world line
progressively parallel to the frame axis

−→
ct (1) with velocity either cosh γi · c or sinh γi · c. By such

a way, we have decomposed even time like and space-like hyperbolic motions in (243A � 246A). This
orthoprocession moves a world line progressively parallel to the frame axis with hyperbolic shift dγ.

Let us add one else possible motion. It is eigen rotation α of the frame axis
−→
ct (1) or −→y (1) with

shift dα or shift in time as the angular velocity w∗
α. It is caused by the change of a world point M

orientation, with respect to the frame axis, at rotation of the vector eα in normal Euclidean planes!
That is why, in result of two-steps di�erentiations in (228A) and (238A), when dγi = 0, one may have
lost the time-like cosine and sine orthoprojections of dα onto the frame axis as the projective cosine
and sine orthospherical orthoprocessions along

−→
ct (1) or in pseudo-Euclidean geometry along −→y (1).

What's more, when dγi = 0 and dα ̸= 0, we can reveal purely arti�cially these cosine and sine
orthoprojections of the complete (non-cutting) orthospherical shift dα onto the frame axis

−→
ct (1) in

the 3D pseudo-Cartesian bases Ẽ
(3)
1 of entire ⟨P3+1⟩, furthermore uniting them into complete dα,

accordingly with its sine and cosine space-like orthoprojections onto the sine and cosine normal
Euclidean planes in entire ⟨P3+1⟩. By such a correct and very descriptive manner, we can construct
di�erentially in entire ⟨P3+1⟩ the two complete screw rotations dα of their Euclidean radius r and
pseudo-Euclidean radius RK , with positive and negative signs of the right and left screws shift dα
and their sine steep and cosine gentle inclinations γ. Both variants at dγi = 0 (γi = const) give the
two Absolute pseudo-Euclidean Pythagorean theorems for cosine and sine orthospherical curvatures
in entire ⟨P3+1⟩ with hypotenuse CR = w∗

α/c! Their relative projections onto the frame axis
−→
ct (1)

give the own orthoprocessions, introduced above, depending on slopes to
−→
ct (1) as Ycos = cosh γi · CR

or as Ysin = sinh γi · CR. In the hyperbolic case of screw inclinations, with the permanent constant
4-velocity c of world point M along a world line, two pseudoscrewed motions are natural additions
to two hyperbolic motions with slopes above and upper isotropic cone as usual and superlight ones.

It is orthoprocession accompanied by complete rotation dα give screw or pseudoscrew!

We'll consider below brie�y two special variants of world lines with γi = const ̸= 0 at dγi = 0.
In the �rst variant, we'll have 1-st metric form of such a world line with the time-like cosine

orthoprocession Ycos and the space-like sine normal curvature Kν , as projections, accompanied
by the complete imaginary time-like orthospherical di�erential diα. It is expressed by the Absolute
pseudo-Euclidean Pythagorean theorem in the interior right triangle from diα, cosine orthoprocession
and sine normal curvature. Let us split the complete rotation diα onto

−→
ct (1) as cosh γi diα · i1 and

into ⟨E3⟩(1) as sinh γi diα·bν . Then the two-steps di�erentiation of iα will consist in the cosine ortho-
procession Ycos = cosh γi · CR = cosh γi · (iw∗/c) and the normal sine curvature Kν = sinh γi · CR =
sinh γi · (iw∗/c) with the orthospherical imaginary pseudo-Euclidean rotation diα of the screwed

world line with point M at the velocity diα/dτ = iw∗
α around

−→
ct (1). The purely Euclidean projected

rotation dα acts around 3-rd Euclidean axis bµ in the sine normal plane ⟨E2⟩(1)Ns ≡ ⟨eα, eν⟩.
Instead of (228A), with such projecting, in result of the �rst alternative two-steps di�erentiation

of iα in dcτ under γi = const along a world line in ⟨Q3+1⟩c, we obtain the so-called tangent time-like

pseudoscrew (with respect to slope to frame axis
−→
ct (1)) with the constant inclination of the curve:

{
diα(cτ)
d(cτ)

}
γ

= Ycos · i1 +Kν · bν = CR · iν =
w∗

α1
c · iν ,

−(Ycos)
2 + (Kν)

2 = −(CR)2 = (iCR)2 = −
(
w∗

α1
c

)2

=

(
iw∗

α1
c

)2

;

⇒ (247A)

⇒


diα1 · iν = cos iγi diα1 · i1 + sin iγi diα1 · bν ,

−[dλ/R]2 = −dα1
2 = d(iα1)

2 = − cosh2 γi dα1
2 + sinh2 γi dα1

2.

 (248A)

Such a type of di�erentiation with as if trihedron Ê
(3)
m = ⟨bν , bα, i1⟩ leads to summary time-like

imaginary diα with unity vector iν (as normal time arrow) of the world line rotation in ⟨Q3+1⟩c,
which is gotten by orthospherical rotation in the di�erentiated principal time arrow iα of its unity
vector of the 3-rd binormal bα with eα into orthogonal to it the sine binormal with eν :

{rot Π/2}4×4 · bα = {rot Π/2}4×4 ·
[

eα

0

]
=
{rot Π/2}3×3 0

0′ 1
·
[

eα

0

]
= bν =

[
eν

0

]
.
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And in the second variant, the two-steps di�erentiation of pα will consist in the time-like sine
orthoprocession Ysin = sinh γi · CR = sinh γi · (w∗/c) and the space-like normal cosine curvature
Kµ = cosh γi · CR = cosh γi · (w∗/c) with the complete pseudo-Euclidean space-like orthospherical

rotation dα of the world line with point M at the velocity dα/dτ = w∗
α around

−→
ct (1). The Euclidean

projected part of rotation dα acts as if around axis bν of the cosine normal plane ⟨E2⟩(1)Nc ≡ ⟨eα, eµ⟩.
It is expressed by the Absolute pseudo-Euclidean Pythagorean theorem in the exterior right triangle
from complete dα2, sine orthoprocession and cosine normal curvature in the Looking Glass of entire
4D space-time ⟨P3+1⟩.

Instead of (238A), with such projecting, after the second alternative two-steps di�erentiation
of pα in dcτ under γi = const along a world line in ⟨Q3+1⟩c, we get the so-called cotangent space-like

pseudoscrew (with respect to slope to frame axis
−→
ct (1)) with the constant inclination of the curve:



{
dpα(cτ)
d(cτ)

}
γ

= Ysin · i1 +Kµ · bµ = CR · pµ =
w∗

α2
c · pµ = dα2

d(cτ)
· pµ,

−(Ysin)
2 + (Kµ)

2 = +(CR)2 =

(
w∗

α2
c

)2

=

(
dα2

d(cτ)

)2

;

⇒ (249A)

⇒


dα2 · pµ = sin iγi dα2 · i1 + cos iγi dα2 · bµ,

+[dλ/R]2 = dα2
2 = − sinh2 γi dα2

2 + cosh2 γi dα2
2.

 (250A)

In this variant with as if trihedron Ê
(3)
m = ⟨bµ, bα, i1⟩ normal pseudonormal pµ is gotten by

orthospherical rotation in the di�erentiated principal pseudonormal pα only its unity vector of the
3-rd binormal bα with eα into orthogonal to it the cosine binormal with eν under the cosine slope:

{rot Π/2}4×4 · bα = {rot Π/2}4×4 ·
[

eα

0

]
=
{rot Π/2}3×3 0

0′ 1
·
[

eα

0

]
= bµ =

[
eµ

0

]
.

In (247A), (248A) and (249A), (250A), their pseudo-Euclidean complete angular di�erential
motions diα and dα, i. e., upper and below of the isotropic light cone, with physical angular
velocities w∗

α = dα/dτ are displayed in the projective normal sine and cosine Euclidean planes as two
progenitor planetary motions, usual and superlight. Moving along two pseudoscrewed world lines
(of tangent and cotangent types), they are rotated around

−→
ct (1) at the perpendicular time-like time-

arrow iν and at the perpendicular space-like complete pseudonormal pµ. These arti�cial di�erentials
diα and dα are strained visually along i1, due to their pseudo-Euclidean metric!

We get a wonderful and amazing result, consisting in the fact, that the pseudo-Euclidean angular
motion, produced identically from the equal planetary angular movement dα1 in time in the sine
normal Euclidean plane ⟨E2⟩(1)Ns ≡ ⟨bν ,bα⟩, is displayed entirely in (247A), (248A) from its two sine
and cosine orthoprojections into the imaginary time-like motion diα of a pseudoscrewed world line
in Ẽ1 of the 3D complex quasi-Euclidean space-time ⟨Q2+1⟩IIs with its imaginary time-arrow

−→
ct (1),

according to the original approach of Henry Poincar�e to creation of the STR in June 1905.
It is a consequence of the fact, that rotation diα around

−→
ct (1) is executed at the imaginary

perpendicular tangent iν under its also hyperbolic inclination to
−→
ct (1). From (247A) we see that the

local time-arrow −→cτ with tangent iα to this world line is rotated entirely at the imaginary angular
di�erential diα too, but with its space-like Euclidean sine normal part at the 3-vector b

(1)
ν in the

sine normal plane ⟨E2⟩(1)Ns. Therefore similar time-like screwed rotations-motions are accompanied
also by the Thomas precession � see above and in Ch. 7A. The Thomas precession acts around the
3-rd normal precessing axis b

(1)
µ under complete description of this time-like pseudoscrewed motion

in the space-time ⟨Q3+1⟩c by Poincar�e�Minkowski! Hence, by such a way, the Thomas precession in
time is propagated on any relativistic time-like pseudoscrewed motions � so, as of electrons, sputniks
of planets up to big and very big astronomical objects with their relativistic motions of a planetary
type (purely spherical and elliptical).

But in (249A), (250A), we revealed a space-like Euclidean cosine normal part at the 3-vector`b
(1)
µ

in the cosine normal plane ⟨E2⟩(1)Nc, projected from the pseudo-Euclidean complete rotation-motion

dα2 of a space-like screwed world line in Ẽ1 of the 4D complex quasi-Euclidean space-time ⟨Q3+1⟩c.
However a cosine Euclidean part of this rotation dα does not lead namely to the Thomas precession!
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* * *

The resulting relations (247A)�(250A) give us the screwed shape of these curves with
kinematic, and it obviously should be repeated as a result of their permanent orthospherical
rotation dα. Consequently, these relations alone are not su�cient for the overall formation
of such curves, since there are no yet some mathematical condition that ensure continuous
and smooth connectivity of all their turns � see its below. Then, in result of the integration,
we must obtain the pseudoscrewed curves of tangent and cotangent types, i. e., with gentle
and steep slopes, and also as right and left turned due to two possible signs of dα directions.

Let us point out another unusual features of these orthospherical rotations along both
pseudoscrewed curves with both their di�erentials diα(1) and dα(2), very important for full
understanding their tensor trigonometric arrangement. The fact is that complete angular
di�erentials in relations (247A)�(250A) are of an arti�cial nature, since they were obtained
by combination of two time and space orthoprojections into united one � formally also with
two-steps di�erentiation along a curve. That is why, both these arti�cial orthospherical
rotations have the pseudo-Euclidean nature and metric, and they are situated and act in
their 3D pseudo-Euclidean binary spaces. Though their formally equal progenitors dα are
situated in their sine and cosine normal Euclidean planes. Hence, a coincidence of scalar
forms of these pseudo-Euclidean di�erentials with the true Euclidean di�erentials dα in these
normal Euclidean planes only means formal equality of these angular di�erentials � arti�cial
and real. It is such a feature leads to number of the unusual paradoxes of screwed and
pseudoscrewed curves with corresponding to them number of characteristics, right triangles
with additional Pythagorean theorems, all described below in details!

Note, that these features hold in the spherical case too for the analogical screwed right
and left curves in the quasi-Euclidean space of cotangent and tangent types, i. e., with steep
and gentle inclinations; and also with conservation of value dα on the curve.

Using locally hyperboloidal model for both types of two pseudoscrewed world lines,
we can relate them to the central cylindrical region of the concomitant hyperboloid I � upper
and below of the isotropic cone with respect to its central circular zone � an equator of the
Euclidean radius R = r. This consists on its surface the coincided with them the time-like
motion diα and space-like motion dα up to 1-st order of di�erentiation in ⟨Q3+1⟩c. We use
R = r as radius-parameter of this concomitant hyperboloid I and of its central zone and r as
the same Euclidean radius of both progenitor planetary movements � usual and superlight!

Thus, above we considered preliminary the main aspects for correct construction of two
types screwed world lines and regular curves in the both binary metric spaces.

However using above in (243A)�(250A), and before in (132A), (133A) and (225A), (235A)
the complex quasi-Euclidean binary space as 4D space-time by Poincar�e, we must add to
Chs. 5 and 8A, that not only real-valued quasi-Euclidean spaces, but and complex-valued
ones, including ⟨Q3+1⟩c by Poincar�e, have the Euclidean metric tensor and the re�ector
tensor analogous to one for the pseudo-Euclidean binary space, for which it serves as metric
and re�ector tensors. This our mark is necessary for executions of any re�ective operations
with re�ector tensor in these binary spaces. Its relative complex osculating quasiplane and
real-valued bonormal's Euclidean plane form the quasiorthogonal direct sum as the absolute
4D Poincar�e � Minkowski space-time in two presentations (241A-II).

Beside similar relative quasiplane and Euclidean binormal's plane form also the quasi-
orthogonal direct sum (242A) as the real-valued absolute 4D quasi-Euclidean binary space.

Let us compare these direct pseudo-orthogonal, complex quasi-orthogonal and real-valued
quasi-orthogonal sums with the direct sums in general formulae (150), (160), (500), (174A).
However it is from the introduced paired Special planes, the sine and cosine orthoprojections
of the true complete angular di�erentials dγi and dα are realized separately in (243A) in all
1-st metric forms of world lines and regular curves in the binary metric spaces with q = 1.

* * *
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In (247A), (248A), the complete imaginary di�erential diα(1) leads to the integrated time-
like pseudoscrew iα(1). On the basis, we'll construct this pseudoscrew with its true movable
trihedron in ⟨P2+1⟩II , the time-like cosine binormal i1 and the space-like sine binormal bν

acting under cosine and sine slopes to
−→
ct . This will be a logical completion of our di�erential

tensor trigonometry approach to the theory of world lines developed in ⟨P3+1⟩ and ⟨P2+1⟩.
Let in (228A) dγi = 0→ Kα = 0 with w∗

α = dα/dτ . Physical driving of the pseudoscrew
is planetary circular movement in the original Euclidean plane ⟨E2⟩ in space-time ⟨P2+1⟩II .
Such driving alone is not enough to form the full curve, rotated with the time-arrow

−→
ct

permanently on the angle α, otherwise it will have self-intersections in process of rotation. To
avoid this, we reveal an additional progressive motion of such a world pointM parallel to the
frame axis

−→
ct under condition of all motions synchronism and continue of the pseudoscrew.

It is the orthoprocession Ycos gives this progressive motion in time parallel
−→
ct from moving

orthoprojectionM ′ of a current world pointM and adds to curvature CR. The world line as a
whole is rotated by space-like dα and moves progressively parallel

−→
ct . But its general pseudo-

curvature CR and its pseudo-radius RC = 1/CR remain constant. When the curve makes a
turn at angle dα = 1rad, the pointM passes along its arc-segment RC . Euclidean projection
of this segment is opposite to the acute angle γi in its vertex. Therefore its length is
r = sinh γi ·RC . The projection of this segment onto

−→
ct is s = cosh γi ·RC . Under the motion

dα = 1rad, we have a parametric pseudo-Euclidean right triangle A with hypotenuse RC

(the curve arc length) and legs: r (the planetary movement radius) and s (the screw step)
with its pseudo-Euclidean Pythagorean theorem s2 − r2 = R2

C → r/s = tanh γi ≤ 1. This
interior right triangle A (Ch. 6) ensures the formation of this curve without self-intersection.

The di�erentiation of the rotated tangent iα, alternative to (225A), but now under the
constant angle γi and rotation α of time arrow −→cτ , produces the unity 4-vector iν with its eν ,
formed by the spherical shift of the tangent iα as rot Π/2 · iα = iν . It is the unity 4-vector
of the normal tangent, perpendicular to the principal tangent as iα ⊥ iν since eα ⊥ eν
in Ẽ1 = {I}. And with the synchronous orthoprocession Y of the current point M along

−→
ct

with its supervelocity c∗ = cosh γi ·c, we get so the 2-nd kind of uniform curvilinear motion as
the pseudoscrew generated by a circular planetary movement of a body M at v = c · tanh γi,
dγi = 0, dα/dτ = w∗

α, dα/dt = wα at the metric tensor I∓, with the new Absolute pseudo-
Euclidean Pythagorean theorem in ⟨P2+1⟩II with sine bν and cosine i1 binormals:{

diα(cτ)
d(cτ)

}
γ

= cosh γi · w∗
α
c · i1 + sinh γi · w∗

α
c · bν = y + kν = hν =

= Y · i1 +Kν · bν = cosh γi · w∗
α
c ·

[
0
1

]
+ sinh γi · w∗

α
c ·

[
eν

0

]
= CR · iν =

= w∗
α
c · iν = w∗

α
c ·

[
sinh γi · eν

cosh γi

]
⇒ CR2 = Y2 −K2

ν = (w∗
α/c)

2 > 0 .


(251A)

Here: i1 is the unity 4-vector as the time-like cosine binormal for the progressive ortho-
procession Y along rotated time-arrow

−→
ct (1) = s · αi1 at its supervelocity c∗, implemented

by the pseudoscrewed motion of object M along a world-line with 4-velocity c of Poincar�e;
hν = CR · iν is a 4-vector of general pseudocurvature directed along a normal tangent iν of
the curve in ⟨P2+1⟩II to the current point M ′ as orthoprojection of M onto

−→
ct ,

Y = 1/RY = cosh γi · w∗
α/c is a progressive time-like orthoprocession of the world line with

its point M and its orthoprojection M ′ along its unity vector i1 and time arrow
−→
ct (1) as a

time-like progressive part (!) of the pseudoscrewed motion;
Kν = 1/RK = sinh γi ·w∗

α/c is a normal curvature of the world line with its sine binormal pν ;
s = c/wα = cosh γi · c/w∗

α = cosh γi ·RC = cosh2 γi ·RY is pseudoscrew step at dα = 1rad,
r = R = v/wα = sinh γi ·c/w∗

α = sinh γi ·RC = sinh2 γi ·RK is pseudoscrew Euclidean radius,
here R is radius-parameter of the concomitant hyperboloid I, tangent to it (see above).
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Note one else, that the interior right triangle A (see about in sect 6.4), introduced
above, ensures the formation of this pseudoscrew without self-intersection in the process of
continuous motion of a world point M due to its Euclidean rotation and orthoprocession
with c∗ along

−→
ct at s = r ·(c∗/v∗) = r ·(c/v) = r ·coth γ. In the Minkowski space-time, this is

set independently by Nature itself, since the parametric triangle A is similar to the interior
right triangle V of the three velocities, where the hypotenuse c is the Poincar�e 4-velocity
of the point M along a world line and the leg: v∗ is the Euclidean proper 3-velocity of the
point M and c∗ is the scalar time's supervelocity along

−→
ct or of M orthoprojection onto

−→
ct .

In the usual 1-st trihedron, its principal tangent iα is here an impotent vector � without
curvature (Kα = 0 at dγ = 0, but γ ̸= 0), although iα(cτ) exists. The normal time-arrow iν
has the curvature CR, determined by the curvature at the space-like sine binormal bν and
the orthoprocession at the time-like cosine binormal i1. That's why, for description of the

pseudoscrew, we apply as the our arti�cial trihedron Ê
(3)
m = ⟨bν , bα, i1⟩ with 3 curvatures!

In (251A), in addition, we de�ned y = Y · i1 (with its unity vector i1 from this trihedron) as
the cosine time-like projection of 4-vector hν = CR ·iν of the general pseudocurvature CR and
as the time-like vector orthoprocession in time (as if time-like "torsion"). It is not a rotation,

but it is a purely progressive motion of a world line parallel to
−→
ct (1). This orthoprocession in

time Y is a permanent inherent factor of STR, relating to all world lines! This pseudoscrew
is produced by combination of cosine progressive orthoprocession Y along i1 and Euclidean
rotation dα around i1. Y · i1 in�uences on the geometry of world lines and curves, as it
strains them along i1; γi a�ects on r/s, w

∗
α a�ects on s. Such a screw can be a model of a

physical centripetal accelerator with these parameters. More generally, a planet or a sputnik
is rotated around a star or a big planet on orbit of the Euclidean radius r = v∗/w∗

α = v/wα.
As the extreme example of such screwed motions, we give a pseudoscrewed world line of

a photon circular movement around the very massive Star, realized on the isotropic cone with
velocities c = c · eα and w∗

α of the radius r = s = c/w at [v = c, r = s · (v/c) = s · tanh γi],
where in the limit: r/s = tanh γi = 1. Then we see that wα = c/r is determined only by
the radius r of the orbit. Einsteinian photon is rotated at velocities c and wα around the
Star as a Black Hole of radius r = c/wα = fM/c2 and with the period T = 2πr/c = 2π/w∗

α,
predicted in 1783 by John Michell [81] with the use of the Newtonian Theories (!). Recall,
that the so-called Schwarzschild's radius for the Black Hole [100] is twice more, but this may
be explained by the "gravitational cosine" in (212A), Ch. 9A. It is the case, when there is
really no way to check which of the two authors is right more, since this radius is theoretical!

This time-like pseudoscrew (i. e., in the usual space-time) is realized isometrically on its
enveloping cylindrical pseudo-Euclidean lateral hypersurface of the Euclidean radius R = r.
Factually this curve consists from identical repeated arti�cial time-like di�erentials diα,
when the pseudoscrewed curve makes a turn at angle 1 rad. Moreover, this cylindrical
hypersurface as a fragment is deployed isometrically onto the analogical pseudo-Euclidean
plane with translation of a pseudoscrewed world line into straight world line on it. With the
tangent to both them central di�erential cylindrical region of the concomitant hyperboloid I
(see above), these three surfaces and equivalent lines on them have the common metric!!!

This time-like pseudoscrewed motion, as a speci�c 3D world line, is realized with the
inherent orthoprocession Ycos = cosh γi · w∗

α/c = cosh γi · CR for its progressive part along i1
and the normal curvature Kν = sinh γi · w∗

α/c = sinh γi · CR for its rotational part in ⟨E2K⟩.
Necessary quantitative bond of these two partial motions is caused by the fact that both
they have the common kinematic factor w∗

α at its each point M under acting of the driving
planetary movement. As a result, it has the general 3-pseudocurvature CR:

Kν = 1/RK = sinh γi · CR = sinh γi · w∗
α/c = gν/c

2, kν = Kν · bν ; (252A)

Y = 1/RY = cosh γi · CR = cosh γi · w∗
α/c, y1 = Y · i1. (253A)

Ê
(3)
m = ⟨bν , bα, i1⟩. (254A)
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The triple Kν , Y (legs), CR (hypotenuse) forms interior right triangle of pseudoscrew P in
(251A), where Kν/Y = tanh γi < 1 is its constant time-like slope. It is realized in the pseudo-
plane of general curvature ⟨P1+1⟩C ≡ {pν , i1}. In addition, on the cylindrical surface, we get
the spherically bended interior right triangle A1 with legs r, s and hypotenuse RC = 1/CR,
where r = sinh γi ·RC , s = cosh γi ·RC . (In A1 s is coaxial to

−→
ct .) Then there is invariant

s2−r2 = R2
C . RC expresses the pseudo-Euclidean length of the pseudoscrew arc at α = 1 rad.

The identical, but �at interior right triangleA2 is realized in the same pseudoplane ⟨P1+1⟩Y .
(In A2 r is coaxial to pν). Their common straight leg is s > r.

As the geometric paradox of all screws, we obtain two wonderful right triangles:
P of pseudoscrew in (251A) and A in their two variants above with two pseudo-Euclidean
Pythagorean theorems! Their legs are proportional with common coe�cient s/Y = r/Kν ,
they have equal adjacent angles. Hence, both triangles are homothetic. However their
hypotenuses are inverse each another as CR = 1/RC !!! (This paradox extends to screwed
curves in the quasi-Euclidean space ⟨Q2+1⟩ with similar Euclidean Pythagorean theorems!)

This pseudoscrewed world line in the same pseudoplane ⟨P1+1⟩Y generates, in addition,
two pseudo-Euclidean right triangles: they are the exterior right triangle B and the interior
right triangle C, with their exterior and interior pseudo-Euclidean Pythagorean theorems.

The exterior right triangle B has space-like hypotenuse RK = 1/Kν (radius of sine
curvature under inclination γi to ⟨E2⟩), time-like leg RC = sinh γi ·RK � opposite to γi, and
space-like leg b1 = cosh γi ·RK � adjacent to γi. From triangle B we have R2

K = b21−R2
C > 0.

The interior right triangle C has time-like hypotenuse RY = 1/Y (radius of cosine torsion

under inclination γi to
−→
ct), time-like leg RC = cosh γi · RY � adjacent to γi, and space like

leg b2 = sinh γi ·RY � opposite to γi. From triangle C we have R2
Y = R2

C − b22 < 0.
With �rst triangle P, this screwed world line has 5 characteristic right triangles! If the

enveloping tangent cylinder with this screwed curve is cut along the central axis
−→
ct , further to

develop it into fragments of the pseudoplane and �nally to add these fragments so to coincide
windings of this screw, then we get the same but straight world line in the �at pseudoplane.
This convincing example demonstrates very clarity, how minimal curving the basis �at
space, even into the cylindrical space ⟨C2+1⟩, complicates in a large extent description of the
simplest straight world line with introducing a lot of additional parameters!!!

In cylindrical coordinates, we summarize found parameters of this pseudoscrew with
its tangent type till the isotropic light cone, where initially we adopt that tanh γ = r/s:
r = R, x1 = r · cosα, x2 = r · sinα, ct = s · α (r = v/wα = const, s = c/wα = const).

sinh γ = r/RC = RC/RK → sinh2 γ = r/RK = r · Kν ,→ r = R = tanh γ · s,
cosh γ = s/RC = RC/RY → cosh2 γ = s/RY = s · Y,→ s = coth γ · r;
→ r2 − s2 = R2

C , Y2 −K2
ν = C2R = 1/R2

C = 1/R2
Y − 1/R2

K < 0;

→ b1 = RK · cosh γ, b2 = RY · sinh γ, b2/b1 = tanh2 γ,
→ R2

K = b21 −R2
C > 0, R2

Y = R2
C − b22 < 0; RY /RK = Kν/Y = tanh γ.

 (255A)

(For superlight pseudoscrew in (249A, 250A) of the cotangent type, we adopt coth γ = r/s.)

For the pseudoscrewed motion (for instance, in accelerator), the space-like hyperbolic and
spherical angular velocities with accelerations are the following [see also in (165A)�(168A)]:
v∗ = c · sinh γ, w∗

α = v∗/r, v = c · tanh γ, wα = v/r; [w∗
θ = dθ/dτ = −(cosh γ − 1) · w∗

α];
⊥
gK= gν = c · sinh γ · w∗

α = v∗ · w∗
α = (v∗)2/r = c2Kν = c2/RK ,

⊥
g
(1)

=
⊥
g · sech γ = v · w∗

α = v∗ · wα, (g = 0).

And for the time-like part of (251A) there hold:
c∗ = cosh γ · c is the proper velocity of the coordinate time t stream for a world line,
⊥
gY = c2Y = c2/RY = c2CR cosh γ = c · cosh γ · w∗

α = c∗ · w∗
α = (c∗)2/s.
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The main peculiarity of screwed curves (without hyperbolic or spherical curvature) is such,
that all they are produced not only by rotation of the binormal, because there is else an
inherent operation of the progressive orthoprocession along the frame axis. The latter is
bonded one-to-one with this rotation. A pseudoscrew consists from the complementary
space (here sine) and time (here cosine) pseudoorthogonal parts. Mathematically the vector
orthoprocession is mixed with the tangent iα to a curve. But physically independence of the
vector orthoprocession and the Euclidean rotation of iα may be inferred by their di�erent
types of motions. Indeed, such orthoprocessions do not relate to the group of rotation, they
relate to the independent group of translations as progressive motions in the enveloping
binary space! In the Euclidean space, it is a progressive torsion due to the Frenet�Serret
theory. In the pseudo- and quasi-Euclidean binary spaces, it is a progressive orthoprocession.

* * *
Next we construct the spherical type of 3D screw in ⟨Q2+1⟩ by di�erentiation-rotation of

the tangent i in dα, as the uniform absolute orthospherical motion dα along a regular curve

having our arti�cial, but true trihedron Ê
(3)
m = ⟨bν , bα, t1⟩ with two bonded curvatures!

Here rotational driving alone is not enough to form this full curve, otherwise it will be mixed
with itself. To avoid this, we'll use the progressive orthoprocession of the point M along
the rotated axis −→y as in (247A), (248A). Since this curve as a whole only rotates through
angle dα, its general pseudocurvature CR and its radius RC = 1/CR remain constant. When
the curve makes a turn through an angle dα = 1rad, the point M passes along it arc RC .
The Euclidean projection of this segment is opposite to the angle of motion φi, therefore its
length is r = sinφi · RC , the projection of this segment onto −→y is s = cosφi · RC . Under
dα = 1rad, we have a parametric Euclidean right triangle A with hypotenuse RC (curve arc
length) and legs: r (Euclidean radius of rotation) and s (step) with its Pythagorean theorem
s2 − r2 = R2

C → r/s = tanφi = cot ξi, where r = R. We may use here as argument also
ξi = π/2−φi and translate by analogy (323) hyperbolic formulae (255A) in spherical variant!
By the abstract hyperbolic�spherical analogy with (251A), (255A), or under di�erentiation
in dα along a regular curve at φi = const, we get the screw also with the orthoprocession Y
and the normal curvature Kν giving the spherical Absolute Euclidean Pythagorean theorem:{

dtα(l)
RCdα

}
φ

= cosφi · 1
RC
· t1 + sinφi · 1

RC
· bν = y + kν = hν =

= Y · t1 +Kν · bν = cosφi · CR ·
[

0
1

]
+ sinφi · CR ·

[
eν
0

]
= CR · tν =

= CR ·
[

sinφi · eν
cosφi

]
⇒ CR2 = Y2 +K2

ν = (wα/v)
2 > 0; φi ∈ [0÷ π/2] .


(256A)

Here: CR = 1/RC = const is the general curvature of this screwed curve,
RC = const is the radius of this curvature and the length of the curve arc at dα = 1rad,
hν is the 3-vector of the general curvature, as the normal tangent to the curve;
Kν = 1/RK = sinφi · CR is a normal curvature of the curve with sine binormal bν .
Y = 1/RY = cosφi · CR is the orthoprocession of the curve for a progressive part of a screw,
s2 − r2 = R2

C , r/s = tanφi = cot ξi for the screw Euclidean radius r and step s,
r = R is the radius of the concomitant hyperspheroid, tangent to this screw in its Equator.

In the usual 1-st trihedron, its principal tangent tα is an impotent vector � without
curvature (Kα = 0 at dφi = 0, but φi ̸= 0), although tangent tα(l) exists.

Thus (!), in the case of simultaneous double motion with right and left`±dα, we obtain
the double screw, which in Molecular Biology, for some reason, is called by the double helix
for describing the DNA structure, although in Geometry they are di�erent curves.

Note, that in the usual Euclidean space ⟨E3⟩, the frame axis can be selected in three ways.
Any each of them will have its own angle of motion as: Φ1, Φ2, Φ3 (

∑3
s=1 cos

2 φk = 1.
In particular, if we choose some coordinate x3 as a frame axis, then there are two variants
of the complete base with x1, x2 or with x2, x1: (cosφ1 = sinφ2 ∼ cosφ = sin ξ).
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In ⟨Q3+1⟩ with the frame axis −→y and the concomitant movable unity hyperspheroid (see in
Chs. 5, 8A), we can realize simultaneously particular di�erentiation-rotations of the tangent i
and the quasinormal i along a regular curves at v = const, under abstract analogy (323)
with relations (243A), (244A), Then we obtain:

dφ · n = dφi · nα + sinφi dα1 · bν + cosφi dα2 · bµ =
= Kα · nα +Kν · bν +Kµ · bµ = Ycos · t1 + Xsin · bα +Kν · bν +Kµ · bµ;
{dl/R}2 = dφ2 = dφ2

i + (sin2 φi dα1
2 + cos2 φi dα2

2) =
= cos2 φi dφ

2
i + sin2 φi dφ

2
i + sin2 φi dα1

2 + cos2 φi dα2
2 > 0⇒ CR2 =

= wφi
2/v2 + sin2 φi · wα1

2/v2 + cos2 φi · wα2
2/v2 = K2

α +K2
ν +K2

µ > 0.

 (257A, 258A)

Two principal spherical arcs dφi � primary and mutual are situated in quasiplane

⟨Q1+1⟩(m)
S ≡ ⟨nα, tα⟩ of entire ⟨Q3+1⟩, presented with two bonded primary and mutual

spherical arcs dφ at Figure 3. The �rst is the spherical osculating quasiplane of spherical
curvature Kα. Principal spherical angles and di�erentials act as binary ones too. And both
binary di�erentials dφ act also symmetrically with respect to as if speci�c cone in the middle
between them (Ch. 5). Here they express the simultaneous spherical identical, but contrary
di�erential motions-rotations of tα and nα, according to the binary structure of our spherical
tensor of motion (313), with their permanent symmetry relative to this middle cone. The
sine bν and cosine bµ vectorial binormal with their sine and cosine normal curvatures act
in the own sine and cosine Euclidean normal planes. Both planes are not really divided and
even are bonded, thank to the simple connection of two complementary spherical angles, in
that number, on the common here concomitant 3D hyperspheroid. The third independent
arc dα3 expresses free complete orthospherical rotations in the binormal's Euclidean plane

⟨E2⟩(1)B ≡ ⟨bν ,bµ⟩ as the Cardano gimbal in the Euclidean space ⟨E3⟩. It is this creates an
own trigonometric harmony of the 4D binary quasi-Euclidean space.

* * *

Let's go back to motions with variable two parameters of roth Γi = F (γi, eα) in ⟨P3+1⟩.
Pay essential attention to the fact that simultaneously with an instantaneous point M of
a world line and of accompanied movable unity hyperboloid I with their common time-like

tangent iα
(I) and space-like pseudonormal pα

(I), moving all at 4-velocity c, there is the

point N on the conjugate hyperboloid II with its also conjugate space-like tangent iα
(II)

and time-like pseudonormal pα
(II). In Ch. 12 we denoted such conjugate points of two

hyperboloids as v and u in a textual part and also at Figure 4. Between all six basis vectors
at the point M of a world line at dγi ̸= 0, dα ̸= 0 and at points M and N of hyperboloids,
there are such one-to-one correspondences with di�erential relations in ⟨P3+1⟩ under {I±}:

iα = i(I) = p(II) = r(II) = [pα]
′
α − of Poincar�e 4-velocity in (218A) at a world line,

pα = p(I) = r(I) = i(II) = [iα]
′
α − of 4-acceleration in (228A) at a world line;

bν = bν (II) ∼ eν (II) − of normal 3-shift sinh γi dα1 on II or of sine 3-acceleration,
bµ = bµ(I) ∼ eµ(I) − of normal 3-shift cosh γi dα2 on I or of cosine 3-acceleration;

{bµ}′γ = {bν}; {bν}′γ,α = 0.

 (259A)

We obtain in 5-th raw last our third and forth formulae along a world line, in addition, to
our previous �rst (228A) and second (238A) hyperbolic ones !!!

Thus, let us assume that, in the neighborhood of the world point M on the world line,
there is such a branch of the time-like hyperbola as in its osculating pseudoplane at pointM .
We choose the pointM also as the instantaneous pointM of the concomitant hyperboloid I.
From this pointM we mentally draw the principal unity tangent iα to this hyperboloid I and
to this world line. Its length and direction coincide with the directed segment ON till the
conjugate point N of the hyperboloid II. This directed segment ON for the hyperboloid II
is its principal pseudonormal pα at N and the tangent iα at M of these world line and
hyperboloid I under the instantaneous motion angle γi. Accordingly, eα, eν , eµ are three
possible unity Euclidean perpendiculars in ⟨E3⟩ ⊂ ⟨P3+1⟩, with respect to points O, M , N .
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Correspondences (259A) make it possible to better see the reason, why motions along a
world-line are displayed on both accompanying hyperboloids. It was presented at Figure 4.
So, the �rst two-steps di�erentiations-rotations of tangent iα(I) in (225A) are executed in the
1-st step by space-like hyperbolic motion dγi on the osculating pseudoplane ⟨P1+1⟩(N), which
we see at Figure 4 on the hyperboloid II, and in the 2-nd step by perpendicularly to the latter
orthospherical motion with its sine slope in the Euclidean plane of the sine normal curvature

⟨E2⟩(m)
Ns ≡ ⟨pα,bν⟩(m) under its sine slope. This plane is tangent to the hyperboloid II at

the point N . Hence the motion is transferred mathematically from the hyperboloid I onto
the hyperboloid II, according to the second and third bonds in relations (259A). The second
two-steps di�erentiations-rotations of the pseudonormal pα(I) in (235A) are executed in

the 1-st step by time-like hyperbolic motion dγi on the osculating pseudoplane ⟨P1+1⟩(M),
which we see at Figure 4 on the hyperboloid I, and in the 2-nd step by perpendicularly to
the latter orthospherical motion with its cosine slope in the Euclidean plane of the cosine

normal curvature ⟨E2⟩(m)
Nc ≡ ⟨iα,bµ⟩(m) under its cosine slope. This plane is tangent to the

hyperboloid I at the point M . Hence the motion is displayed mathematically on the unity
hyperboloid I and along a world line, according to the �rst and fourth bonds in (259A).
Both space-like and time-like hyperbolic motions are realized in the common pseudoplane!

As the �nal result, we obtain in entire ⟨P3+1⟩ all absolute parameters of a world line in
Ẽ1 = {I} and Êm under permanent action of the current motion tensor roth Γi = F (γi, eα):

pα =

[
cosh γi · eα
sinh γi

]
, pν =

[
eν
0

]
, pµ =

[
eµ
0

]
, iα =

[
sinh γi · eα
cosh γi

]
. (260A)

Kα = η
∗
γ/c, kα = Kα pα; Kν = sinh γi · w∗

α(1)/c, kν = Kν pν ; Qµ = cosh γi · w∗
α(2)/c, qµ = Qµ pµ.

At γi = 0 : pα = bα =

[
eα
0

]
, pν = bν =

[
eν
0

]
, pµ = bν =

[
eµ
0

]
, iα = i1 =

[
0
1

]
.

By di�erential tensor trigonometry approach, such a model, with movable tetrahedron and
with involvement of the two accompanying hyperboloids, describes pretty accurately, clarity
and unequivocally the kinematic and dynamic of matter relativistic movement with any
degree of complexity in the Minkowski space-time in their tensor-vector-scalar (tvs) forms.
For the simplest understanding the model, it is enough to refer to one-to-one correspondence
(259A) between four unity basis vectors. In ⟨P3+1⟩ we obtain exactly the maximal order
of the absolute motions curvatures ζmax − 1 = 3 and all one-valued results. What is more,
on the basis of executed analysis of various relative and absolute time-like and space-time
motions with their tensor trigonometric models in Chs. 2A÷7A and 9A with current 10A,
even with peculiarities, we showed in parallel that the well-understandable, non-contradance
and clear arrangement of the Universe may be displayed from the nearest astronomical stellar
environment in our Galaxy with the use of the 4D space-time by Poincar�e�Minkowski, i. e.,
either with metric tensor {I+} in ⟨Q3+1⟩c or metric tensor {I±} in ⟨P3+1⟩. However, for the
more far astronomical picture with entire Megagalaxy, if necessary, it is possible to use the
BMT space-time, with two metric tensors (Ch. 9A), namely for lensed by gravity observable
space-time. Both these theoretical arrangements of the Universe does not violate the sacred
Principles and Laws of Nature with the material Higgs �eld and the Quantum Mechanics.

Quadruple Ê
(4)
m = {pα(cτ),bν(cτ),bµ(cτ), iα(cτ)} as the movable tetrahedron to current

world line in entire ⟨P3+1⟩ complements both unity accompanying movable hyperboloids and
gives the asymmetric pseudoorthogonal tensor U{pα,bν ,bµ, iα}(cτ) which is connected as
one-to-one with the motion tensor roth Γi = F (γi, eα) and determines completely both
orientation and con�guration of a world line at its point M . We accompany them below
with four measureless trigonometric tensors of absolute motions for applications in pseudo-
Euclidean binary spaces of dimensions n+ 1, 3 + 1, 2 + 1. See for ⟨Q3+1⟩ in (295A).
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In entire ⟨P3+1⟩ with tetrahedron for a world line, we have tensors (261A)

roth Γi = Fh(γi, eα), (F = F ′), ⟨Pn+1⟩ U(γi, eα, eν , eµ), (U ̸= U ′), ⟨P3+1⟩

cosh γi ·
←−−−−
eα · eα

′ +
−−−−→
eα · eα

′ sinh γi · eα

sinh γi · e′
α cosh γi

...........
cosh γi · eα eν eµ sinh γi · eα

sinh γi 0 0 cosh γi
.

and with two trthedrons both possible tensors (262A)

U(γi, eα, eν , (U ̸= U ′), ⟨P2+1⟩(II) U(γi, eα, eµ), (U ̸= U ′), ⟨P2+1⟩(I)

cosh γi · eα eν sinh γi · eα

sinh γi 0 cosh γi
........

cosh γi · eα eµ sinh γi · eα

sinh γi 0 cosh γi
.

(U = roth Γi · rot Θi ⇒ roth Γi =
√
UU ′, rot Θ =

√
UU ′−1 · U = roth (−Γi) · U.)

The 3D pseudoscrewed motion is described without an exception in its true trihedron
(254) with its time-arrow, space-like sine and time-like cosine binormals plus impotent bα:

U(γi, w
∗
α; eα, eν) =

sinh γi · eν eα 0
0 0 cosh γi · 1

, (γi = const, w∗
α = const). (263A)

Here U gives in Ẽm the movable asymmetric tensor of motion along a world line, which
may be decomposed polary into hyperbolic and orthospherical parts in ⟨P3+1⟩ as in (111A).
Non-collinear motion with the sine binormal induces in (172A) the dependent Thomas ortho-
spherical precession around the cosine binormal. In addition, the pseudoscrewed motion,
generated by Euclidean rotation dα of the space-like sine binormal, induces in (251A) the

independent progressive orthoprocession parallel to rotated
−→
ct (1) = s · αi1. In the quasi-

Euclidean space, for the screwed motion, it is even more obviously � see above in (258A).
Hyperbolic tensors Fh in (261A) and arbitrary or induced orthospherical tensors ⟨rot Θ⟩

produce also full set of the homogeneous Lorentzian pseudo-Euclidean transformations in
clear trigonometric forms, according to unambiguous polar decompositions of the latters.
In (153A) and (202A), we expressed such mixed motion tensors by canonical forms in Ẽ1.

* * *

Further we'll �ll all the remaining "blind spots" related to the Appendix.
We will start as before with aspects related to geometric (as more general and abstract)

motions and physical movements in the real-valued 3D and 4D pseudo-Euclidean spaces.
Obviously, quasi-Euclidean binary spaces have the unity metric tensor and the Euclidean
metric (according to their de�nitions in sects. 5.7 and 6.5). However their objects and trans-
formations must correspond to the re�ector tensor, as in (460), and the spaces themselves
must have a structure de�ned by the same tensor as in (500). For pseudo-Euclidean spaces,
the metric tensor and re�ector tensor are equal, according to their de�nitions in Ch. 6.

We shall complete a part of our tensor trigonometry concerning to the immediate
summation of two-steps motions on both Minkowskian hyperboloids II and I, and also
on the hyperspheroid. Moreover we must take into account the inverse order (485) of
the motion matrices, expressed in the initial unity base Ẽ1, with respect to the order of
motions! But in any case, we shall use the tensor of motion (100A) as the �rst summand
in the given order of summation. Such a procedure with inferred formulae are true also for
two-steps rotations in ⟨P3+1⟩ and STR, according to isomorphism of these motions on the
embedded perfect hypersurface and rotations in its enveloping binary space!
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On the hyperboloid II, with its a�ne topology and the Lobachevsky�Bolyai geometry,
we apply time-like unity vectors i12, i23 (146A) and for them their directions eα and eβ as
we did preliminary in two-steps transformation scheme of type (148A). In result, we get
immediately the cosine and sine laws of two-steps summation of motions on it or rotations
in ⟨P3+1⟩, united below in the general law by summary unity 4-radius-vector, applied to
the unity hyperboloid II with Euclidean and time-arrow projections, or as the summary
4-velocity by Poincar�e from two 4-velocities, applied to the hyperboloid II of radius "c":

roth Γ12 · i23 =
I3×3 + (cosh γ12 − 1) · eαe′α +sinh γ12 · eα

+sinh γ12 · e′α cosh γ12
·
{
sinh γ23 · eβ
cosh γ23

}
=

=

{
[sinh γ12 · cosh γ23 + cos ε · sinh γ23 · (cosh γ12 − 1)] · eα + sinh γ23 · eβ

cosh γ12 · cosh γ23 + cos ε · sinh γ12 · sinh γ23

}
=

=

{
[sinh γ12 · cosh γ23 + cos ε · sinh γ23 · cosh γ12] · eα + sin ε · sinh γ23 · eν

cosh γ12 · cosh γ23 + cos ε · sinh γ12 · sinh γ23

}
=

=

{
sinh γ13 · eσ
cosh γ13

}
= i13 = rot Θ13 ·

∠
i13 (i′13 · {I±} · i13 = i2 = −1). (264A)

This only one operation summarizes immediately all scalar and vector formulae (122A),
(124A), (135A) and obviously (125A), (138A) for hyperboloid II and Lobachevsky�Bolyai
hyperplane, gotten earlier through the calculation of two sequential modal transformations
of the initial unity base Ẽ1 by the same tensor of motions (100A) for �rst and second steps.

For the reverse two-steps motions as i23, i12 →
∠
i13 on the same perfect surface, we have:

roth Γ23 · i12 =
I3×3 + (cosh γ23 − 1) · eβe′β +sinh γ23 · eβ

+sinh γ23 · e′β cosh γ23
·
{
sinh γ12 · eα
cosh γ12

}
=

=

{
[sinh γ23 · cosh γ12 + cos ε · sinh γ12 · (cosh γ23 − 1)] · eβ + sinh γ12 · eα

cosh γ12 · cosh γ23 + cos ε · sinh γ12 · sinh γ23

}
=

=

{
[sinh γ23 · cosh γ12 + cos ε · sinh γ12 · cosh γ23] · eβ + sin ε · sinh γ12 · e∠

ν

cosh γ12 · cosh γ23 + cos ε · sinh γ12 · sinh γ23

}
=

=

{
sinh γ13 · e∠

σ

cosh γ13
=

}
=

∠
i13 = rot′ Θ13 · i13 (

∠
i13

′

· {I±} ·
∠
i13 = i2 = −1). (265A)

We see that the direct and reverse summations are connected by the orthospherical rotation
rot Θ13 from (112A), just as is the case of the general formulae for summation of polysteps
motions in (153A).

Further, with known eσ and e∠
σ
, using (141A), we obtain tensor trigonometric formulae

for the accompanied induced secondary orthospherical shift with inference also for two-steps
motion.
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We can express the most complete general law of two-steps summation, combined with
the induced orthospherical shift in compact clear trigonometric form as follows:

−→rN (θ13) = e∠
σ
⊗ eσ = − sin θ13 · −→eN =

= − sin θ13
sin ε · e

(1)
α ⊗ e

(2)
β = − sin θ13 · e(1)α ⊗ e

(2)
ν ,

(e∠
σ
= rot′ Θ13 · eσ, e′∠

σ
· eσ = cos θ13)

 (266A)

where −→eN ≡ eµ is a directed third normal vector.

In that time, with (111A) and (153A), summary two-steps hyperbolic transformation
with its polar decomposition has the very clear kind in our tensor trigonometry approach
with simplest interpretation:

T13 = roth Γ12 · roth Γ23 = rothΓ13 · rot Θ13 = rot Θ13 · roth
∠
Γ13 = (267A).

=

[
(cosh γ13 − 1) · eσe

′
∠
σ
+ [rot Θ13]3×3 sinh γ13 · eσ

sinh γ13 · e′
∠
σ

cosh γ13

]
.

=

[
(cosh γ13 − 1) · eσe

′
σ + I3×3 sinh γ13 · eσ

sinh γ13 · e′
σ cosh γ13

]
·
[

[rot Θ13]3×3 0

0′ 1

]
=

=

[
(cosh γ13 − 1) · eσe

′
∠
σ
+ [rot Θ13]3×3 sinh γ13 · eσ

sinh γ13 · e′
∠
σ

cosh γ13

]
.

Note (!), that in (264A)�(267A) all used matrices are given in their canonical forms, set
in the original unity base Ẽ1, according to their tensor trigonometric representations.

On the hyperboloid I, constrained by its cylindrical topology and with the cylindrical
hyperbolic�elliptical geometry, we use space-like unity radius-vector p12,p23 (149A) and for
them their directions eα and eκ as we did preliminary in two-steps transformation scheme
of type (152A). In result, we get now immediately the cosine and sine laws of two-steps
summation of motions on it or rotations in the Looking Glass of complete⟨P3+1⟩ in the
right direction (see above), united below in the general law by the summary unity 4-vector
p13, applied to the unity hyperboloid I with the Euclidean and scalar time-like projections:

roth Γ12 · p23 =
I3×3 + (cosh γ12 − 1) · eαe′α +sinh γ12 · eα

+sinh γ12 · e′α cosh γ12
·
{
cosh γ23 · eκ
sinh γ23

}
=

=

{
sinh γ12 · sinh γ23 + cos ϵ · cosh γ23 · (cosh γ12 − 1) · eα + cosh γ23 · eκ

sinh γ23 · cosh γ12 + cos ϵ · sinh γ12 · cosh γ23

}
=

=

{
sinh γ12 · sinh γ23 + cos ϵ · cosh γ12 · cosh γ23 · eα + sin ϵ · cosh γ23 · eµ

sinh γ23 · cosh γ12 + cos ϵ · sinh γ12 · cosh γ23

}
=

=

{
cosh γ∗13 · e∗σ
sinh γ∗13

}
= p13 (p′

13 · {I±} · p13 = +1). (268A)

Thus, only one operation above summarizes immediately all additional scalar and vector
formulae of two-steps summations for the cylindrical hyperbolic�elliptical hypersurface.
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For the reverse two-steps motions as p23,p12 →
∠
p13 on the same perfect surface, we get:

roth Γ23 · p12 =
I3×3 + (cosh γ23 − 1) · eκe′κ +sinh γ23 · eκ

+sinh γ23 · e′κ cosh γ23
·
{
cosh γ12 · eα
sinh γ12

}
=

=

{
sinh γ12 · sinh γ23 + cos ϵ · cosh γ12 · (cosh γ23 − 1) · eκ + cosh γ12 · eα

sinh γ12 · cosh γ23 + cos ϵ · sinh γ23 · cosh γ12

}
=

=

{
sinh γ12 · sinh γ23 + cos ϵ · cosh γ12 · cosh γ23 · eκ + sin ϵ · cosh γ12 · e∠

µ

sinh γ12 · cosh γ23 + cos ϵ · sinh γ23 · cosh γ12

}
=

=


cosh

∠
γ13

∗
· e∗∠

σ

sinh
∠
γ13

∗

 =
∠
p13 (

∠
p13

′
· {I±} · ∠

p13 = +1). (269A)

We see that here the direct and reverse summations in their 3 × 1 Euclidean parts are
not connected by rot Θ13 and they are generally non-commutative. In (268A), (269A) both
matrices and cosine 4-vectors are given in canonical forms, set in Ẽ1. However, since both
elements (268A) and (269A) as the radius-vectors remain on the same hyperboloid I and
belong to it as its invariants, then the �rst and the second are connected by a certain mixed
pseudo-Euclidean rotation:

T = {roth Γ32 · roth Γ21 · rot Θ (eκ → eα) · roth Γ21 · roth Γ32}.

Let's pay attention to the fact that immediate summation (264A) and (265A) from two
4-vectors r12 and r23 are actually implemented by instituting the zero element r1, introduced
initially in (146A), from the right after the products roth Γ12 · roth Γ23 with reverse one in
the modal formula (111A) as we did in (148A) for the construction of a hyperbolic triangle

roth Γ12 · r23 = roth Γ12 · roth Γ23 · r1 = r13 = (270A)

= roth Γ12·roth Γ23·
[

0
1

]
= roth Γ13·rotΘ13·

[
0
1

]
≡ roth Γ13·

[
0
1

]
=

[
sinh γ13 · eσ
cosh γ13

]
.

roth Γ23 · r12 = roth Γ23 · roth Γ12 · r1 =
∠
r13 = (271A)

roth Γ23 ·roth Γ12 ·
[

0
1

]
= roth

∠
Γ13 ·rot′ Θ13 ·

[
0
1

]
≡ roth

∠
Γ13 ·

[
0
1

]
=

[
sinh γ13 · e∠

σ
cosh γ13

]
.

Let's try to apply for (268A) and (269A) analogous procedure (152A) on the hyperboloid I

roth Γ12 · p23 = roth Γ12 · roth Γ23 · pκ = p13 = (272A)

= roth Γ12·roth Γ23·
[

eκ
0

]
= roth Γ13·rotΘ13·

[
eκ
0

]
≡ roth Γ13·

[
e∗κ
0

]
=

[
cosh γ∗13 · e∗σ
sinh γ∗13

]
.

roth Γ23 · p12 = roth Γ23 · roth Γ12 · pα =
∠
p13 = (273A)

= roth Γ23·roth Γ12·
[

eα
0

]
= roth

∠
Γ13·rot′ Θ13·

[
eα
0

]
≡ roth

∠
Γ13·

[
e∗α
0

]
=

 cosh
∠
γ13

∗
· e∗∠

σ

sinh
∠
γ13

∗

 .
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Both summary elements are situated on the hyperboloid II and are connected by the
orthospherical rotation rot Θ13 as in (264A), (265A). However both summary elements on
the hyperboloid I are connected only by these contrary mixed pseudo-Euclidean rotations:

T (p13 →
∠
p13) = {roth Γ23 · roth Γ12 · rot Θ (eκ → eα) · roth Γ32 · roth Γ21}. (274A)

T (
∠
p13 → p13) = {roth Γ12 · roth Γ23 · rot Θ (eα → eκ) · roth Γ21 · roth Γ32}. (275A)

For the hyperboloid I, we have:

e∗σ
′ · e∗∠

σ
= cos θ∗, e∗∠

σ
= {rot′ Θ∗

13} · e∗σ; e∗α = {rot Θ∗}3×3 · eα, e∗κ = {rot Θ∗}3×3 · eκ.

And for di�erent initial summarized angles (segments) there hold γ∗13 ̸= γ13,
∠
γ∗13 ̸=

∠
γ13.

The pseudo-Euclidean angle between two last is calculated as follows:

ρσ =
∠
p13

′
· I± · p13 = p′

13 · I± ·
∠
p13 = [cosh

∠
γ13 · cosh γ13 · e′

∠
σ
eσ]− [sinh

∠
γ13 · sinh γ13] =

= sinh γ12 sinh γ23 · (cosh γ12 + cosh γ23 − cosh γ12 cosh γ23)+

+cos ϵ·(cosh γ12 cosh γ23+cosh2 γ12 cosh γ23+cosh γ12 cosh
2 γ23−sinh2 γ12−sinh2 γ23−sinh2 γ23·sinh2 γ12)+

+cos2 ϵ · (sinh γ12 sinh γ23 cosh γ12 cosh γ23 − sinh γ12 sinh γ23 cosh γ12 − sinh γ12 sinh γ23 cosh γ23)+

+cos3 ϵ · (cosh2 γ12 cosh
2 γ23 − cosh2 γ12 cosh γ23 − cosh γ12 cosh

2 γ23 + cosh γ12 cosh γ23).

If ϵ = 0 (cos ϵ = ±1), then γ12 and γ23 are trigonometrically compatible and both
motions are commutative in direct and inverse ordering, then ρσ = cosh2 γ13+sinh2 γ13 = 1.
If ϵ = ±π/2 (sin ϵ = ±1, cos ϵ =, both motions are conveniently orthogonal in direct and
inverse ordering, then ρσ = sinh γ12 sinh γ23 · (cosh γ12 + cosh γ23 − cosh γ12 · cosh γ23).

Next put γ12 = γ, γ23 = dγ and use also e
(1)
α and e

(m)
µ for them. We obtain:

ρσ =
∠
p13

′
· I± · p13 = p′

13 · I± ·
∠
p13 = [cosh

∠
γ13 · cosh γ13 · e′∠

σ
eσ]E − [sinh

∠
γ13 · sinh γ13]P =

= {+cos ϵ · cosh2 γ + [(sinh γ cosh γ + cos2 ϵ · sinh γ cosh γ) + sin2 ϵ · sinh γ) dγ]}E−

−[cos ϵ · sinh2 γ + (sinh γ cosh γ + cos2 ϵ · sinh γ cosh γ) dγ]P .⇒

⇒ ρσ = cos ϵ, [ρσ]E = e∗σ
′ · e∗∠

σ
= cos θ∗ = cos ϵ · cosh2 γ, [ρσ]P = cos ϵ · sinh2 γ.

We decompose the pseudo-Euclidean product in current orthospherical and hyperbolic parts.
The di�erential shift dθ has place, it can be �xed with respect to variable principal parts.

Further we represent all corresponding similar and concomitant formulae for the tensor
trigonometry of the hyperboloid I earlier absent in Ch. 7A. For the beginning, we give the
scalar time-like sine expressions for summing two-steps non-collinear motions or segments,
both set by radius (149A), in direct and inverse orders:

sinh γ13 = cosh γ12 · sinh γ23 + cos ϵ · sinh γ12 · cosh γ23, (276A)

sinh
∠
γ13 = cosh γ23 · sinh γ12 + cos ϵ · sinh γ23 · cosh γ12. (277A)

They are non-commutative in contrast to common scalar cosine formula (122A) for II.
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For the scalar space-like cosine formulae we have accordingly these two quadric expressions:

cosh2 γ13 = (sinh γ12 · sinh γ23 + cos ϵ · cosh γ12 · cosh γ23)2 + (sin ϵ · cosh γ23)2, (278A)

cosh2
∠
γ13 = (sinh γ12 · sinh γ23 + cos ϵ · cosh γ12 · cosh γ23)2 + (sin ϵ · cosh γ12)2. (279A)

In addition to special angular relations (137A), (140A) for the hyperboloid II, we give
the corresponding relations, in particular, with the unity vectors of orthogonal increments,
for the considered hyperboloid I:

eκ = cos ϵ · eα + sin ϵ · eµ, eα = cos ϵ · eκ + sin ϵ · e∠
µ
, cos ϵ = e′κ · eα = e′α · eκ;

e′κ · eµ = e′α · e∠
µ
= sin ϵ, e′κ · e∠

µ
= e′α · eµ = 0, e′µ · e∠

µ
= − cos ϵ; (ϵ ∈ [0;π])

 (280A)

Vectors for direct summing lie in the Euclidean normal plane of cosine normal curvature
⟨E2⟩Nc ≡ ⟨eα, eµ⟩ with cosine binormal bµ and acceleration jµ = c∗ w∗

α(2) � see in (236A).
Thus, now we can give more understandably the two vector space-like cosine expressions
and also non-commutative in direct and inverse orders:

coshγ13 = cosh γ13 · eσ =

= (sinh γ12 · sinh γ23 + cos ϵ · cosh γ12 · cosh γ23) · eα + sin ϵ · cosh γ23 · eµ, (281A)

cosh
∠
γ13 = cosh

∠
γ13 · e∠

σ
=

(sinh γ23 · sinh γ12 + cos ϵ · cosh γ23 · cosh γ12) · eκ + sin ϵ · cosh γ12 · e∠
µ
. (282A)

Our readers can easily verify that expressions (276A), (278A) and (277A), (279A) for sine
and cosine both in the direct order and in the reverse order, form two own quadratic sine-
cosine hyperbolic invariants, but with a small di�erence between quadrics of these functions:

cosh2 γ13−sinh2 γ13 = 1 = cosh2
∠
γ13−sinh2

∠
γ13 ⇒ cosh2 γ13−cosh2

∠
γ13 = sinh2 γ13−sinh2

∠
γ13 ⇒

cosh2 γ13 − cosh2
∠
γ13 = sin2 ϵ · (cosh2 γ12 − cosh2 γ23) = (283A)

= sinh2 γ13 − sinh2
∠
γ13 = sin2 ϵ · (sinh2 γ12 − sinh2 γ23). (284A)

From vectorial (281A) and scalar (276A) formulae, the additional vectorial and scalar
non-commutative formulae for cotangent summation, so in ordering γ12, γ23, are inferred:

coth γ13 ·eσ =
1 + cos ϵ · coth γ12 · coth γ23
coth γ12 + cos ϵ · coth γ23

·eα+
sin ϵ · csch γ12 · coth γ23
coth γ12 + cos ϵ · coth γ23

·eµ. (285A− I)

coth2 γ13 =

[
1 + cos ϵ · coth γ12 · coth γ23
coth γ12 + cos ϵ · coth γ23

]2

+

[
sin ϵ · csch γ12 · coth γ23
coth γ12 + cos ϵ · coth γ23

]2

. (285A− II)

We note repeatedly, that the very wonderful in STR and non-Euclidean geometries � see
in Ch. 7A at (135A)-(138A) and above in (280A): for summing motions (rotations) ones may
combine correctly their directive vectors in own Euclidean planes of acting, for example, in
⟨E2⟩(1) and ⟨E2⟩(m). Since unity vectors eσ and e∠

σ
of direct and inverse summary cosines

in (281A) and (282A) are linear combinations of eα, eµ and eκ, e∠
µ
, then they lie in the

direct and reverse normal planes of the normal cosine curvature under the angle of current
hyperbolic inclination. It is a very unusual property of STR and non-Euclidean geometries.
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Motions from p2 to p3 in (268A), (269A) are possible i� �at cotangent or cylindrical
tangent projections of p2 and p3 outside Cayley oval can be connected by straight cotangent
coth γ23 or tangent tanh γ23 segments without the having topological obstacles. Compare
cotangent formula for the two-steps summation at the hyperboloid I with tangent formula
(138A) for the same goal at the hyperboloid II. There is full correspondence!

Recall, that earlier in Chs. 6 and 7A, in addition to the well-known sine-cosine invariant
in hyperbolic geometries, we installed else cosecant-cotangent hyperbolic invariant. We have

coth2 γ13 − csch2γ13 = +1 = coth2
∠
γ13 − csch2

∠
γ13. (286A)

Finally, the scalar reverse cosecant and also non-commutative variant of two non-collinear
segments summation is expressed, so in ordering γ12, γ23, from (285A-II):

cschγ13 =

√
coth2 γ13 − 1 =

cschγ12 · cschγ23
coth γ12 + cos ε · coth γ23

. (287A)

Hence, the cotangent�cosecant two-steps summations of space-like and time-like motions
on the hyperboloid I are possible also (as we did in Ch. 7A for the vector direct tangent and
scalar reverse secant summations of necessary space-like motions on the hyperboloid II).

What is more, with such an abundance of invariants and quasi-invariants in our subject
Tensor Trigonometry, it would be very useful to formulate such a clear Mnemonic Rule,
that connects all similar ones of spherical and hyperbolic types.

In the complete scalar, vector and tensor trigonometry of any kinds, we obtain the very
important universal correspondence useful for its users memory:

"Each trigonometric quadratic invariant (quasi-invariant) for paired spherical functions is
in one-to-one correspondence, in that number by its form, with the quadratic quasi-invariant
(invariant) for paired hyperbolic functions, when both of them are sparring between each to
another by complete functional speci�c spherical�hyperbolic analogy of type (331)! "

Natural paired cotangent-cosecant bond takes place also for the 1-st metric forms on
both hyperboloids using for motions the complementary angle υ(γ) as their argument, with
own two 3D Relative Euclidean, 4D Absolute Euclidean and 4D Absolute pseudo-Euclidean
Pythagorean Theorems, under the correspondences between the complementary hyperbolic
angles namely for the motions on the hyperboloid I, according to all relations (235A)�(238A)
and with executing analogous operations. Recall from Chs. 6, 12, that in any admitted base:{

sinh(Γ,Υ) = csch (Υ,Γ) ⇔ sinh(Γ,Υ) · sinh(Υ,Γ) = I,
cosh(Γ,Υ) = coth (±Υ,Γ) ⇔ tanh(±Γ,Υ) = sech(Υ,Γ);

}
(288A)

cosh′γ · cosh γ − sinh2 γ ≡ coth′υ · coth υ − csch2υ = 1 (for I) (289A− I)

cosh γ2 − sinh′γ · sinh γ ≡ coth2 υ − csch′υ · csch υ = 1 (for II) (289A− II)

* * *
Ñoncerning to the hyperspheroid, by analogous way, we complete Tensor Trigonometry

also by the immediate summation of �nite two-steps motions on the oriented hyperspheroid,
introduced by us in Ch. 8A, with its spherical geometry at the set frame axis, both under
admissible quasi-Euclidean transformations, de�ned by the simplest re�ector tensor {I±},
so, as homogeneous motions on it and identical rotations in its enveloping binary space �
principal spherical and secondary or induced orthospherical. We'll use the canonical tensors
of motion from (179A), expressed in the initial unity base Ẽ1 and in the given orders of
summations, according to inverse formula (485), Ch. 11, how this was on both hyperboloids.
See before tvs presentations of di�erent motions on the hyperspheroid in (199A)�(204A).
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In Ch. 8A, on the base of the abstract hyperbolic�spherical analogy (323) with two-steps
hyperbolic summation (148A) in ⟨Q2+1⟩, we did preliminary scheme (201A) for two-steps
spherical summation, but without �nal formulae with corresponding Pythagorean theorems.
We'll infer them for motions on the hyperspheroid and identical rotations along regular
curves in ⟨Q2+1⟩ and ⟨Q3+1⟩. In Ẽ1, we have the element t(φ) for motions from North Pole
as its �rst radius-vector and also the principal tangent to a curve, and the element n(φ)
for motions from its Equator as its second radius-vector (orthogonally to the former) and
also the principal quasinormal to the same curve at motion along it with principal clockwise
angle φ ∈ [0; +π/2] and complementary counterclockwise angle ξ ∈ [+π/2; 0], φ+ ξ = π/2

t(φ) =

[
sin φ
cosφ

]
=

[
sinφ · eα
cosφ

]
, n(φ) =

[
cos φ
− sinφ

]
=

[
cosφ · eα
− sinφ

]
. (290A)

On the hyperspheroid, for the direct order of summation from its North Pole in ⟨Q3+1⟩
of two segments, we apply the tangent t23 as the second summand with direction eβ how we
did preliminary in spherical two-steps transformations (201A) in Ch. 8A. In result, we get
immediately the cosine and sine laws of two-steps summation of motions on it or rotations
in ⟨Q3+1⟩, united in the general law by summary unity vector-radius t13, applied to the
hyperspheroid with its vector cosine and scalar sine projections in this quasi-Euclidean space
under conservation of relations (137A), (140A) for three basis unity vectors and ε = π−A123:

rot Φ12 · t23 =
I2×2 − (1− cosφ12) · eαe′α +sinφ12 · eα

− sinφ12 · e′α cosφ12
·
{
sinφ23 · eβ
cosφ23

}
=

=

{
[sin φ12 · cosφ23 − cos ε · sinφ23 · (1− cosφ12)] · eα + sinφ23 · eβ

cosφ12 · cosφ23 − cos ε · sinφ12 · sinφ23

}
=

=

{
[sin φ12 · cosφ23 + cos ε · sinφ23 · cosφ12] · eα + sin ε · sinφ23 · eν

cosφ12 · cosφ23 − cos ε · sinφ12 · sinφ23

}
=

=

{
sinφ13 · eσ
cosφ13

}
= t13 = rot Θ13 ·

∠
t13 (t′13 · t13 = 1). (291A)

This operation summarizes immediately all scalar and vector formulae (189A), (190A),
(192A), (194A) and obviously (191A), (195A) for the hyperspheroid, gotten earlier in Ch. 8A,
with the same tensor of motions (179A) for �rst and second steps. For summation in ⟨Q3+1⟩
of two-steps motions with the inverse order as t23, t12, we obtain these contrary relations:

rot Φ23 · t12 =
I2×2 − (1− cosφ23) · eβe′β +sinφ23 · eβ

− sinφ23 · e′β cosφ23
·
{
sinφ12 · eα
cosφ12

}
=

=

{
[sin φ23 · cosφ12 − cos ε · sinφ12 · (1− cosφ23)] · eβ + sinφ12 · eα

cosφ12 · cosφ23 − cos ε · sinφ12 · sinφ23

}
=

=

{
[sin φ23 · cosφ12 + cos ε · sinφ12 · cosφ23] · eβ + sin ε · sinφ12 · e∠

ν

cosφ12 · cosφ23 − cos ε · sinφ12 · sinφ23

}
=

=

{
sinφ13 · e∠

σ

cosφ13
=

}
=

∠
t13 = rot′ Θ13 · t13 (

∠
t13

′
·

∠
t13 = 1). (292A)

Here is: eβ = cos ε · eα + sin ε · eν , eα = cos ε · eβ + sin ε · e∠
ν
.

The direct and inverse summations are connected by the orthospherical rotation rot Θ13

from (181A), but scalarly commutative, just as for polysteps summation of motions in
(202A). It is similar to rotation rot Θ13 on as if hyperboloid II � analog with contrary signs.
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Let us translate to two-steps summation on the hyperspheroid in ⟨Q3+1⟩ in the direction
from its Equator. Now for the direct order of summation on it of two segments, we apply the
quasinormal n23 as the second summand with its direction eκ as we did for the hyperboloid I.
In result, we get immediately the vector cosine and scalar sine laws of two-steps summation
of motions on it in the direction from its Equator or of identical rotations in ⟨Q3+1⟩, united in
the general law by summary unity vector-radius n13, applied to the unity hyperspheroid with
its scalar sine and vector cosine projections under conservation of added relations (280A)
for the three basis unity vectors for such a type of presentations:

rot Φ12 · n23 =
I2×2 − (1− cosφ12) · eαe′α +sinφ12 · eα

− sinφ12 · e′α cosφ12
·
{
cosφ23 · eκ
− sinφ23

}
=

=

{
[− sin φ12 · sinφ23 − cos ϵ · cosφ23 · (1− cosφ12)] · eα + cosφ23 · eκ

− cosφ12 · sinφ23 − cos ϵ · sinφ12 · cosφ23

}
=

=

{
[− sin φ12 · sinφ23 + cos ϵ · cosφ23 · cosφ12] · eα + sin ϵ · cosφ23 · eµ

− cosφ12 · sinφ23 − cos ϵ · sinφ12 · cosφ23

}
=

=

{
cosφ∗

13 · e∗σ
− sinφ∗

13

}
= n13 (n′

13 · n13 = 1). (293A)

Now this operation summarizes immediately all scalar sine and vector cosine formulae
for two-steps summation of motions on the hyperspheroid from its Equator, non-gotten in
Ch. 8A, but gotten above for the hyperboloid I as the abstract analog of presentation n(φ).
And for summation of such two-steps motions with the inverse order as n23,n12, we obtain:

rot Φ23 · n12 =
I2×2 − (1− cosφ23) · eκe′κ +sinφ23 · eκ

− sinφ23 · e′κ cosφ23
·
{
sinφ12 · eα
− cosφ12

}
=

=

{
[− sin φ23 · cosφ12 − cos ϵ · sinφ12 · (1− cosφ23)] · eκ + sinφ12 · eα

cosφ12 · cosφ23 − cos ϵ · sinφ12 · sinφ23

}
=

=

{
(− sin φ23 · cosφ12 + cos ϵ · sinφ12 · cosφ23) · eκ + sin ϵ · sinφ12 · e∠

ν

cosφ12 · cosφ23 − cos ϵ · sinφ12 · sinφ23

}
=

=


sin

∠
φ13

∗
· e∗∠

σ

− cos
∠
φ13

∗

 =
∠
n13 (

∠
n13

′
· ∠
n13 = +1). (294A)

Here is: eκ = cos ϵ · eα + sin ϵ · eµ, eα = cos ϵ · eκ + sin ϵ · e∠
µ
.

Note, that for 3D hyperspheroid in complete ⟨Q3+1⟩, all relations (291A)�(294) are united
with all its four unity basis vectors, by abstract analogy (322, 323) with both hyperboloids.

Just as for summation of two-steps motions on the hyperboloid I, in more complex case of
motions from the Equator in (293A, 294A), their direct and inverse sums are not connected
by the orthospherical rotation rot Θ13, and these sums are generally non-commutative.
Though also the summary vectors are situated always as if on the same hyperspheroid I �
analog of the radius R with conservation of their Euclidean module R. But for realization
of such losed properties and only in the spherical case, it is enough to add in the beginning
the motion from the Pole till the Equator and further to move from the Equator.
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Let's go back to di�erential motions in ⟨Q3+1⟩ after (257A), (258A) with our tensor of
motion roth Φi = F (φi, eα). Pay attention to the fact that simultaneously with point M of a

curve and the concomitant hyperspheroid with their moving common tangent tα = tα
(I) and

quasinormal nα = nα
(I), there is the point N on the hyperspheroid with its also conjugate

tangent tα
(II) and quasinormal nα

(II). Between nα
(I) and nα

(II) and also tα
(I) and tα

(II),
there is rotation right angle ±π/2. Hence, nα = nα

(I) = tα
(II), tα ≡ tα

(I) ≡ nα
(II). These

features have place in ⟨Q3+1⟩ for double di�erentials dφi for simultaneous one�side spherical
rotations of tangent tα and quasinormal nα under our spherical tensor of motion (313).
Between all six basis vectors at a pointM of a curve at dφi ̸= 0 , dα ̸= 0 and of concomitant
unity hypersperoid there are the next one-to-one correspondences and relations in ⟨Q3+1⟩:

tα = t(I) = n(II) = r(II) = −[nα]
′
α − of Kα and 4-velocity uα below along a curve,

nα = n(I) = r(I) = t(II) = [tα]
′
α − of Kα and 4-acceleration [uα]

′
α along a curve;

bν = bν (II) ∼ eν (II) − of Kν and normal 3-shift sinφi dα1 or sine 3-acceleration,
bµ = bµ(I) ∼ eµ(I) − of Kµ and normal 3-shift − cosφi dα2 or cosine 3-acceleration;

{bµ}′γ = {bν}; {bν}′γ,α = 0.

 (295A)

We obtain in 5-th raw our last third and forth formulae along a curve, in addition, to both
spherical analogs of our previous �rst (228A) and second (238A) for hyperbolic ones !!! Both
particular cases in two ⟨Q2+1⟩ are realized in normal rotation either only of tangent with sine
binormal bν or only of quasinormal with cosine binormal bµ. They are no connected here
through the spherical relation sinφi = cos ξi (i. e., in ⟨Q3+1⟩ and on the 3D hyperspheroid)!

Further, using our tensor trigonometric approach to consideration of the complete theory
of motions along a world line in the Minkowski space-time, we'll state the theory of motions
along a regular curve also generally in the quasi-Euclidean space ⟨Q3+1⟩s under acting our
spherical tensor of motion in (313), (314) with the concomitant unity hyperspheroid, but for
illustration with the sine binormal, in addition, to the previous considerations in Ch. 8A. The
principal and free-valued characteristics kα and kβ are produced with the 1-st di�erentiations
in dl along a curve with one and two degrees of freedom (at ζ = 3), logically accompanied
by the concomitant hyperspheroid from zero point in its North Pole as if in ⟨Q2+1⟩s:{

dtα(l)
dl

}
α

= Kα(l) ·
[

cosφi · eα
sinφi

]
= Kα(l) · nα(l) = kα(l),

dtα(l)
dl

= Kβ(l) ·
[

cosφp · eβ
sinφp

]
= Kβ(l) · nβ(l) = kβ(l).


First expression is the tensor trigonometric quasianalog of the 1-st Frenet�Serret formula in
the usual 3D Euclidean space. But with our two-steps approach, second expression must
reveal the sine binormal in the sine normal plane. Unity 4-vectors nα and nβ are principal
and free quasinormals to a curve. Derivatives in φi � tα and nα at the change of a curve
slope to −→y are rotated in one side at dφi. In the binary quasi-Euclidean space ⟨Q2+1⟩s with
metric tensor {I+} at ζ ≥ 3, due to (295A) with the use of (137A), we execute the �rst
two-steps di�erentiation along a curve with revealing all relative and absolute characteristics:

kβ(l) =
dtα(l)

dl
=

dφp

dl
·
[

cosφp · eβ
sinφp

]
=

dφp

dl
· nβ(l) = Kβ(l) · nβ(l) ≡ (296A)

≡
dφi

dl
·
[

cosφi · eα
sinφi

]
α

+

[
sinφi · deαdl

0

](1)
φ

=
dφi

dl
·
[

cosφi · eα
sinφi

]
α

+

[
sinφi · dα1

dl
· eν

0

](1)
φ

=

= Kα(l) ·
[

cosφi · eα
sinφi

]
α

+Kν(l) ·
[

eν
0

](1)
φ

= Kα(l) · nα(l) +Kν(l) · bν(l) ≡

≡
dφp

d(l)
·
[

cosφp · eβ
sinφp

]
=

dφp

dl
·
{[

cos ε · cosφp · eα
sinφp

]
+

[
sin ε · cosφp · eν

0

](1)}
=

= Kβ(l) ·
[

cosφp · eβ
sinφp

]
= Kβ(l) · nβ(l) = K×

β · nα(l)+
⊥
K⋆

β ·bν(l) = k×
β (l)+

⊥
k⋆
β (l) = kα + kν .
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Equaling under I+ paired summands, we get relations above with ϱ > ε : dφ2
p = cos2 φp dφ2

p+sin2 φp dφ2
p =

= (cos2 ε · cos2 φp dφ2
p + sin2 ε · cos2 φp dφ2

p) + sin2 φp dφ2
p = (cos2 φi dφ2

i + sin2 φi dα1
2) + sin2 φi dφ2

i =

= dφ2
i + sin2 φi dα1

2 = (cos2 ε · cos2 φp + sin2 φp) dφ2
p + (sin2 ε · cos2 φp) dφ2

p = cos2 ϱ dφ2
p + sin2 ϱ dφ2

p > 0,

Surprisingly, but we get two identical decompositions of dφi � quasi-Euclidean and Euclidean (with underline

for Relative and Absolute Theorems), the latter corresponds to 1-st metric form of hyperspheroid (109A-II)

in Ch.6A ! This paradox relates to hypotenuses of right triangles only for moving from its Pole at n ≥ 2.

For a dynamic of regular curves in ⟨Q3+1⟩, let up, that the pointM of a curve moves with
the constant quasi-Euclidean 4-velocity u, as analogue of 4-velocity by Poincar�e in ⟨P3+1⟩.
The Relative Pythagorean theorem below follows from the Euclidean part of (296A) in vector

and scalar quadric forms. It acts really in the sine normal plane ⟨E2⟩(m)
Ns ≡ ⟨e

(m)
α , e

(1)
ν ⟩ for all

proportional geometric characteristics as orthoprojections into the Cartesian subbase Ẽ
(3)
1

at the motion angle φ ∈ [0, π/2] and the angle of normal deviation ε ∈ [0;π], using (296A)
with (137A) and con�rming preliminary valid two-steps decompositions (194A) in Ch. 8A:

cosφp dφp · eβ = cosφp (cos ε dφp · eα + sin ε dφp · eν) = cosφi dφi · eα + sinφi dα · eν ,

cos2 φp dφ2
p = cos2 φp (cos2 ε dφ2

p + sin2 ε dφ2
p) = cos2 φp [(dφp)2E + (

⊥
dφp)2E ] =

= cos2 φi dφ2
i + sin2 φi dα2 = sin2 ξp dξ2p = sin2 ξp [(dξp)2E + (

⊥
dξp)2E ] = sin2 ξi dξ2i + cos2 ξi dα2;

⇒

⇒


Kβ · cosφp · eβ = K⋆

β · eβ = cos ε · K⋆
β · eα + sin ε · K⋆

β · eν = K⋆
β · eα+

⊥
K⋆

β · eν =

= Kα · cosφi · eα + sinφi · dαdl = K⋆
α · eα + v∗i · w∗

α

v2
· eν = K⋆

α · eα +Kν · eν =

⇒

⇒

 = k⋆
β = k⋆

β +
⊥
k⋆
β = k⋆

α + kν ,

(K⋆
β)

2 = (K⋆
β)

2 + (
⊥
K⋆

β)
2 = (K⋆

α)
2 + (Kν)

2;

 (297A)

Kβ · sinφp = Kα · sinφi ⇔ sinφp dφp = sinφi dφi → dφp/dφi > 1. (298A)

⇒ cosφp · cos ε dφp = cosφp dφp = cosφi dφi ⇒ cos ε = 1↔ φp = φi, cos ε = 0↔ γp = 0;

sinφi = v∗i /u ≤ 1, tanφi = vi/u, φi ≤ π/2; {tanφp = cos ε · tanφi} → φp < φi {ε ∈ [0;π]}

φp/φi < 1− see above ⇒ vp < vi, φi = 0→ φp = 0; dφp > dφp > dφi {φ ∈ [0, π/2]}.
From (296A)�(298A), we obtain the Absolute Euclidean Pythagorean theorem with the 1-st mobile

trihedron Ê
(3)
m = ⟨nα, bν , iα⟩ in ⟨Q2+1⟩ under metric tensor I+. It acts on the Euclidean sine

normal plane ⟨E2⟩(m)
Ns II

≡ ⟨n(m)
α ,b

(1)
ν ⟩ in 3D ⟨Q2+1⟩s ≡ {⟨E2⟩(m)

Ns ⊞−→y } (ζ = 3). In the right triangle
of tα rotations, it corresponds to the angular normal 1-st metric form (109A-II) for the concomitant
hyperspheroid (!!!), as a perfect hypersurface of ⟨Q2+1⟩. It is expressed in the universal complete
tensor-vector-scalar ("tvs") form with own trigonometric and proportional geometric items: kβ = Kβ nβ = K×

β nα+
⊥
K⋆

β bν = Kα nα +Kν bν = kα + kν ,

K2
β = (K⋆

β)
2 − (K◦

β)
2 = ( K×

β )2 + (
⊥
K⋆

β)
2 = K2

α +K2
ν ,

⇒

⇒


dφp · nβ = dφi · nα + sinφi dα · bν , (n′

α · I+ · nα = +1, b′
ν · I+ · bν = +1)

dφ2
p = dφ2

i + sin2 φi dα
2 = cos2 ϱ dφp

2 + sin2 ϱ dφp
2 =

(
dφp

)2

Q
+

(
⊥

dφp

)2

E

> 0.

 (299A)

Here dφp = dlR/R, ϱ > ε. By this Egregium Theorem of Di�erential Tensor Trigonometry

(1-st from two spherical), we reduce this mixed motion in initial Ẽ1 along a curve and on
the hyperspheroid as a perfect surface to purely spherical one along hypotenuse dφp in Ẽm.
This Theorem in tvs-form corresponds to analog (109A-II), Ch. 6A, in vs-form, where φi is
the angle of motion namely from the Pole of the hyperspheroid and it is calculated at dα1 o�
its frame axis, as in analogical hyperbolic cases (132A) and (228A) γi on the hyperboloid II.
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In (109A-I) φi was the angle of motion namely from the Equator (Euclidean subspace or axis)
of the hyperspheroid, φi is calculated at dα2 o� it, as γi in analogous hyperbolic cases (133A)
and (238A) on the hyperboloid I. Since both complementary spherical angles are bonded by
simplest formula ξ = π/2−φ, then in metric forms (109A-II) and (109A-I), they are simply
exchanged, however their nature at the Euclidean normal part with dα must correspond to
those, indicated above for these two types of motions on the hyperspheroid. Then our readers
may test understanding the problem, inferring the spherical 2-nd Egregium Theorem (which
is closer by its cosine sense to the 2-nd Frenet-Serret formula in the Euclidean space ⟨E3⟩),
with revealing its cosine binormal bµ at dα2 in ⟨Q2+1⟩c ≡ {⟨E2⟩(m)

Nc ⊞−→y } (ζ = 3).
The hyperbolic complementary angle υi (non of motions) is calculated at α contrary to

motion angle γi for (228A) � namely from the isotropic cone or diagonal of ⟨P3+1⟩, but also
to the frame axis, and for (238A) � namely from the isotropic cone or diagonal of ⟨P3+1⟩,
but also to the Euclidean subspace or axis. See these latter facts descriptively on the front
and back covers of this book, and our readers may present this peculiarity at Figure 2A(1)
with its isotropic diagonal. That is why, the complementary angles γ and υ with their dγ
and dυ are connected by complex formulae (360-II), (360-IY), (360-Y), inferred in Ch. 6
of the main Part-II. As a consequence, both concomitant hyperboloids are divided, and
the metric forms of a world line and both of them are expressed only through the motion
angle γi, and they are calculated at α for II from the frame axis and for I from the Equator !!!

Let us represent tensor analogs of hyperbolic (261A), (262A) in the quasi-Euclidean space.

In entire ⟨Q3+1⟩ with tetrahedron for a regular curve, we get orthogonal tensors (300A− I)

rot Φi = Fs(φi, eα), (F ̸= F ′), ⟨Q3+1⟩ V (φi, eα, eν , eµ), (V ̸= V ′), ⟨Q3+1⟩

cosφi ·
←−−−−
eα · eα

′ +
−−−−→
eα · eα

′ sinφi · eα

− sinφi · e′
α cosφi

...........
cosφi · eα eν eµ sinφi · eα

− sinφi 0 0 cosφi
,

and else with two trihedrons both possible orthogonal tensors (300A− II)

V (φi, eα, eν), (V ̸= V ′), ⟨Q2+1⟩(t) V (φi, eα, eµ), (V ̸= V ′), ⟨Q2+1⟩(n)

cosφi · eα eν sinφi · eα

− sinφi 0 cosφi
........

cosφi · eα eµ sinφi · eα

− sinφi 0 cosφi
.

(V = rot Φi · rot Θi ⇒ rot Φi =
√
V V ⋆, rot Θ = rot (−Φi) · V =

√
V V ⋆

−1 · V )

* * *

Tensor Trigonometry, may be, is the most musical subject of the Mathematical Science.
This is stated due to the clear harmony of all its tensor angles and trigonometric functions
as each to others in tensor, vector and scalar forms. If such harmony does not work, then the
results contain an error. That is why, the greatest mathematician and man Leonard Euler,
who created the logarithmic theory of the musical scale with explanation of its harmony,
elegantly presented and gave also a modern look to the Scalar Trigonometry! It is such a true
golden rule, which consists in observing this high harmony in formulae and theorems of the
Tensor Trigonometry, allowed the author in its third edition to achieve the most correct and
complete presentation of Theory of world lines in the Poincar�e�Minkowski space-time with all
their geometric characteristics and with interpretation of their physical senses. Besides, this
golden rule allowed the author to give tensor-trigonometric explanations of all well-known
and new relativistic e�ects, including such in the gravitational �eld without GTR-bending of
the most perfect space-time ⟨P3+1⟩ of the Universe, which is still used really in astronomy.
It is space-time bending, without its true necessity, has caused the non-compatibility of GTR
with the Quantum Mechanics. Though, according to the Noether's Theorems, it is space-
time ⟨P3+1⟩ ensures a strict compliance of the Theory of Relativity with the fundamental
Law of Energy-Momentum Conservation as the accompanied physical harmony.



CHAPTER 10A. DIFFERENTIAL TRIGONOMETRY OF WORLD LINES AND CURVES 303

If Henri Poincar�e life had not ended so early � at the age of 58, he, may be, continuing
own pioneering relativistic works, would develop further his trigonometric approach till its
tensor level with more general concepts of the binary spaces and their perfect hypersurfaces.
The very spirit of his unwavering striving for novelty and grandiose generalization of existing
particular theories speaks about this! Unfortunately, some mathematicians and physicists
have blackened their names by borrowing brilliant ideas from his works in own publications
without references to their author. So, the honest and eminent mathematician V. I. Arnol'd
wrote about such facts in his Essay [110], as author's Russian version without English edits.

In our monograph, there are many examples of applications of Tensor Trigonometry in
geometric and physical �elds. Thus, it reveals clarity the true cause of angular deviations
in convex �gures on non-Euclidean surfaces of spherical and hyperbolic types as the cosine
orthospherical shifts in their apexes (Chs. 7A, 8A). In the hyperbolic case, Identity of this
negative orthospherical shift, but in time (!), with the Thomas precession is established.

The Integral Laws of Energy and Momentum conservation in the Minkowski space-time
⟨P3+1⟩ can be simply inferred by the 4D Absolute pseudo-Euclidean Pythagorean Theorem
of three momenta, gotten by us in (99A), Ch. 5A, with the use of the absolute own 4 × 1-
momentum P0 = P0 · iα as a right column of the 4×4-tensor of momentum TP = P0 ·rothΓi.
I. e., the last is proportional to our measureless trigonometric tensor of motion rothΓi (100A).
They have four independent scalar arguments, as hyperbolic angle of motion γi and its unity
3-vector of three directional cosines eα. Then, in initial pseudo-Cartesian base Ẽ1 = ⟨x,−→ct⟩
of ⟨P3+1⟩, the tensors TP and TE have proportional to (100A) canonical physical structures
with the 4×1-momentum P0 as 4-th column of TP (under c = const and γ > 0 as ∆ct > 0):

TP == P0 · I3×3 + (cosh γ − 1) ·
←−−−−−
eα · eα′ sinh γ · eα

sinh γ · e′α cosh γ
= P0 · I3×3 +∆P ·

←−−−−−
eα · eα′ p

p′ P
= m0c ·rothΓ,

TE = E0 · I3×3 + (cosh γ − 1) ·
←−−−−−
eα · eα′ sinh γ · eα

sinh γ · e′α cosh γ
= E0 · I3×3 +A ·

←−−−−−
eα · eα′ pc

p′c E
= m0c

2 · rothΓ;

P0 =

[
p
P

]
= P0·iα = m0·c = P0·

[
sinh γ
cosh γ

]
= P0·

[
sinh γ · eα

cosh γ

]
=

[
m0v∗

m0c∗

]
=

[
mv
mc

]
=

[
p

E/c

]
,

E = cosh γ · E0 = E0 + (cosh γ − 1) · E0 = E0 + kE · E0 = E0 +A, where kE = cosh γ − 1 = ∆E/E0.

TE includes the total 4×1-momentum P and the Hamiltonian as scalar E and in Euclidean
3× 3-tensor form, where the work A = ∆E acts logically in the direction eα as in (173A)!
We have the trigonometric and proportional physical concepts staying on a world line in
absolute ⟨P3+1⟩ with tensors of momentum and energy in Ẽ1 under 4-velocity c of Poincar�e.

The vectorial own 4 × 1-momentum P0 = m0 · c, directed along a world line, has its
invariant scalar value P0 = m0c (proportional to E0 = m0c

2). Therefore P0, without the
inner force F , can change only its direction in the internal (light) cone under constant P0.
Mass m0 ̸= 0 (as P0/c or E0/c

2) is used for massive objects. The relative projections are:

P = P0 · cosh γ = mc as the scalar cosine orthoprojection onto the time-arrow
−−→
ct(1),

p = P0 · sinh γ · eα = mv as the sine orthoprojection into the Euclidean subspace ⟨E3⟩(1).
In insulated systems, there is the absolute preserving characteristic under passive Lorentz

transformations: P0 = P0 · iα = const as the invariant hypotenuse of the Pythagorean right
triangle of 3 momenta. Its relative cathetuses are preserved under next own conditions.
The mechanical energy E = c · P0 · cosh γ = cP = const under γ is constant.
The real momentum p = P0 · sinh γ · eα = const under γ and eα are constant together.

Similar approach is applicable at arbitrary quantity of moving and no interacting massive
material points also in the insulated for them system, with its various adopted bases Ẽt:

ΣP0(k) = Σ[P0(k) · i(k)] = c · Σ[m0(k) · i(k)] = const.

Our inferences are in complete and one-to-one correspondences of Tensor Trigonometry with
fundamental concepts as the Noether Theorems, the Higgs Theory, the Mach Principle and
the isomorphic mathematical and physical Principles of Relativity in sect. 12.3 and Ch. 1A.



304 APPENDIX

Besides, for the author, in these scrupulously studied by him areas of the exact science,
one of the most surprises, revealed by Tensor Trigonometry in this Appendix among many
others miracles, was not only the presence, but the abundance of Absolute and Relative
Pythagorean theorems in their quasi-Euclidean and pseudo-Euclidean versions in ⟨Q3+1⟩,
⟨Q3+1⟩c and ⟨P3+1⟩, including their sine and cosine 3D binary subspaces; and even (!) on
the embedded curvilinear perfect hypersurfaces with their three non-Euclidean geometries
and the spherical, hyperbolic and mixed hyperbolic�elliptical principal motions on them. So,
Relative Euclidean Big and Small Pythagorean theorems relate to summing motion angles in
trigonometric functions with their reduction to the original Cartesian subbase; 4D Absolute
and 3D Relative Pythagorean theorems relate to summing motions' angular di�erentials.
The pseudo-Euclidean Tensor Trigonometry is an isomorphic progenitor of all formulae and
theorems of the non-Euclidean geometry on the three sheets perfect hypersurface in ⟨P3+1⟩,
formulae and laws of the Theory of Relativity with using corresponding constant factors!!!

For applications of the Tensor Trigonometry to relativistic calculations of ultra-long-
distance space travel, at least to the star systems closest to us (which has become now
the subject of intense interest), we, in principle, covered this question both at the end of
Chapter 5A, having obtained for this purpose a relativistic version of the Ziolkovsky cosmic
formula with examination of its application to our speci�c extreme example of space travel,
and at the end of Chapter 7A with coordinate representation of the travel itself under its
kinematics and dynamics. As became clarity from results in Chapter 5A, in the foreseeable
future such ultra-long-distance travel is possible only for robotic ships, moreover of miniature
sizes and equipped with highly advanced arti�cial intelligence, and, of course, with the use
of maximum possible acceleration for them to achieve near-light speeds. For now, their task
can only consist of identifying in the promising star systems the presence of the most suitable
planet for the implementation of Earthly life on it and communicating this with a power
laser signal towards Earth. And only after this will it be possible to send astronauts-settlers
there in one direction, and even then, most likely, with their long-term freezing! Otherwise,
nothing will remain of our civilization with its living and culture worlds � especially since
the fanatical politicians only accelerate its destruction and death with no entrance to space!

Of course, no one can force for mathematicians and physicists else in the Past to stop
operating in relativistic transformations with the relativistic factors "γ" (as our cosh γ) and
"β" (as our tanh γ), and they continue to su�er with them in numerous operations and doubt
whether they have been correctly performed, instead of switching to application of simple and
well understandable tensor trigonometric operations in their scalar, vector and tensor forms.
From the point of view of Tensor Trigonometry, using such factors as "γ" and "β", i. e., only
really of the cosine and tangent functions, for development of Theory of Relativity and its
numerous applications is a really pseudo-scienti�c sadomasochismus absurdity. These factors
do not provide any visual theoretical representation. It is a great pity for the relativists, who
from the beginning doomed themselves to torments of "creativity" with them, instead using
simplest and descriptive trigonometric approach in tvs-forms above. Without this approach,
up to now such enthusiasts do not understand di�erence in senses of factors "γ" and "1/γ"
in cosine and secant formulae of STR (see in Chs. 3A, 4A), though they relate to di�erent
transformations: sine-cosine rotations as group and tangent-secant deformations as no group!

Let's hope that progress and useful scienti�c renovations cannot be stopped!

The author of Tensor Trigonometry wishes creative success to all those researchers and
readers, who will continue to apply and further develop all these new geometric directions
established in this book since 2004 and hopes for high notions of scienti�c ethics from all its
users and readers. The great mathematician, physicist and man Henri Poincar�e stated the
highest ethical bar for scientists in the past 20th century. By our opinion, the most terrible
crime in the Science is deliberate and camou�aged plagiarism. Besides, the author is opposed
to any, especially hidden, manifestation of mossy nationalism in the Saint scienti�c sphere!

⋆ ⋆ ⋆ The End ⋆ ⋆ ⋆



Mathematical�Physical Kunstkammer

1. Consider an algebraic equation of power n with real positive coe�cients in its
alternating-sign form. Represent Cardano's (n = 3) and Ferrari's (n = 4) formulae in
terms of small and large medians.

Prove that, if the roots of the algebraic equation in such form are real-valued numbers,
then at any "n" there hold:

0 < k2 < [(n− 1)/2n]k21.

Give the similar chain for all the coe�cients.

2. Explain why each of the following equations has complex conjugate roots with positive
real parts.

y(x) = x5 − 10x4 + 40x3 − 80x2 + 90x− 64 = 0,

y(x) = x5 − 10x4 + 40x3 − 70x2 + 80x− 64 = 0,

y(x) = x5 − 10x4 + 40x3 − 80x2 + 75x− 60 = 0,

y(x) = x5 − 25x4 + 90x3 − 640x2 + 80x− 1 = 0,

y(x) = x5 − 25x4 + 160x3 + 80x− 1 = 0.

General conditions to coe�cients of an algebraic equation for its roots to be real-valued see
in our other monograph [17].

3. Equation y = ||z(x)|| = ||Ax− a|| = min, where A is a m× n-matrix, a is a n-vector,
has a unique solution x = b. Express b, z(b), and y(b) as formulae only with A and a.
Find the spherical angle between the vector b and the plane ⟨im A⟩. Find condition for it
be zero, be right. What is the geometric nature of the vector z(b) in the m-dimensional
Euclidean space? How does geometry of solutions depend on relations between m and n?

4. For a pair of conjugate complex numbers with operations over them, give their real-
valued representations without the imaginary unit. What is the main distinction between
complex-valued representations of such numbers with operations and these real-valued ones?

Prove that a real-valued algebraic equation of power n has a complete real-valued general
solution unique up to admitted permutations.

5. In the �rst half of the 19-th century Urbain Le Verrier "discovered on tip of a pen"
(by the words of F.-J. Arago) the new planet Neptune (1846). He used his own algorithm for
inverting a square matrix B with evaluating scalar characteristic coe�cients of the matrix B
in terms of traces of powers Bt. Prove the following statements for these characteristic
coe�cients of a n× n-matrix B and its powers Bt, 1 ≤ t ≤ n.
a. If tr B = tr B2 = · · · = tr Bj = · · · = tr Bt = +1, then k(B, t) = 0. In particular,
det B = 0 if t = n.
b. If tr B = tr B2 = · · · = tr Bj = · · · = tr Bt = −1, then k(B, t) = (−1)t. In particular,
det B = (−1)n.
c. If tr B = tr B2 = · · · = tr Bj = · · · = tr Bt = +t, then k(B, t) = +1.
d. If −tr B = +tr B2 = · · · = (−1)jtr Bj = · · · = (−1)ttr Bt = t, then k(B, t) = (−1)t.
e. If tr B = tr B2 = · · · = tr Bj = · · · = trBt = +n, then k(B, t) = +Ct

n.
f. If −tr B = +tr B2 = · · · = (−1)jtr Bj = · · · = (−1)ttr Bt = n, then k(B, t) = (−1)nCt

n.

6. For n×m-matrices A1 and A2, prove equalities for the scalar coe�cients of any order t:

k(A1 ·A′
2, t) = k(A′

1 ·A2, t) = k(A2 ·A′
1, t) = k(A′

2 ·A1, t).
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7. Integer-number n× n-matrices generalize the notion of number. They keep also a lot
of mysteries and phenomena. Prove the following formulae (they are connected with these
characteristic coe�cients too).

det



1 1 0 · · · 0 0 0
1 1 2 · · · 0 0 0
1 1 1 · · · 0 0 0
...

...
...

. . .
...

...
...

1 1 1 · · · 1 t− 2 0
1 1 1 · · · 1 1 t− 1
1 1 1 · · · 1 1 1


= 0. (1)

det



1 −1 0 · · · 0 0 0
1 1 −2 · · · 0 0 0
1 1 1 · · · 0 0 0
...

...
...

. . .
...

...
...

1 1 1 · · · 1 −(t− 2) 0
1 1 1 · · · 1 1 −(t− 1)
1 1 1 · · · 1 1 1


= t!. (2)

det



t 1 0 · · · 0 0 0
t t 2 · · · 0 0 0
t t t · · · 0 0 0
...

...
...

. . .
...

...
...

t t t · · · t t− 2 0
t t t · · · t t t− 1
t t t · · · t t t


= t!. (3)

det



−t 1 0 · · · 0 0 0
+t −t 2 · · · 0 0 0
−t +t −t · · · 0 0 0
...

...
...

. . .
...

...
...

(−1)t−2t (−1)t−3t (−1)t−4t · · · −t t− 2 0
(−1)t−1t (−1)t−2t (−1)t−3t · · · +t −t t− 1

(−1)tt (−1)t−1t (−1)t−2t · · · −t +t −t


= (−1)tt!. (4)

det



n 1 0 · · · 0 0 0
n n 2 · · · 0 0 0
n n n · · · 0 0 0
...

...
...

. . .
...

...
...

n n n · · · n t− 2 0
n n n · · · n n t− 1
n n n · · · n n n


= t!Ct

n. (5)

det



−n 1 0 · · · 0 0 0
+n −n 2 · · · 0 0 0
−n +n −n · · · 0 0 0

...
...

...
. . .

...
...

...
(−1)t−2n (−1)t−3n (−1)t−4n · · · −n t− 2 0
(−1)t−1n (−1)t−2n (−1)t−3n · · · +n −n t− 1

(−1)tn (−1)t−1n (−1)t−2n · · · −n +n −n


= (−1)tt!Ct

n. (6)

Note. For (5) and (6) there holds, if t > n, then the determinant is 0.

8. For r×r-matrices B and C of rank r, give the matrix interpretation of simple relations:

det B11

det B21
=

det B11

det (C21 ·B11)
=

det (B11 · C12)

det (C21 ·B11 · C12)
=

det B12

det B22
⇒

det B11

det B21
=

det B12

det B22
⇔

⇔ det B11 · det B22 = det B12 · det B21.

For example, with the use of this relation, infer exact formula for the spherically orthogonal
quasi-inverse matrix A+ in sect.2.5 through elements aij of singular matrix A (r ≤ [m,n]).



MATHEMATICAL�PHYSICAL KUNSTKAMMER 307

9. For singular matrices determining planars or lineors, write down in our uni�ed notation
all characteristic eigenprojectors, orthogonal and oblique ones. Their quantities are:

• 8 and 12 for real-number and complex-number square matrices,

• 4 and 6 for real-number and complex-number rectangular matrices,

• 8 for a pair of real-number rectangular matrices,

• 12 for a pair of complex-number rectangular matrices.

Why paired orthogonal and oblique eigenprojectors mutually change their nature under
translations from quasi-Euclidean space into pseudo-Euclidean one and vice versa?

Are there any geometric distinctions between orthogonal and symmetric eigenprojectors,
oblique and nonsymmetric ones in the spaces with quadratic metrics?

10. In a geometry with its binary space and quadratic metric, a re�ector tensor and the
mid-re�ector of the tensor angle have similar expressions. What is the principal distinction
between these notions?

11. For such "circles" and "hyperbolae" draw on computer graphs of the functions y(x):

|y|n + |x|n = |R|n, |y|n − |x|n = |R|n, n = 0, 1/4, 1/3, 1/2, 1, 3/2, 2, 3, 4,∞.

Why the value n = 2 is chosen just for Euclidean, quasi- and pseudo-Euclidean spaces?
Does the parameter n have any geometric sense for a�ne planes and spaces?

These questions are connected with justi�cation of the Pythagorean Theorem, as well
as the quadratic types metrics in Euclidean, quasi-Euclidean and non-Euclidean geometries,
the theory of relativity, the Gaussian method of least squares and quadratic regression, etc.

Whether it is possible to consider that the mathematical condition n = 2 follows from the
nature of our real space and space-time or it is used as an axiom for them?

Give comparative analysis of the generalized trigonometric functions for integer n ≥ 1:

y/R = Sin φ, x/R = Cos φ; y/R = Sinh γ, x/R = Cosh γ;

Why angles in quadratic geometries (i. e., Euclidean, quasi-Euclidean, and pseudo-
Euclidean), as well as their trigonometric functions have the nature of bivalent tensors?

When the tensors are orthogonal, either spherically, or quasi-Euclidean, or hyperbolically,
or pseudo-Euclidean, and when they are a�ne ones?

What kinds of invariants and quasi-invariants take place for functions of spherical and
hyperbolic angles? What distinction is between invariants and quasi-invariants? What
distinction is between spherical and hyperbolic ones?

How a choice of n = 2 for the relativistic space-time is connected with Einsteinian
physical de�nition of events' simultaneity?

12. In the process of construction and development of fundamental and applications of
the subject "Tensor Trigonometry", we revealed in parallel some very brief and clear infers
of some classic theorems, corollaries and connections between as if di�erent classic concepts.

Connect by general inequality all classic means of positive numbers �lling "blind spots".
Give one-line infer of the classic Hamilton-Cayley Theorem.
Give one-line infer of the classic Kronecker�Capelli Theorem.
Connect the cosine and sine general inequalities for squared and rectangular matrices

with the classic algebraic Inequalities of Cauchy and Hadamard. Give the single condition
of the �rst former's intersection with the classic algebraic Inequality by Hermann Weyl.

Connect by one-line simplest trigonometric relations the Harriot's excess (from 1603), the
Lambert's defect (from 1763) in spherical and hyperbolic right triangles and the Thomas
precession (from 1926) in STR. Give the direct connection of the latter and the Coriolis
relativistic acceleration in the rested and rotated bases.
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13. The sine-tangent analogy leads to the hyperbolic analog ω of spherical number π/4:
sinhω = 1 = tanπ/4⇒ ω = arsinh 1 ≈ 0.881 rad; π/4 = arctan 1 ≈ 0.785 rad. Moreover:

π/4 = arctan 1 = 1−
1

3
+

1

5
−

1

7
+ · · ·+

(−1)n

2n+ 1
+ · · · (the Leibnitz series),

ω = arsinh 1 = 1−
1

3
·
1

2
+

1

5
·
1 · 3
2 · 4

−
1

7
·
1 · 3 · 5
2 · 4 · 6

+ · · ·+
(−1)n

2n+ 1
·
(2n− 1)!!

(2n)!!
+ · · · .

Why ω as well as π/4 is a transcendental number? What is the geometric sense of ω?

14. What common geometric feature do have � the circle and sphere, the equilateral
hyperbola and hyperboloids, the catenary and catenoids, the tractrix and tractricoids with
the Beltrami pseudosphere? Why a tractrix is a hyperbolic analog of a one-step cycloid?

How do a quadrohyperbola in a pseudoplane lead isomorphically to the emergence of four
catenaries and tractrices in their Special quasiplanes (two time-like and two space-like) with
common determining parameter R? Give bond of their hyperbolic and spherical angles.

Describe geometrically and by equations catenoids obtained with rotation of these
parametric double time-like and space-like catenaries around the single normal axis.

Describe geometrically and by equations tractricoids obtained with rotation of these
parametric double space-like and time-like tractrices around the single normal axis.

Why a catenary (evolute) and a tractrix (involute) are connected trigonometrically by the
countervariant spherical-hyperbolic speci�c analogy and as time-like and space-like curves?

What is a main distinction in 1-st metric forms of a Beltrami pseudosphere, hyperboloids
I and II and a hyperspheroid given in their quasi-Euclidean and pseudo-Euclidean spaces?
Why all they are parametric? Which of them are "perfect surfaces" and why it is?

15. Which roles do play the angles γ and υ in pseudo-Euclidean and in non-Euclidean
geometries and in theory of relativity? How they are connected to each other and correspond
to the purely spherical and countervariant Lobachevsky parallel angle Π?

How do the angles of orthospherical rotation θ (as scalar) andΘ (as tensor) appear in non-
collinear principal motions (1), in 1-st metric forms (2), in Thomas precession (3), in angular
deviations inside concave closed �gures from geodesic segments (4), in astronomical data (5)?
Give simplest trigonometric explanation of the induced shifting and precession.

16. What tensor trigonometric distinctions does exist in the mathematical description
and interpretation of these well-known relativistic e�ects: Minkowski dilation of time and
Lorentzian contraction of extent? Describe concomitant to them other relativistic e�ects.

17. What does the mathematical principle of relativity in some geometries consist in?
How does it lead to the physical Principle of Relativity in the Nature?

18. Which kinds of curvatures do take place for world lines in Minkowskian space�time?
How do they correspond trigonometrically to main types of physical movement of a particle
with its kinematic and dynamic characteristics?

19. What distinctions does exist between the classical di�erential theory of regular curves
by Frenet�Serret in the usual 3D Euclidean space and the di�erential trigonometric theory
of regular curves in the 3D and 4D quasi-Euclidean binary spaces? Why the latters may be
realized with two di�erent trihedrons and one tetrahedron? How easy and correctly to
construct the trihedron of screwed motions in the tensor trigonometric form?

20. Describe the trigonometric tensor of motion in space-time ⟨P3+1⟩ and its isomorphic
bond with the physical tensor of momentum-energy. How does it lead to the 4D pseudo-
Euclidean Pythagorean Theorem of three momenta and to the Law of momentum�energy
conservation in insulated systems? What is it a gravitational cosine? How and when does
it manifest in GR e�ects?

21. Explain: why the interpretation of 4D observed space-time, i. e., either it is real one
(as positivist point of view) or it is mapping of real one lensed by gravitation, is associated
with the adoption or not of the Law of momentum�energy conservation in the Universe?
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 general inequality for all averages of positive numbers set
 minimal annulling polynomial of a square matrix in its explicit form
 all orthogonal and oblique projectors and reflectors from singular matrices
 tensor octahedron with eight eigenprojectors from a real-valued null-prime matrix
 quasi-Euclidean and pseudo-Euclidean spaces and their tensor trigonometry (TT)
 projective and motive binary tensor angles and their functions in metric spaces
 spherical and hyperbolic bivalent tensors of rotations (motions) and deformations
 polar representations of polysteps or mixed tensors of rotations (motions)
 null-prime singular matrix and its general cosine relation and inequality
 n´r-lineors and for their pair its cosine and sine relations and inequalities
 hierarchical quadratic norms of matrices from the first order up to general one
 Harriot and Lambert angular deviations as a result of induced orthospherical shifts
 simplest general cosine formulae for deviations above and the Thomas precession
 geometry of Minkowski hyperboloids as TT of enveloping pseudo-Euclidean space
 geometry of an oriented hyperspheroid as TT of enveloping quasi-Euclidean space
 Special group of the quasi-Euclidean space and of its oriented hyperspheroid
 trigonometric projective models in the whole of all non-Euclidean geometries
 Absolute and Relative Pythagorean Theorems in geometries above and STR
 parametric vs equations of catenaries and tractrices in only R-parameter
 parametric vs equations of catenoids and tractricoids and their metric forms
 Laws of summing rotations and motions (velocities) with polar representations
 Looking Glass of the Theory of Relativity in the entire 4D Minkowski space-time
 relativistic transformations in Minkowski space-time with gravity and Higgs fields
 trigonometric explanations of all well-known and new STR and GR relativistic effects 
 differential trigonometry of world lines and curves in pseudo-, quasi-Euclidean spaces

  (with Einsteinian rays in exterior right triangle)

  (with Einsteinian rays
   in interior right triangle)

·

·
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